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Abstract Brittle deformation in the upper crust is thought to occur primarily via faulting. The fault length‐
frequency distribution determines how much deformation is accommodated by numerous small faults versus a
few large ones. To evaluate the amount of deformation due to small faults, we analyze the fault length
distribution using high‐quality fault maps spanning a wide range of spatial scales from a laboratory sample to an
outcrop to a tectonic domain. We find that the cumulative fault length distribution is well approximated by a
power law with a negative exponent close to 2. This is in agreement with the earthquake magnitude‐frequency
distribution (the Gutenberg‐Richter law with b‐value of 1), at least for faults smaller than the thickness of the
seismogenic zone. It follows that faulting is a self‐similar process, and a substantial fraction of tectonic strain
can be accommodated by faults that don't cut through the entire seismogenic zone, consistent with inferences of
“hidden strain” from natural and laboratory observations. A continued accumulation of tectonic strain may
eventually result in a transition from distributed fault networks to localized mature faults.

Plain Language Summary The Earth's crust is pervasively damaged, and contains faults, fractures,
and joints of various sizes and orientations. We use mapped fault traces from multiple data sets spanning a wide
range of scales to investigate how much deformation is accommodated by small versus large faults. The fault
length distribution is often assumed to be fractal, that is, following a power law. The power‐law exponent α
quantifies the relative contributions of many small faults relative to a few large ones. For α ≤ 1, the
contribution of small faults is negligible, while for α ≥ 2, strains accommodated by small faults become
significant. We find that the cumulative fault length distribution approximately follows a power law with an
exponent α ≥ 2. This implies that small faults in developing shear zones can accommodate a substantial
fraction of tectonic strain.

1. Introduction
Tectonic deformation in the upper crust is mainly accommodated by brittle failure, manifested in faults and tensile
cracks (e.g., S. Cox & Scholz, 1988). Faults are ubiquitous in both intraplate settings and at plate boundaries (e.g.,
Woodcock, 1986; Bezerra et al., 2011; R. T. Cox et al., 2001; Twiss & Moores, 1992; Bürgmann &
Pollard, 1994). As faults continue to slip, they increase their length via crack tip propagation, linkage, and
coalescence (e.g., Mansfield & Cartwright, 2001; S. Cox & Scholz, 1988; Dawers & Anders, 1995; Fossen, 2020;
Rotevatn et al., 2019). As a result, the upper crust contains faults of various sizes, from millimeter‐long micro‐
fractures to mature faults extending hundreds of kilometers. The fault length distribution controls the relative
contributions of small versus large faults to a total strain budget and is of interest to many disciplines including
tectonics, engineering geology, hydrogeology, petroleum industry, and seismic hazards assessment (e.g., C. H.
Scholz & Cowie, 1990; Bense et al., 2013; Bonnet et al., 2001; Kolawole et al., 2019).

Previous studies suggested a variety of functional forms describing the fault size distribution. It is generally
believed that in a low‐strain environment (e.g., developing shear zones), fault populations are fractal and thus
follow a power‐law distribution (e.g., Childs et al., 1990; D. Turcotte, 1986; Bour & Davy, 1999; Bonnet
et al., 2001; Ben‐Zion & Sammis, 2003). Nicol et al. (1996) noted that the fault length distribution may deviate
from a power‐law if a wide range of fault lengths is considered, and that the power‐law exponent may vary at the
low end of the fault length distribution owing to spatial clustering. In contrast, Odling et al. (1999) argued that the
fault length distribution may appear as log‐normal in individual data sets with a given detection threshold, but is a
power‐law for “composite” data sets that combine a number of individual data sets spanning a wide range of
spatial scales. Other considered functional forms include gamma and exponential distributions that may provide a
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better fit to the data, especially at the distribution tails (e.g., Ackermann et al., 2001; Cowie et al., 1993;
Michas et al., 2015; Spyropoulos et al., 1999). However, it is not always clear if departures from a power law are
real, or due to sampling artifacts (e.g., Bonnet et al., 2001). Gupta and Scholz (2000) suggested a transition from a
power‐law to an exponential distribution when tectonic strain exceeds a critical threshold of the order of 0.1.

In case of a power‐law distribution, the number of faults N that have lengths greater than or equal to L is given by

N(L) = CL− α (1)

where C is an empirical constant, and α > 0 is an absolute value of the power‐law exponent, also known as the
Pareto index (e.g., Clark et al., 1999). The derivative of the cumulative fault length distribution (Equation 1) with
respect to L is the probability density,

dN
dL

= C(1 − β)L− β, (2)

which is also a power law, with β = α + 1. The probability density (Equation 2) is sometimes referred to as the
non‐cumulative frequency distribution. A number of studies used field observations to test the assumption of a
fractal distribution, and estimate parameters C and α (or β). Reported values of the best‐fit power‐law exponent α
vary from 0.7 for faults in Chimney Rock, Utah (Cladouhos & Marrett, 1996; Krantz, 1988) to 1.1 for Neogene
faults in the Boso and Iura Peninsula, Japan (C. H. Scholz & Cowie, 1990) to 2.3 for faults and fractures in
sandstone in Tayma, Saudi Arabia (Odling et al., 1999). Most of the previous studies used data sets consisting of
102− 103 fault traces with fault lengths spanning 1− 2 decades.

The magnitude of the power‐law exponent determines how deformation is partitioned between small and large
faults. C. H. Scholz and Cowie (1990) estimated the power‐law exponent α ≈ 1 using fault trace data from Japan
and concluded that small faults are negligible in the total strain budget. In contrast, Kautz and Sclater (1988)
argued, based on laboratory experiments and observations of natural faults, that small‐scale faulting is responsible
for a substantial internal deformation within crustal blocks bounded by major faults. Such deformation was also
invoked to explain the relative rotation of conjugate faults in tectonically active regions such as the Eastern
California Shear Zone (Fialko & Jin, 2021) and Tibet (Yin & Taylor, 2011). No such rotation would be possible if
small faults were too scarce to accommodate a substantial fraction of tectonic strain.

To quantify the amount of deformation that can be attributed to small‐scale faulting, we analyze the fault length
distribution across a wide range of spatial scales using several high‐quality data sets. In particular, we use detailed
fault maps from different geological settings, including the Basin and Range Province (Nevada), Central
Pennsylvania/Northern New Jersey, Ventura County (California), and Northern New Zealand. We complement
these crustal‐scale data sets with outcrop‐scale observations of fractures and joints in Eastern Israel (Bahat, 1987)
and Sierra Nevada (Segall & Pollard, 1983), and dip‐slip faults in Southern New Zealand (Davis et al., 2005) and
Eastern France (Villemin et al., 1995). We also use laboratory observations of Mode I and II micro‐fractures in
rock samples loaded to failure at confining pressures of several tens of megapascals (Katz & Reches, 2004). We
examine the compiled multi‐scale data to test the assumption of a power‐law distribution, obtain the best‐fit
power‐law exponent, and use the latter to estimate the amount of strain accommodated by faults in the upper
crust, as a function of fault size.

2. Data and Methods
Continental deformation often involves broad regions of distributed faulting such as the Eastern California Shear
Zone (Dokka & Travis, 1990; Floyd et al., 2020; Tymofyeyeva & Fialko, 2015), Basin and Range (Eaton, 1982;
Hodges et al., 1989), and India‐Arabia‐Africa‐Eurasia collision zone (e.g., England, 1987; Reilinger et al., 2006).

We are interested in the fault length‐frequency distribution in regions of distributed deformation. Unfortunately,
strike‐slip faults are often difficult to recognize due to their limited geomorphologic expression, especially in case
of small, low offset faults. Normal faults are better suited for this purpose because they produce scarps (changes in
topography) that are easier to map. One of the most extensive and detailed fault trace data sets from an actively
deforming extensional region is that from the Basin and Range (B&R) province in the Western US (Figure 1a).
This region hosts a number of active Quaternary faults (e.g., Eaton, 1982; U.S. Geological Survey and Nevada
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Bureau of Mines and Geology, 2023). We examine fault traces from an area extending 6° in longitude and 4° in
latitude (Figure 1a). The respective data set consists of 26,512 fault traces, with the fault segment lengths varying
from 2.1 m to 42.6 km.

A close inspection of the B&R fault trace data reveals that many fault traces that appear continuous on a regional
scale (Figure 1a) are in fact highly segmented (Supplementary Figure S1a in Supporting Information S1). While
some of the apparently continuous fault traces may be segmented because they have different attributes such as
dip and strike, others may have the same attributes but are still separated at the segment level. To mitigate po-
tential biases due to artificial segmentation, we developed an algorithm for concatenating individual segments
that likely belong to the same fault. The algorithm attributes different segments to the same fault if the following
criteria are satisfied: (a) tips of the adjacent fault segments are within a prescribed distance D from each other; (b)
the adjacent fault segments are sufficiently well aligned, such that the difference in strike angles θ1 and θ2 be-
tween the segment tips (see Figure 2a) is less than a prescribed threshold δ; also, the difference between the
average of strike angles at the segment tips, (θ1 + θ2)/2 and the strike angle of a line connecting the segment tips

Figure 1. (a) Map of the Basin and Range Province (U.S. Geological Survey and Nevada Bureau of Mines and
Geology, 2023). Shading denotes topography. Black lines denote fault traces. Red lines denote fault traces excluded from the
analysis as they intersect the region boundaries. Inset shows location of the area of interest (white rectangle) in a regional
context; thin black lines indicate state boundaries. The concatenated fault data set includes 10,825 fault segments. The
minimum segment length is 2.1 m and the maximum length is 49 km. (b) Probability density of the fault length distribution,
on a log‐log scale. Solid line represents the best linear fit at the high end of the fault length distribution (L > 5 km). The
estimated power‐law exponent (slope of the best‐fit line) is β = 3.51 ± 0.12.

Figure 2. A schematic illustrating criteria used for connecting fault segments. Black solid lines denote fault traces (segments
f1 and f2). D is the distance between fault tips. θ1 and θ2 are the local strike angles at the fault tips. The difference in strike
angles is δ = |θ1 − θ2|. (a) Segments f1 and f2 are allowed to be connected if the fault traces are sufficiently close and aligned
(D and δ are below the prescribed thresholds). (b) Example of a configuration when the fault tips are not aligned (δ is larger than
the prescribed threshold). (c) Example of a configuration of sub‐parallel faults. In our analysis, we use D ≤ 5 km and δ ≤ 30°.
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is less than a prescribed threshold δ (Figure 2b); (c) overlapping segments that satisfy conditions (a) and (b) are
considered part of the same fault if D < L/3, where L is the length of a smaller segment. The latter condition is
meant to avoid absorption of small faults that are sub‐parallel to (rather than aligned with) the large ones
(Figure 2c). The respective criteria are illustrated in Figure 2.

A reasonable upper limit on D is some fraction of the thickness of the brittle layer T, such that the apparently
discontinuous (e.g., poorly exposed) surface traces might possibly belong to the same fault at depth. For the Basin
and Range province, T ≈ 15 km (e.g., Pancha et al., 2006). We assume D ≤ 5 km. This assumption is consistent
with observations and models of earthquake ruptures jumping across nearby fault segments (e.g., Ando &
Kaneko, 2018; Harris & Day, 1999; Jia et al., 2023). We find that the best‐fit power‐law exponent is relatively
insensitive to the assumed value of D, for δ between 0 and 30° (Figures S2 and S3 in Supporting Information S1).
Larger values of D and δ encourage segment linking, resulting in a smaller number of small faults, and conse-
quently smaller absolute values of the best‐fit power‐law exponents. In our analysis, we use D = 5 km, and
δ = 30° to provide a lower bound on α. A comparison of fault trace data before and after ”de‐segmentation” is
shown in Figure S1 in Supporting Information S1.

Because the cumulative fault length distribution is known to be sensitive to finite size effects, which can bias
determination of the exponent (e.g., Bonnet et al., 2001; Serafino et al., 2021), we use the density distribution
(Equation 2) to estimate the power‐law exponent β, unless indicated otherwise. The respective values of α are
trivially given by α = β − 1.

Figure 1b shows the probability density of fault length distribution for the “concatenated” Basin and Range data
set (a subset is shown in Figure S1b in Supporting Information S1). To minimize the censoring bias (e.g., Torabi
& Berg, 2011), we refine the data set by excluding faults that intersect the region boundaries (after the segment
concatenation), see red lines in Figure 1a. On a log‐log plot, the density distribution exhibits a quasi‐linear trend
for L > 5 km, and flattens out for smaller L. The roll‐off at L < 5 km likely results from incomplete sampling
(truncation bias, Torabi & Berg, 2011; Bonnet et al., 2001), analogous to saturation of the Gutenberg‐Richter
distribution below the magnitude of completeness (e.g., Woessner & Wiemer, 2005). The truncation bias may
be due to a finite detection threshold and/or 2‐D sampling of a 3‐D fault population (e.g., Heifer & Bevan, 1990;
Marrett & Allmendinger, 1991). We use the Kolmogorov‐Smirnov (KS) test (Clauset et al., 2009) to identify the
range of fault lengths [Lmin, Lmax] that can be used for power‐law fitting (see Supplementary Text S1 in Sup-
porting Information S1 for details). We estimate the density power‐law exponent β by the least squares linear
regression over the interval [Lmin, Lmax]. The uncertainty on the best‐fit slope is obtained by performing a
regression for different bin sizes, and computing a standard deviation of the resulting slope estimates. For the data
shown in Figure 1, we obtain β = 3.51 ± 0.12, or α ≈ 2.5. This can be compared to the value of α = 1.84
estimated by Cladouhos andMarrett (1996), who used an older (presumably, less complete) fault map of the Basin
and Range province, and fitted a linear trend to the cumulative fault length distribution over the fault length
interval between ∼15–70 km.

We extended the same analysis to several other locations for which high‐resolution maps of dip‐slip faults are
openly available, in particular, Central Pennsylvania and Northern New Jersey, Ventura County (California), and
Northern New Zealand. Figure 3a shows fault traces from an area in Central Pennsylvania and Northern New
Jersey (NJ Dept. of Environmental Protection Bureau of GIS, 2023; PA Department of Conservation & Natural
Resources, 2023). The mapped traces represent inactive thrust and strike‐slip faults formed 400 to 250 million
years ago (Hatcher, 1987). For consistency, we apply the same algorithm for concatenating the aligned segments
as described above. The resulting data set consists of 2,273 faults having length between 15 m and 108 km. The
probability density fault length distribution (Figure 3b) is characterized by an apparent truncation for faults
smaller than 20 km, and a slope of the quasi‐linear trend of − 3.51, remarkably similar to results obtained for the
Basin and Range province (Figure 1b).

The Ventura County, CA (Figure 4) and Northern New Zealand (Figure 5) fault maps cover much smaller areas.
After the segment concatenation procedure, each data set contains several hundreds of fault traces. This is 1–2
orders of magnitude smaller than the number of fault traces in the B&R and Pennsylvania/New Jersey data
sets (Figures 1 and 3), but comparable to a typical size of data sets examined in a number of previous studies.
While these smaller data sets are too characterized by decaying trends toward the high end of the sampled range of
fault lengths, the data exhibit a significant scatter (e.g., Figure 5b), making power‐law fits more problematic. Our
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analysis of the respective data sets yields smaller values of β that are subject to higher uncertainties (2.68 ± 0.14
for Ventura County and 2.42 ± 0.40 for Northern New Zealand, see Figures 4b and 5b).

To evaluate the fault length distribution at smaller scales, we use published data on fracture density measured in
outcrops (L ∼ 1–100 m) and laboratory samples (L ∼1–100 mm). The outcrop‐scale observations include reac-
tivated joints in igneous rocks near Florance Lake, Sierra Nevada, California (Segall & Pollard, 1983) and Eocene
chalks in the Syrian Arc folding belt, Israel (Bahat, 1987); thrust faults in the Ostler Fault Zone, Benmore outcrop,
Southern New Zealand (Davis et al., 2005); and predominantly dip‐slip faults in La Houve Coal Field, an old
sedimentary basin in Eastern France that experienced both compressional and extensional tectonics (Villemin
et al., 1995). The laboratory data are from specimens of Mount Scott granite of Oklahoma loaded to peak yield
stress in a triaxial apparatus under confining pressure of 41 MPa (Katz & Reches, 2004). The micro‐structural
mapping of the sample damage was performed on scanned images of thin sections. Each sample had on the
order of 103 resolved micro‐fractures with lengths between 0.01 and 10 mm (Katz & Reches, 2004).

A compilation of the respective data sets is presented in Figure 6, along with the fault trace data from Figures 1
and 3–5. To enable a direct comparison of different data sets, we normalize the cumulative fault length counts by
the areas from which the fault trace data were collected. The combined cumulative frequency distribution spans

Figure 3. (a) Map of Central Pennsylvania and Northern New Jersey (NJ Dept. of Environmental Protection Bureau of
GIS, 2023; PA Department of Conservation & Natural Resources, 2023). Notation is the same as in Figure 1. The
concatenated fault data set includes 2,273 fault segments. The minimum segment length is 15 m and the maximum length is
108 km. (b) Probability density of the fault length distribution, on a log‐log scale. Solid line represents the best linear fit at the
high end of the fault length distribution (L > 10 km). The estimated power‐law exponent (slope of the best‐fit line)
is β = 3.51 ± 0.20.

Figure 4. (a) Map of Ventura County, CA (County of Ventura, 2023). Notation is the same as in Figure 1. The concatenated
fault data set includes 349 fault segments. The minimum segment length is 0.6 m and the maximum length is 30 km.
(b) Probability density of the fault length distribution, on a log‐log scale. Solid line represents the best linear fit at the high
end of the fault length distribution (L > 3 km). The estimated power‐law exponent (slope of the best‐fit line)
is β = 2.68 ± 0.14.
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8 decades of fault length, and 18 decades of fault density (cumulative fault counts per unit area). All of the in-
dividual data sets shown in Figure 6 appear to have a log‐normal distribution, with a quasi‐linear trend at the high
end, and a roll‐off at the low end of the respective fault lengths. The high end quasi‐linear trends have slopes that

Figure 5. (a) Map of Northern New Zealand (Langridge et al., 2016a). Notation is the same as in Figure 1. The concatenated
fault data set includes 159 fault segments. The minimum segment length is 363 m and the maximum length is 24.7 km.
(b) Probability density of the fault length distribution, on a log‐log scale. The solid line represents the best linear fit at the high
end of the fault length distribution (L > 4 km). The estimated power‐law exponent (slope of the best‐fit line)
is β = 2.42 ± 0.40.

Figure 6. Cumulative fault length frequency distribution for a combined data set including fault traces (Figures 1–4), as well
as outcrop‐scale and lab data, normalized by the respective observation areas, on a log‐log scale. The black solid line is the
least squares fit to the ”high‐end” asymptotes of the outcrop‐ and crustal‐scale data (black symbols, upper right legend). The
estimated power‐law exponent is α = 2.06, and the pre‐multiplying factor is C = 0.53. Blue triangles denote micro‐crack
length distributions from laboratory tests (Katz & Reches, 2004). Black triangles denote the same data shifted toward the best‐fit
envelope (black solid line).
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are quite similar for all data sets shown in Figure 6, indicative of similar power‐law exponents. Furthermore, the
crustal‐ and outcrop‐scale data admit a common envelope, suggesting that not only the power‐law exponent, but
also the multiplier C (Equation 1) is essentially the same across multiple data sets. The least squares fit of the
common envelope to the crustal‐ and outcrop‐scale data (see black solid line in Figure 6) yields a power‐law
exponent of α = 2.06. The micro‐crack data (blue triangles in Figure 6) parallel this trend, but fall somewhat
below, suggesting a lower value ofC (i.e., a smaller crack density). The least squares fit of an envelope to all of the
data, including the micro‐crack data (blue triangles in Figure 6), yields a power‐law exponent of α = 1.93 (not
shown). To illustrate the overall similarity of the slope of the micro‐crack length distribution to the rest of the data,
we also plot the micro‐crack data shifted toward the best‐fit envelope (α = 2.06, see black triangles in Figure 6).

3. Strain Due To Faults Obeying a Power Law Distribution
An overall agreement of the estimated power‐law exponents of individual data sets between each other, on the one
hand, and the common envelope, on the other hand (Figure 6), lends support to a suggestion that the roll‐off in
individual data sets is a result of truncation (e.g., due to a detection threshold, Bonnet et al., 2001; Torabi &
Berg, 2011), and that the fault length statistics is adequately described by a power law across a wide range of
spatial scales. If so, one can evaluate the amount of tectonic strain absorbed by faults of different sizes (e.g., C. H.
Scholz & Cowie, 1990; J. Walsh et al., 1991).

For a population of n faults within the brittle crust having a volume TA, where T is the thickness of the brittle
layer, and A is the map area, the average strain accommodated by faulting is given by (Kostrov, 1974):

εij =
1
2TA

∑
n

k=1

kPij. (3)

In Equation 3, kPij is the seismic potency tensor (e.g., Ben‐Zion, 2001) of the k‐th fault in a population. The
average fault slip S is expected to scale with fault length L,

S ∝ Lm. (4)

Theoretical arguments and field observations suggest that m should be close to one (e.g., Cowie & Scholz, 1992;
Fialko, 2015), although higher values ofmwere suggested as well (e.g., J. J. Walsh &Watterson, 1988; Marrett &
Allmendinger, 1991). Assuming m = 1,

S = ϵL, (5)

where ϵ is the critical shear strain drop corresponding to fault propagation. The scalar potency is P = γSL2 for
faults smaller than T, and P = γSLT otherwise, where γ is a geometric factor of the order of unity that accounts
for the fault shape and fault dip (for faults that cut through the entire brittle layer, e.g., Vavra et al., 2023). For
simplicity, hereafter we assume γ = 1. The number of faults within an interval of fault lengths ΔL is
(dN(L)/dL)ΔL. The cumulative potency can be calculated by integrating potencies of all faults for a given range
of fault lengths. For faults smaller than T, the cumulative potency is (C. H. Scholz & Cowie, 1990):

p1 (Lmin, Lmax) =∑
k

kP = − ϵ∫
Lmax

Lmin

dN(L)
dL

L3dL = Cϵ
α

3 − α
L3− α

⃒
⃒
⃒
⃒

Lmax

Lmin
, (6)

where Lmin and Lmax are the minimum and maximum fault sizes, respectively. For faults that cut through the entire
brittle layer (L > T),

p2 (Lmin, Lmax) =∑
k

kP = − ϵT∫
Lmax

Lmin

dN(L)
dL

L2dL = CϵT
α

2 − α
L2− α
⃒
⃒
⃒
Lmax

Lmin

. (7)

We evaluate the relative contribution of faults smaller than a given size L to the total strain by allowing Lmin → 0,
and computing a ratio
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R = 100% ×

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1(0, L)
p1(0, T) + p2 (T, Lmax)

, for L < T

p1(0, T) + p2(T, L)
p1(0, T) + p2 (T, Lmax)

, for L > T.

(8)

Note that R does not depend on factorsC and ϵ. Figure 7 shows the percentage
of strain accommodated by faults having length less than L, for a range of L,
assuming α = 2.06, Lmax = 100 km (Figure 6), and T = 15 km, typical of
the seismogenic depth in many tectonically active areas (e.g., Pancha
et al., 2006; E. O. Lindsey & Fialko, 2016; Jin et al., 2023; Jia et al., 2023).
For a comparison, we also show analogous calculations for previously re-
ported values of α = 1.1 (dashed line, C. H. Scholz & Cowie, 1990) and
α = 2.34 (dotted line, Odling et al., 1999).

4. Discussion
For fault systems characterized by a power‐law size distribution (1), the
power‐law exponent α controls how much of tectonic deformation is
accommodated by numerous small faults versus a few large ones. C. H.
Scholz and Cowie (1990) estimated the value of α = 1.1 for a set of intraplate
faults in Japan, and concluded that small faults are negligible in the overall
strain budget. This is because integrals (6) and (7) are strongly convergent for
α ≈ 1, so that the cumulative potency is dominated by the largest faults. Our

results, based on a much larger data set, indicate α ≥ 2 (Figure 6). Most of the previously published estimates of
α fall in the range between 1 and 2 (e.g., Bonnet et al., 2001). Possible reasons for different values of α reported in
the literature include: (a) use of fault trace data of limited coverage and/or resolution; (b) uncertainties involved in
defining fault connectivity; (c) a narrow range of fault lengths used in the analysis; (d) departures from self‐
similarity due to the presence of intrinsic length scales; (e) different stages of maturity of different fault sys-
tems. For example, the data set used by C. H. Scholz and Cowie (1990) spans only one order of magnitude of fault
lengths, from ∼10 to ∼100 km, likely insufficient for a robust validation of a power‐law distribution (Stumpf &
Porter, 2012). C. Scholz et al. (1993) analyzed a data set from the Volcanic Tableland (California) with fault
lengths spanning 2 orders of magnitude, from a few tens of meters to a few kilometers, and obtained a higher value
of α ≈ 1.3. The latter under‐predicts the slope at the upper tail of the fault length distribution of C. Scholz
et al. (1993, their Figure 4), which the authors attributed to data censoring.

Our analysis of several high‐resolution data sets (Figures 1, 3–6) suggests values of α close to 2, higher than those
reported by C. H. Scholz and Cowie (1990) and C. Scholz et al. (1993), but consistent with results from other
multi‐resolution studies. In particular, Heifer and Bevan (1990) combined fault trace data with measurements of
crack density in boreholes to infer α ≈ 2. Odling et al. (1999) performed a multi‐scale analysis of the length
distribution of faults and joints in sandstones in Saudi Arabia, and found the best‐fit power‐law exponent of 2.34
for a range of fault lengths spanning 4 orders of magnitude. Values of α ≥ 2 in sandstones may be due to strain‐
hardening deformation bands that may inhibit fault propagation and instead promote nucleation of numerous
small faults. C. Scholz et al. (1993) cautioned against combining observations that include different fracture
modes (e.g., faults and joints, Heifer & Bevan, 1990). However, it can be argued that the crack length distributions
should not strongly depend on the fracture mode as mathematical expressions for stress fields due to shear and
tensile cracks are essentially identical (e.g., Fialko, 2015), so that stress interactions within the crack network are
expected to be similar (e.g., for shear and tensile cracks). This is consistent with results from previous studies. As
noted by Bonnet et al. (2001), “…scaling exponents (notably, the length distribution exponent) are remarkably
insensitive to the orientation of the slip vector, that is, whether or not fracturing is accompanied by shear (faults)
or tensile (joints) displacement.” Given that the total accommodated strain includes contributions from all types of
fractures, it's not unreasonable to include fractures of different modes in the length‐frequency analysis. Different
data sets are expected to show some variability in the estimated power‐law exponents given various lithologies,
crustal layering, maturity states, and fault roughness, among other factors (e.g., Kim & Sanderson, 2005; Power
et al., 1988). Nevertheless, an overall agreement between the estimated power‐law exponents for different types

Figure 7. Percentage of the total potency R (Equation 8) accommodated by
faults having length less than L, for several estimated values of the power‐
law exponent α: solid line, α = 2.06 (this study); dotted line, α = 2.34 (Odling
et al., 1999); dashed line, α = 1.1 (C. H. Scholz & Cowie, 1990). We assume
Lmax = 100 km (Figure 6). The vertical gray line corresponds to
L = T = 15 km.
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of fractures, as well as for data sets from different locations (Figure 6) lends
support to a hypothesis that early stages of faulting may be governed by a
”universal” power law with α ≈ 2 (King, 1983; Proekt et al., 2012; Roman &
Bertolotti, 2022).

The relative contribution of small faults to the strain budget is expected to be
larger for smaller values of Lmax, and/or larger values of α. We note that the
actual values of α may be in fact higher than those estimated from two‐
dimensional (2‐D) sampling of three‐dimensional (3‐D) fault populations.
For example, for uniformly distributed and randomly oriented faults, the true
(i.e., 3‐D) exponent is predicted to be larger than the exponent inferred from
the 2‐D sampling by as much as 1 unit (e.g., Bonnet et al., 2001; Marrett &
Allmendinger, 1991). This only applies to small (L < D) faults, as for large
faults the distribution is essentially 2‐D. For α approaching 3, small faults
would actually dominate the strain budget, and the contribution of large faults
would be negligible. Note that for the cumulative potency and strain to remain
finite, α cannot exceed 3 (Equation 6).

Some useful constraints on the fault length‐frequency distribution can be
obtained from the magnitude‐frequency distribution of earthquakes. The
latter obeys the well‐established Gutenberg‐Richter law,
log10 N(M) = a − bM, where N(M) is the number of earthquakes with
magnitude larger or equal to M, and a and b are empirical constants

(Gutenberg & Richter, 1944). Unless otherwise noted, M denotes the moment magnitude,
M = ( log10 M0 − 9.05)/1.5, whereM0 is the scalar seismic moment (Hanks & Kanamori, 1979). BecauseM is
related to a logarithm of M0, it can be shown that parameter b (referred to as the ”b‐value”) defines a power‐law
exponent αs in the size‐frequency distribution of seismic ruptures (e.g., King, 1983; D. L. Turcotte, 1997). In
particular, the scalar seismic moment is given byM0 = μAS, where μ is the shear modulus, A is the rupture area,
and S is the average coseismic slip. For ruptures with moderate aspect ratios, A ∝ L2, and S ∝ L, so that
M0 ∝ L3 (e.g., Fialko, 2015; Kanamori & Anderson, 1975). Substituting this scaling relation into expressions for
the moment magnitude and magnitude‐frequency distribution, one obtains N(L) ∝ L− 2b, or αs = 2b. The co-
efficient of proportionality C can be found under additional assumptions, for example, by approximating
earthquake ruptures as circular cracks with a constant stress drop Δσ. In this case, A = πL2/4, and
S = 8ΔσL/7πμ (e.g., Eshelby, 1957), leading to L = (7M0/2Δσ)1/3. Figure 8 shows a cumulative size‐
frequency distribution of earthquakes in Southern California recorded over the last 42 years since the deploy-
ment of digital seismic networks (Hauksson et al., 2012). The data set includes 7.7 × 105 earthquakes; shown in
Figure 8 are events in the magnitude range from 1.7 (magnitude of completeness) to 6.5 (saturation of the
seismogenic layer, L ≤ T). To estimate rupture sizes from the moment magnitude, we choose a constant stress
drop of 3 MPa (Abercrombie, 1995; Shearer et al., 2006). Note that the assumed value of Δσ does not affect the
power‐law exponent αs given stress drops do not systematically depend on L (Allmann & Shearer, 2009).

The earthquake data unambiguously indicate that seismically active faults within the seismogenic layer (L < T)
have a power‐law length‐frequency distribution with an exponent αs close to 2, corresponding to a b‐value close
to 1. The same b‐value well describes the global seismicity, with some variations between 0.7 and 1.4 depending
on the area and tectonic regime (Godano & Pingue, 2000; Schorlemmer et al., 2005; Shearer et al., 2006). For
earthquakes that rupture the entire seismogenic zone (M > 6.5 for T = 12 − 15 km in most of the Western
North America), the seismic moment no longer scales as a cube of L, leading to values of αs that are smaller than
2b. In particular, for L > T the fault area is proportional to L, A = LT. The coseismic slip S is expected to
saturate for L > T, but it appears to do so only for L≫ T (e.g., Shaw & Scholz, 2001), giving rise to empirical
scaling of S in proportion to either L (C. Scholz, 1994) or

̅̅̅
L

√
(Leonard, 2010). Correspondingly, the seismic

moment scales as either L2 or L3/2, yielding values of αs of 4b/3 or b. Assuming b = 1, this would suggest a
change in the fault length‐frequency distribution around L ∼ T, with αs ≈ 2 for “small” faults (L < T), and
αs ≈ 1 − 1.3 for “large” faults (L > T). However, it is unclear if b‐value remains constant across the saturation
length scale L ∼ T. Regional data sets such as that shown in Figure 8 contain too few events with magnitudes
greater than 6.5 to robustly evaluate the length‐frequency distribution of earthquakes that rupture the entire

Figure 8. A cumulative fault length‐frequency distribution of earthquakes
that occurred in Southern California in 1981–2023. Open circles: earthquake
data from the waveform‐relocated catalog of Hauksson et al. (2012, updated
annually), 1.7 ≤ M ≤ 6.5. Solid gray line: best linear fit in log‐log
coordinates. Slope of the best‐fit line is equal to − 1.998.
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seismogenic zone. To gain further insight, we use the global CMT catalog (Ekström et al., 2012) and examine the
magnitude‐frequency distribution of strike‐slip earthquakes that occurred between 1976 and 2024 (see Figures S4
and S5 in Supporting Information S1). In the magnitude range between 5 and 6.5, the estimated b‐value of the
global data set is about 1 (Figure S4 in Supporting Information S1), consistent with the more complete Southern
California data set spanning almost 5 units of earthquake magnitude, 1.7 ≤ M ≤ 6.5 (Figure 8). However,
strike‐slip earthquakes that rupture the whole seismogenic zone, 6.5 ≤ M ≤ 8.1, appear to have a larger b‐value
of∼1.3 (Figure S4 in Supporting Information S1). This gives rise to αs of 1.3 (assuming S ∝

̅̅̅
L

√
) to 1.8 (assuming

S ∝ L) for “large” faults (L > T).

An excellent agreement between results shown in Figures 6 and 8 may be interpreted as indicating that the length‐
frequency distribution of seismically active faults is the same as that of the entire fault population, αs ≈ α.
Alternatively, it can be argued that αs is a lower bound on α, as only a fraction of faults within the seismogenic
zone is seismically active (e.g., D. L. Turcotte, 1997, p. 44). This would be the case if estimates of α based on
statistics of mapped fault traces suffer from a lower‐dimensional bias (for L < T). The latter interpretation may
be consistent with values of α > 2 estimated from data sets that include large faults (L > T, Figures 1 and 3).
Note that neither the fault length statistics of large (L > T) faults derived from the fault trace data, nor the values
of αs derived from the earthquake catalog data are subject to a lower‐dimensional bias. In other words, α can be
larger than 2 for the entire fault length distribution.

In any case, it is clear that values of α ∼ 1 reported in some previous studies are inconsistent with the Gutenberg‐
Richter statistics at the low end of the fault size distribution. For example, C. H. Scholz and Cowie (1990)
suggested α = 1.1 based on analysis of a data set dominated by large faults (L ∼ 10 − 100 km). While this
result might be reconciled with seismic observations in the limit L > T, it fails to describe the length‐frequency
distribution of small faults for which α ≥ 2 (Figure 6) as well as small‐to‐moderate earthquakes for which αs ≈ 2
(Figure 8). In addition, our data sets that span the likely transition from “small” to “large” faults do not show
obvious breaks in scaling and/or low values of α (Figures 1 and 3). However, the level of completeness of in-
dividual fault trace data sets is admittedly insufficient to make robust conclusions about potential variations in α
across the presumed saturation length scale L = T.

We note that faults having lengths of tens to hundreds of kilometers have accumulated a substantial amount of
slip, and thus may be more representative of a structurally mature fault system. Experimental studies reveal higher
values of α at the initial stages of faulting when deformation is broadly distributed, and a decrease in α with an
increasing system maturity (e.g., Cladouhos &Marrett, 1996; Hatton et al., 1993; Sornette et al., 1993). It follows
that small faults can potentially accommodate a substantial fraction of tectonic strain at the initial stages of
faulting (e.g., in developing shear zones). Over time, as faults grow and connect, deformation may localize to
major faults that eventually take up most of the deformation.

These arguments suggest a distinction between deformation styles due to immature shear zones such as the
Eastern California Shear Zone (Dokka & Travis, 1990; Floyd et al., 2020), and mature well‐slipped plate
boundary faults such as the San Andreas Fault (Fialko, 2006; Lisowski et al., 1991). In the latter case, interseismic
strain accumulation is equal in magnitude, but opposite in sign to strain released in large earthquakes, so the
patterns of interseismic and long‐term (geologic) displacements across a mature fault are very different (Figure 9).
A complete or nearly complete recovery of interseismic strain (i.e., elastic rebound) is evidenced by the good
agreement between “geologic” and “geodetic” slip rates on major plate boundary faults (e.g., Schmalzle
et al., 2006; Tatar et al., 2012; E. Lindsey & Fialko, 2013). In contrast, immature fault systems with α ≥ 2 give
rise to a distributed inelastic deformation with the long‐term displacement profile that may closely mimic the
observed interseismic velocities (Fialko & Jin, 2021). The diffuse deformation pattern illustrated in Figure 9a can
be thought of as resulting from the “seismic flow of rocks”, as originally envisioned by Riznichenko (1965) and
Kostrov (1974), although a more appropriate term would be the “brittle flow of rocks”, since some of the
deformation may occur aseismically, for example, via fault creep (Kaneko et al., 2013; Tymofyeyeva et al., 2019;
Vavra et al., 2024). Additionally, some inelastic strain can result from other deformation mechanisms such as
folding, bulk plasticity, pressure solution, etc (Donath & Parker, 1964; Hamiel et al., 2006; Hancock, 1985). The
”brittle strain” estimated from the fault length‐frequency statistics should thus be considered a lower bound on the
total inelastic strain accommodated by the upper crust.
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Taking at face value the estimated power law‐exponent α ≈ 2 (Figure 6), we find that small (L < T) faults may
take up more than one third of the total strain, which is much larger than predicted for α ≈ 1 (Figure 7). A power
law‐exponent α ≥ 2 may provide an explanation for the “missing strain” in palinspastic restorations of faults in
sedimentary basins, as well as in laboratory models of tectonic extension using analog materials (e.g., Kautz &
Sclater, 1988; Marrett & Allmendinger, 1992; J. Walsh et al., 1991). The bulk inelastic deformation accom-
modated by small faults can result in rotation of faults away from the optimal orientation, and increases in dihedral
angles between conjugate faults, as often observed in active shear zones (e.g., Fialko, 2021; Ron et al., 2001; Zou
et al., 2023). It might also account for the reported differences between geologic and geodetic slip rates in regions
of diffuse deformation. In particular, models of deformation across the plate boundary in California suggest that
up to 30% of deformation is accommodated off of the known faults (Field et al., 2014). Similar conclusions are
drawn from numerical models of continental extension (Pan et al., 2023). Given no resolvable difference between
the geologic and geodetic slip rates of mature high‐slip‐rate faults such as the San Andreas and San Jacinto faults
(Segall, 2002; E. O. Lindsey et al., 2014; Tymofyeyeva & Fialko, 2018; Schmalzle et al., 2006), most of the
“missing slip” is apparently associated with regions of diffuse deformation characterized by low strain rates such
as the Eastern California Shear Zone (Herbert et al., 2014). The same may apply to other areas of broadly
distributed continental deformation such as the India‐Eurasia collision zone (e.g., Garthwaite et al., 2013; Wang
& Shen, 2020; Yin & Taylor, 2011). A major outstanding question is how strongly the “true” power‐law exponent
α differs from estimates based on the fault trace data in case of small (L < T) faults, and/or “seismic” values of αs
based on the Gutenberg‐Richter statistics. Values as high as 2.5 (or greater) would imply a diffuse long‐term
deformation similar to a viscous flow. Our results provide a lower bound on the amount of permanent strain
accommodated in the upper crust off of major faults. Additional strain may be accommodated by other mech-
anisms such as pressure solution and bulk creep (e.g., Gratier et al., 2013; Hancock, 1985). Quantifying the
respective contributions is a rich area for future research.

5. Conclusions
We analyzed the fault length frequency distribution using high‐resolution fault trace data from diverse settings
including Basin and Range Province, Central Pennsylvania/Northern New Jersey, Ventura County, California,
and Northern New Zealand. To extend our analysis to smaller scales, we included published outcrop data from
Sierra Nevada, Eastern Israel, Southern New Zealand, and Eastern France, and laboratory data from experiments
on the initially intact granite samples. Our results indicate that while each individual data set yields an apparent
log‐normal distribution of fault lengths, a composite multi‐scale data set reveals a fault length‐distribution that
follows a power law over 8 decades of fault lengths, with a cumulative power‐law exponent α ≈ 2. This is
consistent with the Gutenberg‐Richter statistics of earthquakes with a typical b‐value of 1. However, not all faults
present in the seismogenic zone may be seismically active, and the obtained value of α may under‐estimate the
true value of the power‐law exponent for example, due to an observation bias (2‐D sampling of 3‐D faults). We
used the best‐fit value of the power‐law exponent to estimate the fraction of strain accommodated by faults as a
function of fault size. We find that small faults (L < 15 km) can accommodate a substantial (more than 30%)
fraction of tectonic strain, at least at the initial stages of faulting. This fraction may be substantially higher if the

Figure 9. Schematic representation of kinematics of (a) developing shear zone and (b) mature plate boundary fault. Top and
bottom panels denote interseismic and long‐term (averaged over multiple earthquake cycles) motion, respectively. Gray lines
denote active faults.

Earth and Space Science 10.1029/2024EA003824

ZOU AND FIALKO 11 of 16

 23335084, 2024, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

A
003824 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [18/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



fault length statistics suffer from a low‐dimensional bias, and the true value of α is between 2 and 3. A continued
deformation may give rise to a transition from distributed fault networks to highly localized mature faults,
associated with a decrease in α.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
The fault and fracture lengths data used in this paper, as well as the scripts used to perform the analysis are
available at our Zenodo repository via https://doi.org/10.5281/ZENODO.13974204 (Zou & Fialko, 2024).
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