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S U M M A R Y
We present a semi-analytic iterative procedure for evaluating the 3-D deformation due to
faults in an arbitrarily heterogeneous elastic half-space. Spatially variable elastic properties
are modelled with equivalent body forces and equivalent surface traction in a ‘homogenized’
elastic medium. The displacement field is obtained in the Fourier domain using a semi-analytic
Green function. We apply this model to investigate the response of 3-D compliant zones (CZ)
around major crustal faults to coseismic stressing by nearby earthquakes. We constrain the two
elastic moduli, as well as the geometry of the fault zones by comparing the model predictions
to Synthetic Aperture Radar inferferometric (InSAR) data. Our results confirm that the CZ
models for the Rodman, Calico and Pinto Mountain faults in the Eastern California Shear
Zone (ECSZ) can explain the coseismic InSAR data from both the Landers and the Hector
Mine earthquakes. For the Pinto Mountain fault zone, InSAR data suggest a 50 per cent
reduction in effective shear modulus and no significant change in Poisson’s ratio compared
to the ambient crust. The large wavelength of coseismic line-of-sight displacements around
the Pinto Mountain fault requires a fairly wide (∼1.9 km) CZ extending to a depth of at least
9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4 km deep
structure, with a 60 per cent reduction in shear modulus, with no change in Poisson’s ratio.
We find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake
is not as low as that of the northern segment, suggesting along-strike variations of effective
elastic moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ
models with reduction in both shear and bulk moduli. These observations suggest pervasive
and widespread damage around active crustal faults.

Key words: Numerical solutions; Radar interferometry; Fault zone rheology; Crustal struc-
ture; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

Crustal faulting is often associated with development of highly
fractured and damaged rocks around the primary slip surface
(Ambraseys 1970; Wilson et al. 2004; Chester et al. 2005). Such
damage zones may result from distributed inelastic deformation as-
sociated with the propagation and coalescence of cracks and joints
during fault growth (Segall & Pollard 1980; Vermilye & Scholz
1998; Manighetti et al. 2001), relaxation of stresses at geometric
irregularities (Liu et al. 2003; Dieterich & Smith 2007) or dynamic
loading at the propagating rupture front (Rice et al. 2005; Fialko
2007). Field observations suggest that the thickness of the catacla-
site zones correlates with the cumulative fault slip (Scholz 1987).
Intense damage gives rise to a reduction in the effective elastic
shear modulus of the fault zone material, as predicted by theo-
retical models (Rybicki 1971; Kachanov 1986; Lyakhovsky et al.

2001; Turcotte et al. 2003), and evidenced by geodetic (Chen &
Freymueller 2002; Fialko et al. 2002; Fialko 2004; Hamiel & Fialko
2007) and seismic (Li et al. 1994; Ben-Zion et al. 2003; Thurber
et al. 2003; Cochran et al. 2009) observations.

In a recent study, Cochran et al. (2009) showed that the geodet-
ically inferred kilometre-wide compliant fault zones in the Mojave
desert (Fialko et al. 2002; Fialko 2004) are also expressed in marked
reductions in seismic velocities. The width of the tomographically
imaged low velocity zones, as well as the magnitude of velocity
reductions were found to be consistent with independent geode-
tic estimates. Seismic observations reveal the complex structure of
the fault damage zones, with large gradients in the effective elas-
tic moduli both laterally and as a function of depth. An accurate
description of the deformation due to such fault zones requires
models of fault slip in 3-D heterogeneous media. In this study, we
present an efficient algorithm for simulating the deformation due
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to faulting in the presence of arbitrary spatial variations in elastic
properties. Several investigators have proposed ways to tackle this
problem (e.g. Du et al. 1997; Moulinec & Suquet 1998; Pollitz
2003). The approach of Du et al. (1997) is limited to discrete vari-
ations in elastic properties. The method of Pollitz (2003) is more
general, allowing gradual variations in elastic and viscous param-
eters, but the normal-mode based solution makes it less practical
for small-scale problems. Moulinec & Suquet (1998) and other in-
vestigators (Lebensohn 2001; Brown et al. 2003; Yu et al. 2005)
base their solution on a Fourier representation but do not include
the free surface. All these semi-analytic techniques use essentially
a perturbation approach and are limited to small variations in elas-
tic properties. Our proposed method relaxes the constraint of weak
inclusions and allows gradual variations in shear and bulk moduli.
Our Fourier-domain semi-analytic solution is adequate for mod-
elling intermediate-scale static deformation, such as fault slip in the
presence of neighbouring compliant zones.

In the Section 2, we present the governing equations and boundary
conditions relevant to a 3-D heterogeneous problem. We generalize
the description of dislocations in terms of double-couple equivalent
body forces by including equivalent surface traction in case of faults
extending to the Earth’s surface. This generalized representation al-
lows us to model normal, reverse and strike-slip faults of arbitrary
geometry. We then present some iterative methods that evaluate the
displacement field based on the homogenization of elastic proper-
ties. One such method is the successive approximation (SA, Barbot
et al. 2008); we show that it is in essence equivalent to the pertur-
bation method (e.g. Du et al. 1994; Du et al. 1997; Pollitz 2003; Yu
et al. 2005). The SAs and the perturbation methods are adequate
for small variations in elastic properties (Moulinec & Suquet 1998;
Barbot et al. 2008). Another approach is the successive over relax-
ation (SOR) method (Barbot et al. 2008), which allows for larger
contrasts in elastic properties. Comparisons with analytic solutions
and some example calculations are presented in the Appendix. We
apply our numerical method to model the static deformation in the
Eastern California Shear Zone (ECSZ) due to the 1992 Landers
and 1999 Hector Mine earthquakes. We combine the model pre-
dictions with Synthetic Aperture Radar inferferometric (InSAR)
observations to refine inferences about the mechanical properties,
geometry and structure of compliant zones associated with the
Calico, Rodman and Pinto Mountain faults of the ECSZ.

2 3 - D M O D E L S O F D E F O R M AT I O N
D U E T O FAU LT I N G I N
H E T E RO G E N E O U S M E D I A

In this section, we derive a 3-D model of elastostatic deforma-
tion in a semi-infinite solid with a free-surface boundary condi-
tion and 3-D variations in elastic properties. The formulation for
2-D antiplane deformation can be found in Barbot et al. (2008).
We will first derive the forcing terms representing the effect of
internal dislocations. Equivalent representations of dislocations in-
clude eigenstrain eq. (1), moment density eq. (6) and equivalent
body forces (including the equivalent surface traction) eqs (9) and
(13), respectively. We show that the governing equation is the in-
homogeneous Navier’s equation with non-constant coefficients and
Neumann-type boundary conditions. Next we discuss some itera-
tive solution methods based on the decomposition of the elastic
moduli. Finally, we present some details on the numerical imple-
mentation and discuss results from our numerical benchmarks of the
Appendix.

Figure 1. The deformation of a heterogeneous elastic body � is driven by
internal dislocations. A failure plane with normal n̂α and slip sα cuts the
volume with elastic tensors C1 �= C2. The slip system α is associated with
eigenstrain εα(x) = 1

2 (sα ⊗ n̂α + n̂α ⊗ sα), moment density mα(x) = C :
sα ⊗ n̂α and equivalent body force fα(x) = −∇ · mα . The surface boundary
∂�, with normal vector n̂, is traction free (σ · n̂ = 0).

2.1 Governing equation and boundary conditions

Consider a heterogeneous elastic body � comprised of two in-
terfaced volumes with dissimilar elastic properties cut by a shear
dislocation α (see Fig. 1). The surface of the elastic body ∂� is as-
sumed to be traction free. A dislocation characterized by slip sα on a
surface with normal vector n̂α is associated with the eigenstrain ten-
sor (Backus & Mulcahy 1976b; Nemat-Nasser 2004; Barbot et al.
2008; Barbot et al. 2009)

εα(x) = 1

2
(sα⊗ n̂α + n̂α⊗ sα) , (1)

where operator ⊗ is the dyadic product (for example, if a and b
are two vectors, then in index notation the product a ⊗ b is the
second-order tensor aibj). Both n̂α and sα may in general vary along
the dislocation surface. The eigenstrain depends on the geometry of
a dislocation but is independent of elastic properties of the ambient
solid. The static deformation undergone by body � compared to
a reference state is characterized by the total strain ε, the sum of
elastic and inelastic strains

ε = εe + εi , (2)

where εi is the total inelastic eigenstrain due to internal dislocations

εi (x) =
n∑

α=1

εα(x), (3)

where n is the total number of dislocations. The eigenstrain (3)
is a tensor-valued forcing term and should not be confused with
the elastic strain in the near field of the dislocation. Note that the
eigenstrain tensor is identically zero away from a dislocation. In
general, any degree of localization of eigenstrain can be represented
using generalized functions such as boxcar or Dirac-delta functions.
For discussions and examples on the use of generalized functions for
body-force representation, see Backus & Mulcahy (1976b), Barbot
et al. (2008, 2009). In a heterogeneous body � with the tensor of
elastic moduli C = C(x), the Cauchy stress

σ = C : εe, (4)

where operation : is the double scalar product (for instance, if A and
B are two second-order tensors, then in index notation the product
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A : B is the scalar AijBij), can be written using eq. (2) as follows:

σ = C :ε − C :εi , (5)

where the second term can be recognized as the moment density
(Aki & Richards 1980; Shearer 1999)

m(x) =
n∑

α=1

C(x) :εα. (6)

As elastic properties are spatially variable, the moment density is
not necessarily uniform along a dislocation surface. Using eq. (5),
the conservation of momentum for static equilibrium in � can be
written (Malvern 1969; Nemat-Nasser & Hori 1999)

∇ · (C : ε) − ∇ · (C : εi ) = 0. (7)

The second term in eq. (7) depends upon the distribution and orien-
tation of internal dislocations in �. The effect of all internal dislo-
cations may be represented using equivalent body forces (Eshelby
1957; Burridge & Knopoff 1964; Nemat-Nasser 2004)

f(x) = −∇ · (C : εi ) =
n∑

α=1

fα(x), (8)

where

fα(x) = −∇ · ( C : sα ⊗ n̂α) (9)

is the equivalent body-force density due to an individual dislocation
α, and sα and n̂α refer to the Burger’s vector and the normal direc-
tion of dislocation α, respectively. As dislocations may cut across
heterogeneous regions, the equivalent body force (9) may not be
readily reduced to a double couple. The conservation of momentum
can now be written as

∇ · (C : ε) + f = 0, (10)

where

ε = 1

2

[∇ ⊗ u + (∇ ⊗ u)t
]

(11)

is the total strain and u(x) is the associated displacement. Govern-
ing eq. (10) simplifies to the Navier’s equation for a homogeneous
isotropic elastic medium. The equivalent body force density f(x)
depends upon the elastic structure C(x). The force distribution rep-
resents the effect of all internal dislocations and for now is supposed
to be known.

We seek the displacement field u(x) within � that satisfies gov-
erning eq. (10) subject to the free surface boundary condition. The
surface traction can be expressed in terms of the total strain,

σ · n̂ = n̂ · (C : εe)

= n̂ · (C : ε) − n̂ · (C : εi ) (12)

so that dislocations cutting through the boundary ∂� contribute to
the equivalent surface traction as follows:

t = n̂ · (C : εi )

=
n∑

α=1

n̂ · (C : sα ⊗ nα), (13)

where nα and sα are evaluated at the surface. The equivalent surface
traction due to a dislocation α is therefore

tα = n̂ · (C : sα ⊗ nα). (14)

The presence of non-vanishing equivalent surface traction depends
upon the relative orientation of the normal direction at the surface

∂� and the moment density mα = C : (sα⊗ n̂α) of dislocations that
cut the surface (Backus & Mulcahy 1976a). A vertical strike-slip
fault at the surface of a half-space, for example, is not associ-
ated with equivalent surface traction. Fig. 2 shows the equivalent
body-force distribution and the equivalent normal traction due to
a given point dislocation intersecting the surface of a half-space
in case of isotropic elasticity. The moment density of dislocation α

with arbitrary direction is decomposed into six linearly independent
directions in a symmetric tensor space. Whereas equivalent body
forces for a point-source dislocation simplify to a double couple,
the equivalent surface traction tα simplifies to a simple traction
vector: purely tangential traction for off-diagonal moment density
components and purely normal traction for diagonal components.
Equivalent body forces and equivalent surface traction are dual
through the application of the divergence theorem. Using eq. (12),
the free surface boundary condition in the presence of dislocations
at the surface of � can be written as

n̂ · (C : ε) = t =
n∑

α=1

tα on ∂�. (15)

Internal dislocations and associated boundary conditions can there-
fore be reduced to some equivalent body-force density f(x) in �

and some equivalent normal traction t on ∂�. In the case of homo-
geneous and isotropic elasticity, the problem simplifies to Navier’s
equation with forcing terms and inhomogeneous boundary condi-
tions.

2.2 Decomposition of elastic moduli

Our approach to solving the governing eq. (10) subject to boundary
condition (15) consists in using the elastic Green function for a
homogeneous medium and in identifying a set of equivalent body
force and equivalent surface traction that represents the effect of
spatial variations in elastic properties.

Consider the following decomposition of the elastic moduli ten-
sor C(x) into a constant, homogeneous part C0 and a spatially vari-
able part C′(x), such that

C(x) = C0 − C′(x). (16)

We define

σ ′ = C′ : ε, (17)

the moment density corresponding to spatial variations in elastic
properties. Using eqs (10) and (16), we now can write the governing
equation as follows:

∇ · (C0 :ε) + f − ∇ · σ ′ = 0. (18)

The variations in elastic properties introduce the moment density
m′ = C′ : ∇ ⊗ u and the equivalent body-force representation of
the effects of the inhomogeneous elastic properties in the ‘homog-
enized’ medium is

f ′(x) = −∇ · σ ′. (19)

Note that the body force representation for dislocations is unaf-
fected by the elastic moduli decomposition. The moment density
introduced by internal dislocations is a function of the actual elastic
properties C(x) of the body. Making use of eq. (16), the surface
traction becomes

σ · n̂ = n̂ · (C0 : ε)

− n̂ · (C′ : ε) − n̂ · (C : εi ) = 0. (20)
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Figure 2. An arbitrary slip system α for a point source dislocation (bottom sketch) can be decomposed into six linearly independent components. Eigenstrain
εα is associated with an equivalent body force distribution fα(x) and equivalent surface traction tα . Equivalent surface traction occurs when fractures reach to
the surface of the semi-infinite solid.

Consequently, the free surface boundary condition in the homoge-
nized body can be expressed as follows:

n̂ · (C0 : ε) = t + t′ on ∂�, (21)

where

t′ = σ ′ · n̂ (22)

is the surface traction due to deviations from the homogenized elas-
tic properties at the surface ∂�. In case of a layered medium, if
C0 is chosen to correspond to the value of C(x) in the top layer,
the additional equivalent surface traction simply vanish as C′(x) =
0 on ∂�. Similar to the equivalent body forces, the equivalent sur-
face traction t due to internal dislocations is unaffected by the
decomposition of the elastic moduli tensor.
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Decomposition (16) allows us to transform an equation with
non-constant coefficients into a homogeneous equation with modi-
fied boundary conditions and additional internal forcing terms. For
known equivalent body forces and surface traction representing the
elastic heterogeneity, the solution for a displacement field is (Aki &
Richards 1980)

u(x) =
∫

�

G(x, x0) · [
f(x0) + f ′(x0)

]
dx0

+
∫

∂�

G(x, x0) · [
t(x0) + t′(x0)

]
dx0, (23)

where G(x, x0) is the Green function tensor (see Love 1927; Mindlin
1936, for the case of a semi-infinite solid) for an elastic body with a
homogeneous elastic moduli tensor C0. However, one cannot readily
evaluate eq. (23), as the distribution of body forces mimicking the
presence of heterogeneities needs to be determined as part of the
solution.

2.3 The successive approximation method

One way to solve the heterogeneous problem (eq. 23) is to use
the method of SAs (Bender & Orszag 1978; Kato 1980; Delves
& Mohamed 1985). Extending the approach proposed by Barbot
et al. (2008) to the case of 3-D deformation, we adopt the following
iterative procedure

un(x) =
∫

�

G · [f − ∇ · (C′ : ∇un−1)] dV

+
∫

∂�

G · [t + (C′ : ∇un−1) · n̂] dA, (24)

where index n denotes a level of approximation. Noticing integrals
in eq. (24) are linear with respect to u, we define an operator

L[v] = −
∫

�

G · [∇ · (C′ : ∇v)] dV

+
∫

∂�

G · [(C′ : ∇v) · n̂] dA, (25)

where v is a vector field in �. We then define the first non-zero term
in series (24)

u0(x) =
∫

�

G(x, x0) · f(x0)dx0

+
∫

∂�

G(x, x0) · t(x0) dA. (26)

Using eqs (25) and (26), the proposed iterative procedure (24) can
now be written as

un(x) = u0(x) + L[un−1], (27)

where u0(x) is the first approximate solution, and the true solution to
the heterogeneous problem is (assuming non-biased convergence)

u(x) = lim
n→∞

un(x). (28)

We refer to formulation (24)–(27) as the SA method to evaluate the
solution of the heterogeneous elastic problem governed by eq. (10)
with boundary condition (15). The SA method is used in various
geophysical contexts including flexure of the oceanic lithosphere
(Sandwell 1984), mantle convection (Gable et al. 1991), defor-
mation of heterogeneous mineral composites (Moulinec & Suquet
1998; Lebensohn 2001; Brown et al. 2003) and volcano geodesy
(Fialko et al. 2001a). Iterative methods such as the SA allow one
to handle complex media for which an exact Green function is not
readily available.

2.4 The perturbation method

The SA series (27) can be reorganized in a form of an infinite sum
(Kato 1980)

un = u(0) +
n∑

k=1

u(k), n ∈ N
∗ (29)

with the recursive relation

u(k) = L
[
u(k−1)

]
(30)

and initial value

u(0) ≡ u0(x). (31)

The proof can be obtained by recurrence: consider the first iteration
of the SA solution

u1 = u0 + L[u0] = u(0) + L[u(0)]

= u(0) +
1∑

k=1

L[u(k)]. (32)

Assuming that eqs (29) and (30) hold true for n > 1, we consider
iteration n + 1

un+1 = u0 + L [un]

= u(0) + L
[

u(0) +
n∑

k=1

u(k)

]

= u(0) + L
[
u(0)

] +
n∑

k=1

L
[
u(k)

]
= u(0) + u(1) +

n∑
k=1

u(k+1)

= u(0) +
n+1∑
k=1

u(k), (33)

where we took advantage of the fact that L is a linear operator and
thus can be moved inside the sum. As eqs (29) and (30) hold at
iteration n, they must also hold at iteration n + 1. Therefore, we
have shown by recurrence that the SA series (27) can be written
as the finite sum (29). The ultimate solution associated with the
recurrence relation (30) is therefore

u(x) = u(0)(x) +
∞∑

n=1

u(n)(x). (34)

Formulation (34) is referred to as the perturbation method to solve
eq. (23). The perturbation method was used by Du et al. (1994), Du
et al. (1997) to model deformation due to faulting in heterogeneous
media with some limiting assumptions about the spatial variations of
elastic moduli. Our approach allows one to model gradual changes
in elastic moduli as well as to evaluate numerically virtually any
number of higher-order approximations of the true solution.

2.5 The successive over relaxation method

The SOR technique (Press et al. 1992; Barbot et al. 2008) is a minor
modification of the SA method. Defining a linear operator

T [v] =
∫

�

G · [f − ∇ · (C′ : ∇v)] dV

+
∫

∂�

G · [t + (C′ : ∇v) · n̂] dA, (35)
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where v is a vector field in �, the SA method can be written as

un = T [un−1]. (36)

A natural way of regularizing the numerical evaluation of eq. (36)
is to use the SOR method (Golub & Van Loan 1996). The iterative
procedure becomes

un = (1 − φ) un−1 + φ T [un−1], (37)

where 0 < φ < 2 is the SOR parameter. Obviously, the SOR method
simplifies to the SA or the perturbation method for φ = 1. Solutions
for cracked media with large variations in elastic properties can
be obtained using φ  0.5 when the homogenized elastic tensor
satisfies certain conditions (e.g. see eq. 43).

In practice, we use only a limited number of terms in the SOR
series (37) or the perturbation method series (34). An estimate of the
body force representing the presence of faults and variable elastic
moduli is

f̃n = f − ∇ · (C′ : ∇un), (38)

and a common convergence criterion for the SA and SOR methods
is〈|| f̃n||2

〉 − 〈|| f̃n−1||2
〉〈|| f||2〉 < ε, (39)

where ε is the tolerance (hereafter, we use ε = 10−6), and the angular
bracket operator 〈 . 〉 denotes integration over the domain �.

2.6 Homogenization of elastic moduli

The perturbation and the SA methods are adequate only in case
of small variations in elastic properties (Moulinec & Suquet 1998;
Barbot et al. 2008). For instance, in case of antiplane deformation, a
necessary convergence criterion is satisfied when rigidity contrasts
are less than a factor of two of the homogenized value (Barbot et al.
2008). In the case of an isotropic heterogeneous body under condi-
tion of antiplane strain, the fastest convergence of the SA method is
obtained for a homogenized rigidity that minimizes the maximum
effective rigidity contrast in the body (Barbot et al. 2008). To gen-
eralize this result to 3-D deformation, we note that the isotropic
elastic tensor can be decomposed into the pure volumetric and pure
shear directions in tensor space, E1 and E2, respectively (Hill 1965;
Nemat-Nasser & Hori 1999)

E1 = 1

3
1(2)⊗ 1(2), E2 = 1(4s) − 1

3
1(2)⊗ 1(2), (40)

where 1(4s) is the symmetric and unitary forth-order tensor and 1(2)

is the second-order unitary tensor. Tensors E1 and E2 satisfy the
orthonormality relations

E1 = E1 : E1

E2 = E2 : E2

E1 : E2 = E2 : E1 = 0 (41)

and form a base for any isotropic forth-order tensor. The isotropic
elastic moduli tensor can therefore be written as

C(x) = 3κ(x) E1 + 2G(x) E2, (42)

where κ = λ + 2G/3 and G are the bulk and shear moduli that can
vary spatially. As strain directions E1 and E2 are orthogonal, the
constrains on the elastic moduli tensor reduce to independent con-
strains on scalars κ and G. Consequently, we choose the following

values for the homogenized elastic parameters

G0 = 1

2

[
max

�
G(x) + min

�
G(x)

]
κ0 = 1

2

[
max

�
κ(x) + min

�
κ(x)

]
. (43)

Given λ0 = κ0 − 2G0/3, the homogenized isotropic tensor is there-
fore

C0 = λ0 1(2)⊗ 1(2) + 2G0 1(4s). (44)

In the Appendix, we demonstrate that the numerical constraint of
small variations in elastic properties within volume � can indeed
be relaxed by application of the SOR technique.

2.7 Implementation

We adopt a numerical approach presented by Barbot et al. (2008) for
2-D antiplane strain and generalize it to the case of 3-D deformation.
Sources of deformation include tensile cracks and strike-slip and
dip-slip faults of arbitrary orientation and position in the half-space.
Note that equivalent surface traction and the equivalent body forces
appear in the representation of both the forcing terms due to internal
dislocations and the effect of inclusions. Models of deformation in
a homogeneous half-space or in a 3-D heterogeneous half-space
can therefore be evaluated with the same elastic Green function,
one which satisfies a prescribed traction boundary condition at the
surface.

We perform the convolution between the equivalent body forces
and the Green function for the homogeneous elastic half-space nu-
merically in the Fourier domain. The expansion of the displacement
field in a Fourier series introduces a periodicity in the solution that
limits the solution accuracy near the edges of the computational
grid. We mitigate this bias by using large computational domains,
such that deformation sources are sufficiently far from the bound-
aries (except the free surface). We take advantage of the convolution
theorem and the fast Fourier transforms to reduce the computational
burden (compared, e.g. to convolutions in the space domain). We
use the Boussinesq’s (Steketee 1958a,b) and Cerruti’s (Love 1927;
Mindlin 1936) solutions for normal and tangential surface loading,
respectively, to satisfy the free surface boundary condition.

We compute the gradient of the displacement field and the di-
vergence of the moment density using finite impulse differentiator
filters (FIR) (McClellan et al. 1973; Farid & Simoncelli 2004) in
the bulk of the half-space, and simple finite difference schemes
near the surface, in the vertical direction. The impulse response of
finite difference filters has a narrow bandwidth so using FIR filters
allows us to compute more precise and more localized derivatives.
Numerical evaluation of derivatives is critical to preserve the ac-
curacy throughout multiple iterations in both the perturbation and
the SOR methods. We taper the dislocations using the �β function
(see eq. 17 in Barbot et al. 2008) to obtain band-limited sources and
limit a potential Gibbs phenomenon (Bracewell 2003) in the result-
ing displacement field near the faults. The tapering also suppresses
the stress singularity at a fault tip.

The numerical technique was extensively validated against ana-
lytic solutions for antiplane-strain problems with lateral and vertical
layering (Barbot et al. 2008). The accuracy of dislocation models
that use the Fourier-domain Green function in a 3-D homogeneous
half-space is discussed in (Barbot et al. 2009, appendix B3). We
performed some additional benchmarks for 3-D deformation in
a 3-D heterogeneous half-space in the Appendix. These tests in-
clude cases of vertical and lateral variations in elastic properties,
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models of faults cutting through different elastic materials, large
elasticity contrasts using the SOR method and forcing terms due
to strike-slip and dip-slip faults. In general, the accuracy of the
iterative solution away from the (periodic) boundary is about 5–
10 per cent of the expected elastic structure contribution, the largest
error arising from the strongest elastic contrast: If the expected sig-
nal due to the rigidity variation is 10 per cent of the total displace-
ment, then our numerical solution is associated with a 0.5–1 per cent
bias. The accuracy of our method as shown by comparisons with
other analytic, semi-analytic or numerical solutions and our abil-
ity to include complex geometric structures makes this approach
adequate to model deformation due to faulting in a heterogeneous
crust.

3 A P P L I C AT I O N T O C O M P L I A N T
FAU LT Z O N E S I N T H E M O JAV E D E S E RT

The ECSZ is a region of active deformation that strikes northwest-
southeast across the central Mojave desert (Savage et al. 1980;
Dokka & Travis 1990a,b; Sauber et al. 1994). The ECSZ extends
from the San Gorgonio bend of the San Andreas fault in the south to
Owens Valley and the northern Basin and Range province. A system
of young strike-slip faults comprising the ECSZ accommodates 8–
14 mm yr−1 of motion between the North American and Pacific
Plates (Sauber et al. 1994; Miller et al. 2001; Oskin & Iriondo
2004). Active deformation within the ECSZ was highlighted by the
occurrence of the 1992 Mw 7.3 Landers (Massonnet et al. 1993;
Sieh et al. 1993) and the 1999 Mw 7.1 Hector Mine (Sandwell et al.

Figure 3. Gradient of the LOS displacement residuals after the Hector Mine coseismic model was removed. Gradient emphasizes deformation around nearby
faults and underlines possible creep events (dashed quadrants). Triangle indicates location of the seismic experiment of Cochran et al. (2009).

2000; Fialko et al. 2001b; Hauksson et al. 2002; Simons et al. 2002)
earthquakes.

Early InSAR observations of the Hector Mine earthquake re-
vealed intriguing small-scale displacements along the satellite line-
of-sight (LOS) on faults adjacent to the main rupture (Sandwell et al.
2000). These anomalous LOS displacements were later interpreted
to represent the response of compliant zones (tabular volumes of
reduced rigidity), to the permanent coseismic stress changes in-
duced by the Hector Mine earthquake (Fialko et al. 2002). Inspec-
tion of InSAR data from the 1992 Landers, CA earthquake also
revealed small-scale deformation on pre-existing faults and con-
firmed that this deformation is consistent with the compliant zone
response to coseismic loading (Fialko 2004). Seismic probing of
the Calico fault zone including trapped waves studies, and travel-
time analysis of teleseismic and active source data discovered the
existence of a low-velocity zone along the Calico fault coincident
with the geodetically inferred compliant zone (Cochran et al. 2006;
Cochran et al. 2009). Fig. 3 shows the maximum gradients of the
LOS displacement residuals (track 127, frame 2907, from 1999 Jan-
uary 13 to 1999 October 20) computed after removing the Hector
Mine earthquake coseismic model of Simons et al. (2002). Fig. 3
shows amplified deformation around faults located near the Hector
Mine rupture. In particular, the Calico-Hidalgo (CH), the Rodman
(RM), the Pinto Mountain (PM), the Homestead-Johnson Valley
and the Emerson faults all exhibit some anomalous strain. Location
of the seismic experiment of Cochran et al. (2006) is indicated with
the black triangle. Some of the localized strain seen in Fig. 3 may
be due to shallow creep events (outlined by dashed rectangles). For
example, the localized strain south of the Pinto Mountain fault in
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the Yucca Valley occurred prior to the Hector Mine earthquake, as
it is absent in interferograms that bracket the Hector Mine earth-
quake more tightly. This localized strain is associated with a history
of seismic swarms (Jones & Helmberger 1998). The other three
anomalous strain areas appear to be aseismic.

Previous studies of small-scale deformation due to faults in the
ECSZ used finite element models to evaluate the coseismic response
of compliant fault zones assuming a constant drop in the shear mod-
ulus and no change in the Poisson ratio within the CZ compared to
the host rocks (Fialko et al. 2002; Fialko 2004). The fault zone re-
sponse was modelled by applying coseismic stress changes inferred
from the homogeneous elastic half-space solutions, and the inter-
action between neighbouring fault zones (e.g. around the Calico
and Rodman faults) was neglected. While in general it is possi-
ble to use more sophisticated finite element simulations includ-
ing multiple fault zones and realistic earthquake rupture models,
such simulations require elaborate and time-consuming meshing of
a computational domain, especially for non-planar and branching
faults. Also, assignment of spatially variable material properties to
different parts of a computational mesh is cumbersome. We use our
iterative semi-analytic approach to evaluate 3-D deformation of the
Earth’s crust with realistic variations in elastic properties due to
the presence of fault zones. We use a Poisson’s solid for the ‘ho-
mogenized’ starting model, corresponding to the value of Poisson’s
ratio in the ambient crust assumed for the coseismic slip models.
The modelled compliant zones (CZs) follow the geometry of the
geologically mapped faults and are allowed to have across-strike,
along-strike and downdip variations in the effective elastic moduli.
We assume a gradual decay in the rigidity contrast away from the
fault trace. The spatial variation of elastic moduli, both lateral and
vertical, is parametrized with the tapered boxcar function �β of Bar-
bot et al. (2008), with a fixed taper coefficient of β = 0.3. Our model
includes the inferred compliant zones associated with the Calico,
Rodman, Pinto Mountain, Emerson and Homestead-Johnson Valley
faults in the central Mojave desert. Coseismic interferograms used
to constrain the model include the 1992 April 24–August 7, ERS-1
acquisitions from the descending track 399 (Landers earthquake)
and 1999 January 13–October 20, ERS-2 acquisitions from the de-
scending track 127 (Hector Mine earthquake) (Fialko et al. 2002;
Fialko 2004). We assume that the fault-zone properties were not
affected by nearby earthquakes (but see a discussion in Hearn &
Fialko (2009)).

We use the respective earthquake slip models (Simons et al.
2002; Fialko 2004) to remove the LOS displacements predicted for
a homogeneous half-space (referred to as the homogeneous model)
from the interferograms. The residual LOS displacements repre-
sent propagation artefacts (e.g. atmospheric noise), as well as the
small-scale deformation such as the amplified strain due to com-
pliant zones. Similarly, we subtract the homogeneous model from
the model accounting for the presence of CZs. The residual forward
model is referred to as the heterogeneous contribution (deviation
of the predicted displacement field from the homogeneous elastic
half-space solution). The forward models are computed on a 512 ×
512 × 512 grid with a uniform node spacing of 350 m. The time
involved in evaluating a single forward model is of order of five
minutes on a 4-CPU shared-memory architecture computer. Fig. 4
shows the total surface displacements and the heterogeneous contri-
bution due to the Landers and Hector Mine earthquakes, modelled
with our iterative semi-analytic approach. The origin corresponds to
the epicentre of the Hector Mine earthquake (116.27W, 34.595N).
Profiles A–A′ across the Calico and the Rodman faults, B–B′ across
the Calico fault, and C–C′ across the Pinto Mountain fault are se-

lected because LOS displacements from these profiles are available
in both the Landers and Hector Mine coseismic interferograms. For
a vertical strike-slip fault, the near-field uplift is due to compression
and near-field subsidence is due to extension. As one can see from
Fig. 4, profile A–A′ is located in the extensional quadrant of the
Landers earthquake, and the compressional quadrant of the Hector
Mine earthquake. Profiles B–B′ and C–C′ are in the compressional
quadrant of the Landers earthquake, and the extensional quadrant
of the Hector Mine earthquake. The fortuitous spatial configuration
allows us to investigate the response of compliant fault zones to
different loading conditions.

We constrain the structural and elastic properties of a compli-
ant zone by comparing the modelled elastic contribution to the LOS
data from the Landers and Hector Mine earthquakes. The model pa-
rameters include the change in Lamé parameters 
λ and 
G, and
the compliant zone width W (fault-normal dimension) and depth D
(downdip dimension). We assume that all CZs are extending ver-
tically from the surface to a depth D and follow the strike of the
corresponding fault trace at the surface. To identify the best-fitting
model, we explore a range of parameters with a grid search with
depths going from 2 to 18 km, width varying from 0.8 to 2.8 km and
rigidity reduction ranging from −30 to −60 per cent compared to
the ambient lithosphere. In all models, we assume a Poisson’s solid
for the ambient crust. The variance reduction of the Landers and
Hector Mine LOS data for profiles A–A′ and C–C′ are shown in
Fig. 5 for a range of model parameters. In these calculations, we as-
sume that the rigidity reduction 
G is accompanied with a similar
reduction in the other Lamé parameter 
λ or, equivalently, with a
similar reduction in bulk modulus 
κ . Fig. 5(a) shows the variance
reduction of profile A–A′ corresponding to the Calico and Rodman
CZs. Based on previous exploration, we assume that the thickness
of the Rodman CZ is half that of the Calico CZ. The lesser depth
extent of the Rodman CZ is required by the small wavelength of the
corresponding LOS data, most visible in the Landers earthquake
data (see Fig. 6a). The variance reduction is systematically better
for the Hector Mine data, due to a better signal-to-noise ratio in the
Hector Mine radar interferogram. Residuals are larger for CZs with
a small rigidity contrast, the best variance reduction being obtained
with the large reduction 
G = −60 per cent. For all the rigidity
contrasts considered, the required width of the Calico CZ for both
the Landers and the Hector Mine data lies in the range W = 4–
5 km. The preferred thickness of the Calico CZ is slightly (about
20 per cent) higher for the Landers than for the Hector Mine data.
Our preferred model for the compliant zone surrounding the Cal-
ico fault, north of Galway Dry Lake, explaining both the Landers
and Hector Mine data simultaneously, implies a 60 per cent shear
and bulk moduli reduction, a depth of 4 ± 0.5 km and a 2.0 ±
0.2 km width. Best model for the Rodman CZ is similar, except
for a 2 km depth. We performed additional simulations, consider-
ing an increase in Poisson’s ratio in the compliant zone. The best
variance reduction was obtained for a shallower structure. However,
all models with increased Poisson’s ratio led to higher misfit with
both Landers and Hector Mine LOS data. These results indicate that
a change in the CZ bulk modulus accompanying the reduction in
rigidity is a robust feature required by the radar data.

Fig. 5(b) shows the variance reduction of profile C–C′ corre-
sponding to the Pinto Mountain compliant zone. As in case of
models shown in Fig. 5(a), we assume that rocks in the fault zone
behave as a Poisson’s solid, so that Poisson’s ratio is constant and
equals 0.25. For small rigidity contrasts (−
G = 30–40 per cent),
the LOS data provide essentially a lower bound on the inferred width
W = 2.0 ± 0.1 km and depth D = 9 km of the Pinto Mountain CZ.
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508 S. Barbot, Y. Fialko and D. Sandwell

Figure 4. (a) Map view of surface displacement corresponding to full 3-D deformation in a heterogeneous crust due to the 1992 Landers, CA earthquake.
Vectors and colour scale indicate horizontal and vertical displacements, respectively and uplift is taken to be positive. (b) Elastic structure contribution
corresponding to the Landers model. (c) Model of the total surface displacements due to the Hector Mine earthquake. (d) Hector Mine elastic structure
contribution. The deformation is localized around CZs: the Calico-Hidalgo (CH), the Rodman (RM) and the Pinto Mountain (PM) faults exhibit amplified
strain. Profiles A–A′, B–B′ and C–C′ are shown is subsequent figures. Origin corresponds to the epicentre of the Hector Mine earthquake (116.27W, 34.595N).
Light grey lines correspond to identified faults in the ECSZ and darker grey lines indicate modelled compliant zones (CZ).

There is an apparent trade-off between the required width and the
rigidity reduction, most apparent for the Landers data. However, the
best variance reduction is obtained for models with the largest rigid-
ity reduction. For elastic contrasts larger than 
G = −45 per cent
the width required by the Landers and Hector Mine data differ by
more than 15 per cent and the models using the preferred width
inferred from the Hector Mine data produce only a poor fit to the
Landers LOS data. Our preferred model, which we indicate by a
circle in Fig. 5, lies within 2 per cent variance reduction of the
independent best-fitting models for Landers and Hector Mine. Our
preferred model, fitting both the Landers and Hector Mine data si-
multaneously, implies a 45 per cent reduction in both shear and bulk
moduli in a zone 1.75 km wide and at least 9 km deep surrounding
the Pinto Mountain fault. The minimum depth of 9 km for the Pinto
Mountain CZ is a robust feature that is required by both data sets.

Fig. 6(a) shows the observed and modelled LOS displacements
along profile A–A′. Profile A–A′ crosses over the Calico and the
Rodman faults, north of Galway Dry Lake, close to the seismic to-
mography experiment of Cochran et al. (2009) (see Fig. 3). There is
little correlation between topography (dashed line) and the InSAR
data, indicating that the observed variations in the LOS displace-
ments do not result from atmospheric phase delays. We also note the
change in polarity in the LOS displacements corresponding to the
Hector Mine and Landers coseismic interferograms. This change in
polarity is an expected signature of the vertical displacement due
to a compliant zone, given a reversal in sign of the fault-normal
coseismic stress change. The assumed location and thickness of the
Calico and Rodman compliant zones are indicated in Fig. 6(a) by
grey bands. Solid lines in Fig. 6(a) represent deformation due to our
preferred fault zone model, sampled along the respective profiles.
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Figure 5. Exploration of the CZ model space. Variance reduction of the Landers and Hector Mine LOS data for the (a) Calico/Rodman and (b) the Pinto
Mountain profiles (transects A–A′ and C–C′, respectively, in Fig. 4) as a function of the CZ width, depth and rigidity reduction 
G. All models assume a
Poisson’s solid (ν = 0.25) in the ambient crust and in the CZ. The star symbol indicates the preferred model of Cochran et al. (2008) corresponding to a
36 per cent reduction in P-wave velocity. The circle indicates our preferred model, based on fitting the Landers and Hector Mine LOS data simultaneously.

The modelled LOS displacements account for range variations in
the radar incidence angle. Results shown in Fig. 6(a) accurately
simulate the 3-D response of closely spaced compliant zones due to
the Calico and Rodman faults to coseismic loading, and represent
a substantial improvement over the previously published simplified
models (e.g. Fialko et al. 2002). Our preferred model for the com-
pliant zone surrounding the Calico fault, north of Galway Dry Lake,
implies a 60 per cent reduction in shear modulus and no change in

the Poisson’s ratio (accompanied by a 60 per cent reduction in the
value of the bulk modulus) compared to ambient rocks, in a finite
zone 4 km deep and 2.0 km wide. Our preferred model for the CZ
due to the Rodman fault implies the same elastic moduli reduction,
but to a shallower depth of D = 2.0 km.

Fig. 6(b) shows the observed and modelled LOS displace-
ments along profile B–B′ in Fig. 4. InSAR data and models are
shown for both the Landers and the Hector Mine earthquakes.
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Figure 6. (a) Observed (diamond) and modelled (solid line) LOS displacements from profile A–A′ corresponding to the Landers (bottom) and Hector Mine
(top) coseismic interferograms North of Galway Dry Lake. The Calico model corresponds to a 4 km deep, 2.0-km-wide structure with a 60 per cent rigidity
reduction, as indicated by a circle in Fig. 5(a). The Rodman model is similar except for a shallow structure of 2 km. (b) Observed and modelled LOS residual
displacements across a southern segment of the Calico fault (profile B–B′). At this location, the Calico model implies a shallow (2–3 km) structure 1.8 km wide
with 45–50 per cent rigidity reduction. Topography (dashed line) does not correlate with InSAR phase delay, indicating a limited tropostatic noise contribution.
The continuous profiles correspond to forward models from several closely spaced parallel profiles within boxes outlined in Fig. 4. The flip of polarity between
the Landers and Hector Mine coseismic InSAR data is an expected signature of a compliant zone.
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Figure 7. Modelled (solid line) and observed (diamonds) LOS displacements across the Pinto Mountain fault, profile C–C′. The predictions correspond to a
single compliant zone model with a 45 per cent reduction in both shear and bulk moduli, indicated by a circle in Fig. 5(b). The CZ structure is 1.75 km wide
and at least 9 km deep. The continuous profiles correspond to several closely spaced parallel profiles from the forward model and indicate the variation of
deformation within the C–C′ box outlined in Fig. 4. Note the separate scale for the Hector Mine data and forward model.

Topography profile exhibits a ridge close to the location of the
assumed compliant zone but LOS displacements corresponding to
the two seismic events change polarity and are not well correlated
with topography, suggesting that the observed LOS displacements
are not an atmospheric artefact. Incomplete data for the Landers
earthquake, east of the compliant zone is due to limited coverage of
the available satellite track 399. InSAR data for the Landers earth-
quake are nevertheless sufficient to suggest a localized increase in
LOS displacements centred on the Calico fault trace. Profile B–B′

samples a segment of the Calico fault located to the South of Gal-
way Dry Lake, about 35 km south of profile A–A′. This portion of
the Calico fault was subjected to compression during the Landers
earthquake and extension during the Hector Mine earthquake, coin-
cident with the observed polarity of vertical displacement in Fig. 4.
Our preferred CZ model indicates a reduction of 45–50 per cent
in shear and bulk moduli in a 1.8-km-wide zone extending from
the surface to a depth of 2–3 km. The CZ model can explain data

from both the Hector Mine and Landers earthquakes. Reductions in
the effective elastic moduli on the southern segment of the Calico
fault are inferred to be somewhat smaller compared to those on the
northern segment. This result highlights a possibility of substantial
variations in effective elastic properties along the same fault zone.
A 10 per cent along-strike variation in elastic moduli compared to
surrounding rocks was also inferred along the Johnson Valley and
the Kickapoo faults, the southern segments of the Landers rupture
(Li et al. 2000).

Fig. 7 shows the modelled and the observed LOS displacements
across the Pinto Mountain fault due to the Landers and Hector
Mine earthquakes (profile C–C′ in Fig. 4). Profile C–C′ is located
to the east of the Landers rupture, in a compressional quadrant near
the southern tip of the rupture. This proximity likely explains a
relatively large (up to 30 mm) LOS displacement due to the com-
pliant zone of the Pinto Mountain fault. The southern tip of the
Hector Mine rupture is located further away, about 80 km to the
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Figure 8. Modelled (solid line) and observed (diamonds) LOS displacements across the Homestead fault. Forward model corresponds to a compliant zone
with a 50 per cent reduction in shear and bulk moduli in a block 4–5 km deep and 1.5 km wide. The continuous profiles correspond to forward models from
several closely spaced parallel profiles within boxes outlined in Fig. 4.

north-northeast. Both the larger distance to, and the smaller size of
the Hector Mine earthquake imply smaller stress perturbation on
the Pinto Mountain fault, and explain the reduced amplitude of the
coseismic LOS displacements, compared to those from the Landers
event. Similar to the observed deformation patterns on the Calico
and Rodman faults, the polarity of LOS displacements on the Pinto
Mountain fault is different for the Landers and Hector Mine events,
consistent with coseismic stress changes. Our preferred model for
the Pinto Mountain compliant zone, as indicated by a circle in Fig. 5,
has width of 1.9 km, a depth of at least 9 km, a 50 per cent reduction
in shear modulus and no change in Poisson’s ratio compared to am-
bient crust. The deeper compliant zone compared to neighbouring
Calico and Rodman is required by the large wavelength of the LOS
displacements.

Fig. 8 shows the modelled and the observed LOS displacements
across the Homestead fault due to the Hector Mine earthquake. The
LOS displacements can be explained by the presence of a CZ about
1.5 km wide, extending from the surface to a depth of 4–5 km with
50 per cent reduction in shear modulus, and the same Poisson’s ratio
as in ambient rocks. A model assuming a CZ around the Homestead
fault shows a good agreement with the InSAR data. Unfortunately,
no data exist for the 1992 Landers earthquake due to decorrelation
in the near field of the rupture.

4 D I S C U S S I O N

Our analysis of space geodetic observations in the ECSZ using fully
3-D models lends support to previous inferences of long-lived com-
pliant zones around major faults, with appreciable reductions in the
effective shear and bulk moduli. Our inferred width of compliant
zones is 2.0 km for the Calico and the Rodman process zones and
1.9 km for the Pinto Mountain fault. Over the past two decades,
the structure of fault zones has been primarily investigated us-
ing fault zone trapped waves generated by earthquakes or explo-
sions. For example, the Karadere-Duzce fault zone, a secondary
branch of the North Anatolian Fault, is inferred to have a wave-
trapping structure ∼100 m wide, with a velocity decrease of about
50 per cent compared to the surrounding rocks (Ben-Zion et al.
2003). Trapped waves generated by aftershocks following the 1992
Landers earthquake are best explained by a 250-m-wide low ve-
locity zone in the southern segment of the rupture, that tapers to
100–150 m at 8.2 km depth (Li et al. 2000). Trapped-wave studies
rely on seismic sources within compliant zones (most commonly,
aftershocks) to detect and quantify the elastic contrasts (Li & Leary
1990; Li et al. 1998a,b, 1999, 2000; Ben-Zion et al. 2003). The

strength of the low-velocity anomalies is believed to vary over the
earthquake cycle (Marone et al. 1995; Li et al. 1998a; Vidale &
Li 2003), but it is still unclear if results from seismic studies are
directly applicable to the longer geodetic timescale, due to the fre-
quency dependence of elastic moduli. In this study, we investigated
major faults that did not rupture in historic times and therefore are
well within the interseismic phase of the earthquake cycle. Our pre-
ferred models suggest considerably (in case of the Pinto Mountain
fault—an order of magnitude) larger fault zone width compared
to most previous seismic studies of other faults. However, a recent
seismic tomography and trapped wave experiment on the Calico
fault (Cochran et al. 2009) confirms our interpretation and provides
a direct independent evidence for the existence of a massive long-
lived compliant fault zone along the Calico fault. Our preferred
model of the Calico compliant zone, with a 4 km depth and 2.0 km
width is very similar to the results of (Cochran et al. 2009) which
imply a fault zone 1–2 km wide, ∼5 km deep, with a rigidity reduc-
tion of 50–75 per cent. Our interpretation of InSAR data from the
Pinto Mountain fault suggests that a compliant zone extends from
the surface to a depth of at least 9 km, that is, through much of the
brittle seismogenic layer.

Our models of compliant zones along major strike-slip faults
in the ECSZ require a significant reduction in the effective shear
modulus. A robust feature of InSAR observations is the change in
polarity of the LOS displacements within several fault zones due
to the Landers and Hector Mine earthquakes. The observed change
in polarity is primarily due to the vertical displacements within the
compliant zone. The polarity of vertical motion is well constrained
by InSAR observation and our results suggest that a reduction in
both shear and bulk moduli better describes the variations in the
effective elastic moduli within the compliant zones surrounding ac-
tive faults in the ECSZ. These results contrast with the assumptions
of theoretical models of fault damage in which the latter is related
to changes in the shear modulus alone (Lyakhovsky et al. 2001;
Hamiel et al. 2004). Hearn & Fialko (2009) have investigated the
response of compliant zones in the ECSZ due to both a permanent
elastic moduli reduction in the fault process zones and a 2 per cent
coseismic change in rigidity in the same structure motivated by
findings of Vidale & Li (2003). The conclusion of Hearn & Fialko
(2009) is that it is difficult to fit the data in the presence of coseismic
softening of the fault zones, unless the fault zone material is nearly
incompressible. This study suggests that the data can be well ex-
plained by permanent compliant zones with normal Poisson’s ratios,
this highlighting the need for accurate monitoring of changes in the
fault-zone rigidity due to nearby earthquakes.
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5 C O N C LU S I O N S

We have presented an iterative approach to model 3-D deformation
due to faults in a heterogeneous elastic half-space. The decom-
position of the elastic moduli into a constant part and a spatially
varying part allows us to formulate an iterative solution that takes
advantage of the Green function for a homogeneous medium. Spa-
tial variations in elastic properties are accounted for by equivalent
body forces and equivalent surface traction. This approach obviates
the need for deriving or numerically calculating the specific Green
function in case of heterogeneous elastic structures. It allows one to
readily evaluate the effect of spatial variations in elastic properties
on deformation in the surrounding medium.

A possible drawback of our iterative approach is a potentially
large number of SA required to accurately evaluate the hetero-
geneous elastic response. Likewise, the numerical estimation of
the convolution between the homogeneous Green function and the
equivalent body forces—typically scaling as N2, where N is the
number of nodes—can be expensive as the equivalent body forces
representing the effect of elastic variations in the homogenized
medium can occupy large domains. Our approach consists in eval-
uating the deformation numerically in the Fourier domain. We use
the semi-analytic Green function for a half-space to compute the
displacement field due to the presence of arbitrarily distributed body
forces in the computational domain. Free-surface boundary condi-
tion is enforced by counterbalancing the stress field on the surface
plane obtained first from the whole space solution. The half-space
solution is finally obtained by application of analytic solutions, in the
Fourier domain, for some normal and tangential traction applied at
the surface (the so-called Boussinesq’s and Cerruti’s problems). The
computational burden associated with a Fourier domain solution is
independent of the spatial extent or distribution of the body forces.
The use of fast Fourier transforms allows us to compute multiple
SAs efficiently. One iteration on a 512 × 512 × 512 computation
grid takes about a minute on a 4-CPU machine with a shared mem-
ory architecture. Typically, about 10 iterations are needed to reach
convergence. In most cases, the proposed numerical method is a
practical alternative to more advanced models like finite elements
because it does not require elaborate and time-consuming meshing
of a computational domain, especially for non-planar and branching
faults. Also, the assignment of spatially variable material properties
to different parts of a computational mesh is straightforward, due to
the uniform sampling of the computation domain.

We compared our numerical results with analytic and semi-
analytic solutions for antiplane, plane-strain and 3-D deformation
problems. We find that our numerical solutions for antiplane prob-
lems fall within 5 per cent of analytical solutions, even in the case
of large contrasts in elastic properties. In the case of plane strain
symmetry, we compared our solution to results of the propaga-
tor method (P. Segall, personal communication, 2008). We use the
semi-analytic Green function approach of Wang et al. (2003) and
finite element calculations to validate our approach in 3-D for ver-
tical and lateral variations in elastic moduli. Accuracy is better
than about 5 per cent of the expected elastic structure contribution
for elastic contrasts lower than 50 per cent and better than about
10 per cent for contrasts higher than 50 per cent compared to homog-
enized values. We conclude that our semi-analytic method provides
a sufficient accuracy to model realistic problems of 3-D deformation
in a heterogeneous crust. We applied this method to investigate the
structure and properties of compliant damage zones associated with
young active faults in the ECSZ. We modelled the LOS displace-
ments documented by radar interferometry during the 1992 Landers

and the 1999 Hector Mine earthquakes (Fialko et al. 2002; Fialko
2004). We model the inferred compliant zones by a gradual reduc-
tion in rigidity and bulk modulus around the geologically mapped
fault trace. Using a grid search, we explored a range of parameters
that can explain simultaneously LOS displacements from both the
Landers and Hector Mine earthquakes.

The InSAR data near the Calico and the Rodman faults, re-
spectively, are best explained by the presence of a compliant zone
that extends from the surface to a depth of 4 and 2 km, respec-
tively, with a rigidity reduction of 60 per cent compared to ambient
rocks. No contrast in the Poisson ratio is inferred between the host
rocks and the Calico fault zone. The wavelength of LOS displace-
ments around the Calico and the Rodman faults require an effective
compliant zone width of about 2.0 km. One segment of the Calico
fault, South of Galway Dry Lake is partially sampled by both Hec-
tor Mine and Landers interferograms. Data corresponding to this
southern segment is best modelled with a 45–50 per cent reduction
is shear and bulk moduli in a 2–3 km deep, 1.8 km wide structure.
Our modelling results show substantial along-strike variations in
the elastic properties and fault zone size for the Calico fault. InSAR
data around the Pinto Mountain fault are best modelled with a com-
pliant zone that extends from the surface to a least 9 km depth, in a
1.75-km-wide zone with a 45 per cent reduction in effective shear
and bulk moduli. A single elastic model of a heterogeneous crust
with lateral variations around the Calico, the Rodman and the Pinto
Mountain faults can explain the InSAR data of both Landers and
Hector Mine earthquakes. We conclude that the presence of com-
pliant zones around the Calico, the Rodman and the Pinto Mountain
faults in the ECSZ is a robust feature of these InSAR observations.
The anomalous LOS displacements observed in the Hector Mine
and Landers interferograms correspond to the elastostatic response
of a laterally heterogeneous crust in the east California shear zone.
The residual LOS displacements in the Hector Mine InSAR data
around the Homestead-Johnson Valley can be explained by the pres-
ence of a compliant zone with a 50 per cent reduction in shear and
bulk moduli in a block 4-5 km deep and 1.5 km wide. Inferred elas-
tic properties in the Homestead Valley process zone indicates that
the northernmost fault segments of the 1999 Landers earthquake
ruptured in the middle of a compliant zone.

Our modelling results indicate that damage accumulation around
active faults is accompanied by a reduction in both shear and bulk
effective moduli with a relatively small increase in Poisson’s ra-
tio. The ‘conserved Poisson’s ratio’ end-member scenario seems to
be more applicable to the ECSZ than the ‘conserved bulk-modulus’
end-member. These observations suggest pervasive and widespread
damage around active crustal faults. The inferred properties of com-
pliant zones may be used to quantify the amount of damage experi-
enced by the host rocks throughout the fault history.
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A P P E N D I X : B E N C H M A R K S

A.1 Antiplane strain

We compare our numerical solution to analytic and semi-analytic
solutions for antiplane, plane-strain and 3-D deformation in a het-
erogeneous medium. In order to simulate 2-D deformation in our
3-D calculations, we introduce a dislocation extending across the
computational grid. The periodicity of the solution, introduced by
the Fourier expansion, makes the source effectively infinite in the
along-strike direction. In Fig. A1(a), a screw dislocation extends
from both ends of the grid, and the resulting deformation is an-
tiplane (the only non-zero component of displacement is along
strike). Displacements across a fault exhibit a characteristic arc-
tangent profile. In Fig. A1(b), an infinitely long edge dislocation
cuts the volume, representing plane strain (the only non-zero com-
ponent of displacement orthogonal to the fault strike). Benchmarks
for 3-D deformation are computed for finite faults.

First we consider cases of a screw dislocation in a vertically
stratified elastic half-plane. The modelled domain is composed of
a strip of rigidity G1, extending from the surface to depth H , and a
bottom half-plane of rigidity G2. Fig. A2(a) shows the surface dis-
placement profile corresponding to profile A–A′ in Fig. A1 (dashed
line) along with the analytic solution for the case of a infinitely long
vertical strike-slip fault extending from the surface to a depth of
0.8 H in a homogeneous medium (G1 = G2). The numerical error,
shown on the right-hand panel of Fig. A2(a), increases away from
the source, due to the periodicity of the Fourier domain solution.
Within an across-fault distance of ten fault lengths, error does not
exceed 0.5 per cent compared to the analytic solution (Weertman &
Weertman 1964; Rybicki 1971).

We use the perturbation method to compute the deformation in
the case of the rigidity contrast G2/G1 = 1.5. Left-hand panel of
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Deformation in 3-D heterogeneous media 515

Figure A1. 3-D calculation with axes of symmetry. Horizontal (u1, u2), and vertical u3 surface displacements are represented by white arrows and the
background colour, respectively. (a) An infinitely long strike-slip fault (dashed line) creates an antiplane symmetry (no vertical displacement). (b) An infinitely
long edge dislocation creates a plane-strain symmetry in the 3-D computational volume.
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Figure A2. Antiplane benchmarks along profile A–A′ in Fig. A1 in the case of a vertical left-lateral strike slip fault. (a) The numerical and analytical solutions
for a homogeneous half-space are shown in left-hand panel. The relative error is shown in the right-hand panel and remains smaller than 0.5 per cent 10
fault lengths away from the fault trace. (b) Perturbation method. The difference between the surface displacements corresponding to a heterogeneous elastic
structure and a homogeneous half-space. The elastic structure consists in a plate of rigidity G1 = 1, extending from the surface to the depth H , and the bottom
half-space of rigidity G2 = 1.5. The strike slip fault extends from the surface to the locking depth 0.8 H . Numerical solution is shown at 1 and 14 iterations of
the perturbation method. (c) Successive over relaxation method (SOR). Results similar to (b) but with a higher elastic contrast G2/G1 = 2.5. Convergence is
obtained after 20 iterations.
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Fig. A2(b) shows the heterogeneous contribution (the difference
between surface displacements in heterogeneous and homogeneous
media). The first iteration of the perturbation method is shown in
solid line and over-estimates the effect of the rigidity contrast. Cor-
responding error is about 20 per cent compared to the analytic result.
After 14 iterations, convergence criterion (eq. 39 in the main text)
is satisfied and error is comparable to the case of a homogeneous
elastic structure.

We use the SOR method to compute the displacements in the
case of the elastic contrast G2/G1 = 2.5. Convergence criterion
is reached after 20 iterations. Numerical and analytic solutions for
the heterogeneous structure and corresponding errors are shown in
Fig. A2(c). Error does not exceed 5 per cent except in a small vicinity
around the dislocation where it reaches a maximum of 10 per cent. In
case of a large elastic contrast, the homogenized elastic parameters
must minimize the effective elastic contrast and does not correspond
to a value of rigidity around the fault. The difference in effective
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Figure A3. Plane-strain benchmarks along profile B–B′ in Fig. A1. (a) Surface displacements corresponding to a unit slip occurring on a buried edge dislocation
dipping 30◦. Numerical error (right-hand panel) does not exceed 3 per cent compared to analytic solution. (b) Perturbation method. An more compliant plate,
with λ1 = G1 = 0.7 and extending from the surface to a depth H , overrides a half-space of Lamé parameters λ2 = G2 = 1. Left-hand panel shows first iteration
(n = 1) and converged (n = 9) solutions of the perturbation method. Norm of error corresponding to the converged solution remains smaller than 5 per cent
compared to results of the matrix propagator method. (c) Same as (a) but with a vertical dip slip fault. (d) Successive over relaxation (SOR) method. Solution
displacements and relative error compared to the matrix propagator method for the layered structure of (b) with a greater elastic contrast G2/G1 = 2.5 and a
constant λ1 = λ2 = 1.

stress is compensated at each iteration after estimating the amplitude
of stress near the fault. Numerical evaluation of stress in the fault
zone is complicated by the presence of the discontinuity and results
in a greater final error at the fault location (see right-hand panel
in Fig. A2c). Overall, our 2-D numerical solutions performed in a
3-D computational grid compare well to the analytic solutions for
antiplane deformation. The use of the SOR method allows us to
consider such crustal structures with large variations in rigidity.

A.2 Plane strain

Next, we consider the case of plane-strain deformation. Fig. A3
shows the displacement field along profile B–B′ in Fig. A1. The
elastic structure consists of a strip of thickness H with Lamé pa-
rameters λ1 = G1 overlying a half-plane with elastic parameters
λ2 = G2. An edge dislocation with unit slip, dipping 30◦, starts
in the bottom layer at depth 1.5 H and extends to depth 3.5 H .
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Fig. A3(a) shows the surface displacement in the case of a homoge-
neous medium. Corresponding error compared to analytic solution
(Savage 1974; Niazy 1975) is shown on right-hand panel and does
not exceed 3 per cent. The constant shift error is an artifact due to
periodicity of the Fourier domain solutions.

We use the perturbation method to evaluate the surface displace-
ment in the case of a more compliant top strip with G1/G2 = 0.7
(Poisson’s ratio is the same for the two layers). We choose the ho-
mogenized elastic parameters corresponding to the bottom layer,
where the fault is located. We compare our numerical solution with
the displacement obtained using the matrix propagator method of P.
Segall (personal communication, 2008). Fig. A1(b) shows the elas-
tic structure contribution, the difference between heterogeneous and
homogeneous solutions. First approximate solution, at first iteration
of the perturbation method, is an under-estimate the final solution.
Convergence criterion is reached after 9 iterations with a final error
smaller than about 5 per cent of the expected elastic contribution
signal. Note that the elastic contribution is one order of magnitude

Figure A4. 3-D benchmark. (a) A strike-slip fault fractures crustal areas with different elastic moduli. The rigidity in the bottom half-space is 50 per cent higher
than in the top plate. (b) The displacement field at the surface of the half-space. (c) Difference between the displacement field in (b) and the corresponding
homogeneous solution where G1 = G2. (d) Residuals between our Fourier domain semi-analytic result and the result of Wang et al. (2003).

smaller than the total displacement. The difference between the total
displacements obtained using the propagator-matrix method or our
approach is therefore barely distinguishable. The surface displace-
ment due to a vertical edge dislocation extending from depth 1.5 H
to 3.5 H is shown in Fig. A1(c). Horizontal displacement error is
characterized by a constant bias of about 5 per cent of the expected
signal. Vertical displacement is antisymmetric and does not display
such constant bias. Error in the vertical direction is limited to about
0.5 per cent.

We use the SOR method to compute the displacement in the
presence of a large elastic contrast between the horizontal layers.
We use λ1 = G1 = 1 in the top layer and λ2 = 1 and G2 = 2.5
in the bottom layer. Convergence is reached after 18 iterations.
We compare our solutions with results from the matrix propa-
gator technique. Horizontal displacements exhibit a bias close to
10 per cent of the expected signal. Error in the vertical direction
is limited to about 2 per cent except close to the fault for reasons
discussed above in the case of antiplane strain. We conclude that our
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518 S. Barbot, Y. Fialko and D. Sandwell

Figure A5. 3-D benchmark. (a) A strike-slip fault breaks the upper crust. The rigidity in the bottom half-space is 2.5 times higher than in the top plate.
(b) The displacement field at the surface of the half-space. (c) Elastic structure contribution. (d) Residuals between our Fourier domain semi-analytic result and
the result of Wang et al. (2003).

2-D simulations for plane strain and antiplane problems compare
well with available analytic or semi-analytic solutions.

A.3 3-D deformation

We compare our 3-D numerical models to the Green function ap-
proach of Wang et al. (2003) for 3-D deformation in a vertically
stratified elastic half-space. We introduce a finite strike-slip fault in a
semi-infinite solid where the elastic moduli increase at the transition
depth H . Poisson’s ratio (ν = 0.25) is identical in each layer but the
shear modulus is increased by 50 per cent in the bottom half-space
compared to its value in the overlying plate. The left-lateral strike-
slip fault extends vertically from the surface to a depth of 1.5 H
and is L = 2 W long in the along-strike direction. This geometric
configuration allows us to evaluate our modelling of dislocations in-
tersecting materials with dissimilar elastic moduli. Fig. A4(a) shows
the horizontal (black arrows) and vertical (background colour) dis-

placements that represent the difference between the displacement
field obtained with a heterogeneous medium and with a homoge-
neous medium, respectively. The fault trace is indicated by the black
line in the x1-direction (north). The final solution is obtained with
the perturbation method after 14 iterations. Fig. A4(b) shows the
comparison with the solution of Wang et al. (2003), using the same
scaling for arrows and same colour scale as in Fig. A4(a). Some
large residuals in the horizontal direction appear only on the fault
trace and are due to the fact that slip is not single-valued at the
fault interface. Residuals in the vertical direction occur near the
quadrants of the computational grid due to the effect of periodic-
ity of the Fourier domain solution. Despite some small differences
inherent to the method, our Fourier domain perturbation approach
compares very well with the Green function method of Wang et al.
(2003). In a test with a large increase of elastic moduli with depth,
we introduce a finite strike-slip fault extending from the surface to
a depth of 0.8 H (see Fig. A5). We use the SOR method to eval-
uate the deformation in the computational volume. Our numerical
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Figure A6. Lateral variations of elastic moduli. (a) A right-lateral strike-slip fault slips near a compliant zone. The compliant zone is infinitely long and 10 km
deep with a 10 per cent reduction in shear modulus compared to ambient crust. (b) The displacement field at the surface of the half-space. (c) Elastic structure
contribution for the case when the bulk modulus is uniform in the half-space. (d) Residuals between our Fourier-domain semi-analytic result and the result of
finite-element calculation with Abaqus for case (c). (e) Elastic structure contribution for the case when Poisson’s ratio is uniform in the half-space. (f) Residuals
between Fourier-domain solution and results from finite-element calculations corresponding to case (e).
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estimate of 3-D elastostatic deformation in a heterogeneous half-
space with large variations in elastic moduli also favourably com-
pares to results obtained with the Green function approach of Wang
et al. (2003).

Finally, we test the proposed method for a case of lateral variations
in elastic moduli. We compare the predictions of our model with
finite-element calculations using the Abaqus software. We intro-
duce a right-lateral strike-slip fault of length L striking north–south
along the x1-axis from the surface to a depth W . An infinitely long
compliant zone runs parallel to the fault. The fault and the centre of
the compliant zone are separated by a distance W/2. The geometry
and resulting calculations are shown in Fig. A6. We create a mesh
with increasing node density closer to the fault and the compliant
zone. The minimum distance separating the nodes is W/30. For the
Fourier-domain solution, we use a uniform sampling of W/30 and
a computation grid of 256 × 256 × 256 nodes. We consider two
cases. In a first simulation, the shear modulus in the compliant zone
is reduced by a factor of 10 per cent and the Poisson’s ratio ν =
1/4 is uniform in the half-space. In a second simulation, the shear
modulus is reduced by 10 per cent compared to surrounding solid,
but the bulk modulus is uniform in the half-space. In this second
case, Poisson’s ratio is ν = 0.26 in the compliant zone. Using the
perturbation approach, we obtain convergence in both cases after

four iterations. The perturbation due to the presence of the compli-
ant zone in both cases represents about 5 per cent of the maximum
signal in a uniform half-space. The corresponding surface displace-
ment is shown in Fig. A6(a). The elastic contribution is shown
in Figs A6(c) and (e) for the uniform bulk modulus and uniform
Poisson’s ratio, respectively. The pattern of horizontal displace-
ments, shown by the arrows in Fig. A6, is comparable in both cases,
with additional displacements to the east of the fault. We observe
more vertical displacement to the west of the fault in the case where
Poisson’s ratio is conserved. The difference between predictions of
our approach and the finite-element solution is shown in Figs A6(d)
and (f), for the uniform bulk modulus and the uniform Poisson’s
ratio, respectively. In the course of our numerical validation, we
have noted that the benchmark corresponding to the conserved bulk
modulus (Figs A6c and d) could be only be matched with the in-
clusion of equivalent surface traction, as indicated by eq. (21). The
residuals represent about 10 per cent of the corresponding elastic
contribution signal and about 1 per cent of the cumulative displace-
ment. There is an overall excellent fit between our Fourier domain
solutions and the finite-element calculations. We conclude that our
semi-analytic iterative approach can be successfully used to model
crustal deformation due to faulting in the Earth with realistic spatial
distribution of elastic moduli.

GJI, 179, 500–520

Journal compilation C© 2009 RAS
No claim to original US government works


