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[1] We investigate the coseismic and postseismic deformation due to the Mw 6.0 2004
Parkfield, California, earthquake. We produce coseismic and postseismic slip models
by inverting data from an array of 14 continuous GPS stations from the SCIGN network.
Kinematic inversions of postseismic GPS data over a time period of 3 years show that
afterslip occurred in areas of low seismicity and low coseismic slip, predominantly at a
depth of �5 km. Inversions suggest that coseismic stress increases were relaxed by
predominantly aseismic afterslip on a fault plane. The kinetics of afterslip is consistent
with a velocity-strengthening friction generalized to include the case of infinitesimal
velocities. We performed simulations of stress-driven creep using a numerical model that
evaluates the time-dependent deformation due to coseismic stress changes in a
viscoelastoplastic half-space. Starting with a coseismic slip distribution, we compute
the time-dependent evolution of afterslip on a fault plane and the associated displacements
at the GPS stations. Data are best explained by a rate-strengthening model with frictional
parameter (a � b) = 7 � 10�3, at a high end of values observed in laboratory experiments.
We also find that the geodetic moment due to creep is a factor of 100 greater than
the cumulative seismic moment of aftershocks. The rate of aftershocks in the top 10 km of
the seismogenic zone mirrors the kinetics of afterslip, suggesting that postearthquake
seismicity is governed by loading from the nearby aseismic creep. The San Andreas fault
around Parkfield is deduced to have large along-strike variations in rate-and-state frictional
properties. Velocity strengthening areas may be responsible for the separation of the
coseismic slip in two distinct asperities and for the ongoing aseismic creep occurring
between the velocity-weakening patches after the 2004 rupture.
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1. Introduction

[2] The San Andreas fault around Parkfield, California,
exhibits a transition from a creeping segment to the north-
west to a locked segment to the southeast. The creeping
section experiences a quasi-steady sliding at a rate of
33 mm/a [Murray et al., 2001], close to the estimated
35 mm/a long-term rate of the San Andreas fault at that
latitude [Lisowski et al., 1991]. Moderate magnitude 6 earth-
quakes repeatedly occur in this transition zone. The 2004
Mw 6.0 Parkfield earthquake is the most recent in a series of
events including a least five historical earthquakes in 1881,
1901, 1922, 1934, and 1966 rupturing approximately the

same area on the fault [Bakun and McEvilly, 1984; Bakun et
al., 2005]. The Earthquake Prediction Experiment [Bakun
and Lindh, 1985], motivated by the small recurrence time of
the Parkfield sequence, sought to monitor the anticipated
earthquake and reveal the earthquake process in unprece-
dented detail. The event of 28 September 2004 was the
subject of numerous studies that exploited a large variety of
available geophysical data [e.g., Harris and Arrowsmith,
2006].
[3] The coseismic rupture was imaged using various

geodetic [e.g., Johanson et al., 2006; Johnson et al., 2006;
Langbein et al., 2006] and seismic [e.g., Liu et al., 2006;
Allmann and Shearer, 2007] observations. A common fea-
ture of these studies is the partition of the earthquake slip
distribution in two distinct areas of high slip: a first patch
located close to the epicenter, and a second, larger ampli-
tude patch, farther to the northwest. Previous studies
showed that the postseismic transient is likely dominated
by afterslip [e.g., Johanson et al., 2006; Johnson et al.,
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2006; Freed, 2007]. Johanson et al. [2006] inferred the
details of the early afterslip distribution from GPS and
interferometric synthetic aperture radar (InSAR) measure-
ments. Somewhat surprisingly, more fault-averaged slip
was found to have occurred during the postseismic period
than during the coseismic rupture. The inferred geodetic
moment due to afterslip was equivalent to a magnitude
Mw 6.1 earthquake over four months following the rupture
[Johanson et al., 2006], and Mw 6.3 2 years after the event
[Freed, 2007] (i.e., about 3 times the coseismic moment
release). The moment release during coseismic and post-
seismic slip differs from that observed in other instrumented
areas and might be peculiar because of the transition
between the creeping and locked segments of the San
Andreas fault.
[4] In this study, we take advantage of the continuous

GPS array of the SCIGN network [Langbein and Bock,
2004], which covers the Parkfield segment during the
interseismic, coseismic, and postseismic intervals, to con-
strain the dominant mechanisms driving the postseismic
deformation over 3 years following the 2004 earthquake. In
section 2, we begin by deriving a coseismic slip model and
estimating the resolving power of the GPS array. In section 3,
we perform a series of kinematic inversions to track the
evolution of slip on the fault plane over 3 years following
the earthquake. In section 4, we describe stress-driven creep
models incorporating power law and velocity-strengthening
friction laws. We perform a principal component analysis of
the GPS time series. We fit the dominant mode to analytic
solutions for the postseismic relaxation of a simple creeping
patch. In section 5, we use stress-driven creep models to
constrain constitutive properties of the fault interface [Stuart
and Tullis, 1995; Johnson et al., 2006; Perfettini and
Avouac, 2004, 2007]. We explore predictions of the rate-
and state-dependent friction [Dieterich, 1992, 1994] using a
new semianalytic model of nonlinear fault creep. Using our
kinematically inferred coseismic slip distribution as an
initial condition, we compute forward models of fault brittle
creep and discuss implications for in situ constitutive
frictional properties of rocks in the San Andreas fault zone.
In Appendix A, we derive the analytic impulse response of a
power law shear zone and of a rate-strengthening (RS) crack
due to coseismic stress change. In Appendix B we describe
our mathematical approach to model three-dimensional
deformation due to nonlinear creep and present our numer-
ical implementation. The rate of creep of the RS crack in the
interseismic period is discussed in Appendix C.

2. Coseismic Slip Model

[5] We use the 28 September 2004, 1 day static offsets in
the SCIGN continuous GPS time series computed at the
Scripps Orbit and Permanent Array Center (http://sopac.
ucsd.edu/) to invert for a coseismic slip distribution. We
approximate the fault zone with a single fault segment and
allow for right-lateral strike slip only. We discretize a 40 km
long, 15 km deep plane with 2 � 1 km patches in the strike
and dip directions, respectively. As inversions of surface
displacements are intrinsically nonunique [e.g., Parker,
1994; Mavko, 1981; Savage, 1990], we impose slip non-
negativity, a smoothness constraint and zero slip at the

bottom of the fault to regularize the problem (see Fialko
[2004a] for details). In particular, we use the homogeneous
elastic Green function [Okada, 1992] for a Poisson solid
and the finite difference approximation of the gradient
operator to smooth the slip model.
[6] We determine our preferred source geometry by

performing a grid search for the strike, dip and position of
the fault that best fit the GPS offsets. Figure 1 shows our
best model, corresponding to a vertical fault striking N136�.
Effects of the smoothness factor (SF) on the inferred
geometry are illustrated in Figure 2. For high values of
SF, the inferred slip distribution on the fault is smooth (see
slip model in Figure 2a, top left). At intermediate values of
SF, the slip distribution becomes bimodal, with two distinct
slip patches appearing along strike. For smaller values of
SF, the two slip patches persist and become more localized
with a smaller slip area and a higher slip amplitude. We
choose our smoothing factor SF = 10�4 to be at the position
where misfit is weakly dependent upon the degree of
smoothing, as illustrated by the smoothness/misfit curve of
Figure 2b. Using a uniform shear modulus of G = 30 GPa,
our best fitting coseismic model has a geodetic moment
of m = 1.98 � 1018 N equivalent to moment magnitude
Mw 6.16, somewhat higher than the seismic moment of
Mw 6.0. Inversions using a high-rate GPS data and a
smaller coseismic interval gave rise to a geodetic moment of
Mw 6.0, in a better agreement with estimates from seismic
data [Murray and Langbein, 2006]. Our use of daily GPS
solutions may include some early afterslip in the coseismic
model. Figure 1b shows the modeled surface displacements
at the 14 GPS stations, along with the GPS measurements
and their two-sigma uncertainty. Most of the GPS displace-
ments can be explained by right-lateral strike slip on the
fault plane.
[7] The station distribution in the GPS array and the

geometry of the fault limit our ability to infer slip equally
well everywhere on the fault plane. Following the approach
of Backus [1970] and Tarantola [2004], the resolution
kernel of the underdetermined inverse problem is

R ¼ Gt G Gtð Þ�1
G ð1Þ

where G is the matrix of the elastic Green function [Okada,
1992] used in the slip distribution inversion. Figure 3a
shows the diagonal of matrix R, which represents the
sensitivity of the GPS array to variations in slip at each
patch on the fault. The resolution, a dimensionless quantity,
varies from 1 in well-resolved areas to 0 in essentially
unresolved areas. Inspection of the resolution matrix shows
that the available GPS data constrain mostly the upper part
of the fault. A critical value of resolution R = 0.1 is reached
at a depth of about 7 km. Figure 3b shows off-diagonal
components of the resolution matrix of equation (1) for slip
patches down to 8 km depth. Resolution on deeper patches
is degraded, as expected. Off-diagonal terms indicate the
correlation between inferred slip on a fault patch and
neighboring patches. For example, inference of slip on a
fault patch intersecting the Earth’s surface at along-strike
position x = 24 km is unbiased. However, inferred slip at the
ends of the fault, away from most GPS stations, is less
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resolved. For the slip patch at depth of 5 km and along-
strike position of x = 24 km, the inferred slip location is
more robust along the strike than along the dip direction. At
the same position in azimuth but greater depth, the inferred
slip is more diffuse and azimuthal position is less robust. We
conclude that inversion for slip using the current distribu-
tion of GPS stations is robust down to a depth of about 7 km
immediately below the center of the GPS array at along-
strike range x = 18–30 km. We note however that the

inferred slip at about 5 km depth might appear distributed
along a greater depth range of about 2–3 km.
[8] Our coseismic slip model exhibits two zones of

relatively high slip (see Figure 1a). The area to the north-
west, characterized by the highest slip, is directly below the
GPS array, above the 7 km resolution limit of the array
aperture, and is therefore a well-constrained feature. The
second area, to the southeast and closer to the epicenter, is
farther away from the GPS network and extends to a depth

Figure 1. Coseismic slip model. (a) Amplitude of right-lateral strike slip inferred from the inversion of
the 14 continuous GPS horizontal coseismic displacements. (b) Map view of the coseismic displacement
vectors. The blue arrows represent the GPS data with the two-sigma uncertainties; the black arrows
correspond to our best forward model. The origin is located at (N35.8150, W120.3740).
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of 10 km. The corresponding slip is more poorly con-
strained and might be oversmoothed.

3. Postseismic Transient Deformation

[9] Large earthquakes are usually followed by episodes of
gradually decaying deformation. Various mechanisms pro-
posed to explain the postseismic transients include poro-
elastic rebound [Peltzer et al., 1998; Jonssón et al., 2003;
Fialko, 2004a], afterslip on the ruptured fault or its exten-
sion [Marone et al., 1991; Savage et al., 1994; Fialko,
2004b; Freed et al., 2006; Barbot et al., 2008b], and
viscoelastic relaxation in the lower crust or upper mantle
[Nur and Mavko, 1974; Pollitz et al., 2000; Freed and
Bürgmann, 2004]. Several authors have shown that the
postseismic transient following the 2004 Parkfield earth-
quake is dominated by afterslip [e.g., Johnson et al., 2006;

Johanson et al., 2006; Freed, 2007]. The focus of this study
is the physical mechanisms of afterslip caused by the 2004
event. We utilize the network of 14 continuous GPS stations
[Langbein and Bock, 2004] to infer a time-dependent
postseismic slip on the fault plane. We use SOPAC’s filtered
daily position time series where a common mode noise has
been removed. The methodology for noise reduction is
standard, and details are given by Wdowinski et al.
[1997]. We isolate the postseismic signal from the filtered
GPS time series by removing a linear trend corresponding to
the interseismic displacements. The time window used in
the regression for interseismic velocities corresponds to the
interval from first availability of data to December 2003,
before the occurrence of neighboring San Simeon earth-
quake. The duration of the time series used in the inversion
at each GPS station varies from 2.2 to 7.2 years and is listed
in Table 1. Inferred interseismic GPS velocities and uncer-

Figure 2. (a) Effect of smoothing on the coseismic slip model. The smoothness of the slip model is
controlled by the smoothness factor (SF) in the inversion. (b) The smoothness/misfit curve. Our models
use smoothness factor SF = 10�4 as indicated by the black cross.
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tainties are shown in Table 1. We also remove the coseismic
displacements due to the December 2003 Mw 6.6 San
Simeon and the 2004 Parkfield earthquakes, along with
other spurious static offsets. (Some static offsets appear in
GPS time series after antenna updates.) Postseismic data
clearly show that the transient deformation triggered by the
coseismic stress change is still occurring 3 years after the
earthquake (see Figures 7 and 10).
[10] We invert the postseismic signal for cumulative

afterslip as a function of time. Formalism of the inversion
is the same as the one used for the coseismic model
discussed above (including the smoothing constraint and
the resolution, as shown in Figure 3). Most of the surface
displacements occur during the first year following the
earthquake. Figure 4 shows snapshots of the inferred afterslip
evolution at 0.05, 0.15, 0.30, 0.70, 1.10, 1.50, and 2.50 years
after the main event. We did not regularize the afterslip
evolution in the time domain which may result in spurious
variations in slip velocity (e.g., see a patch of high slip at
along-strike distance of 30 km at time 0.7 year that
disappears at later times, Figure 4). Such second-order
variations in the inferred cumulative afterslip are likely
due to unmodeled periodic signals and the presence of noise
in the postseismic time series [Williams et al., 2004;
Langbein, 2008]. GPS horizontal displacements and fit to
the data are shown in Figure 5. Most stations are very well
fitted by our afterslip models throughout the 3 year interval.
Given that the 2004 Parkfield earthquake induced little if

any viscous relaxation in the lower crust or upper mantle
[Johnson et al., 2006; Freed, 2007], our results confirm that
the postseismic deformation is primarily driven by right-
lateral afterslip on the fault plane. Station CARH, located
inside the fault zone, exhibits a reversal in the direction of
motion. This behavior is likely due to slip migration to a
nearby parallel fault strand [Murray and Langbein, 2006].

Figure 3. Resolution of the underdetermined inverse problem. (a) Diagonal of the resolution matrix R.
Critical value R = 0.1 is reached at a depth of about 7 km. (b) Correlation of inferred slip patches with
their neighbors on the fault plane (off-diagonal terms of the resolution matrix). Position of central
subpatches is indicated in white text (depth and distance along strike) and highlighted by black rectangle.
Note the change of color scale in Figure 3b. The fault segment that experienced the most afterslip is
located at an along-strike distance of 24 km and a depth of 5 km; its location is robust in the strike
direction.

Table 1. Inferred Velocity of the SCIGN Continuous GPS

Stations Before the December 2003 San Simeon Earthquakea

Name Lon Lat
t

(years)
VN

(m/a)
VE

(m/a)
sN

(mm/a)
sE

(mm/a)

CAND �120.433 35.939 4.3 �0.0242 0.0070 0.1 0.1
CARH �120.430 35.888 2.3 �0.0353 0.0159 0.2 0.2
CRBT �120.750 35.791 2.2 �0.0380 0.0211 0.3 0.3
HOGS �120.479 35.866 2.3 �0.0348 0.0175 0.2 0.2
HUNT �120.402 35.880 2.3 �0.0274 0.0082 0.1 0.1
LAND �120.473 35.899 4.3 �0.0346 0.0173 0.2 0.1
LOWS �120.594 35.828 2.3 �0.0365 0.0200 0.2 0.1
MASW �120.443 35.832 2.3 �0.0348 0.0168 0.2 0.1
MIDA �120.458 35.921 4.3 �0.0236 0.0085 0.2 0.2
MNMC �120.434 35.969 2.3 �0.0239 0.0055 0.2 0.2
PKDB �120.541 35.945 7.2 �0.0351 0.0188 0.1 0.1
POMM �120.478 35.919 4.3 �0.0343 0.0161 0.2 0.2
TBLP �120.360 35.917 2.3 �0.0255 0.0039 0.2 0.5
RNCH �120.524 35.899 2.2 �0.0375 0.0167 0.7 0.8

aTime t refers to the duration of the interval used for the linear regression.
Parameters VN, VE, sN and sE are the north and east components of the GPS
velocity and corresponding standard deviation, respectively.
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[11] Also shown in Figure 4 is our coseismic slip model
(for t = 0.000 year) and the cumulative seismicity. The
coseismic slip contour lines are superimposed on all kine-
matic inversions to facilitate comparison between coseismic
and postseismic slip distributions. At early stages of defor-
mation, afterslip occurs principally around a depth of 5 km,
between two areas of high coseismic slip. In the time

interval of about 3 months, afterslip reaches an equivalent
geodetic moment greater than the seismic moment of the
Parkfield earthquake, in agreement with earlier results by
Johanson et al. [2006]. After 2.5 years, afterslip reaches a
cumulative geodetic moment of Mw 6.35 (c.f. our inferred
coseismic moment ofMw 6.16). The shallow location (depth
smaller than 7 km) of early afterslip is robust, given the

Figure 4. Kinematic inversions and seismicity. The right-lateral slip on the fault plane as a function of
time after the coseismic rupture is constrained from the continuous GPS data. The t = 0.000 year model is
the coseismic slip distribution along with the 1 day seismicity. The continuous profiles are the coseismic
slip contour intervals. The cumulative afterslip models at 0.05, 0.15, 0.30, 0.70, 1.10, 1.50, and 2.50 years
after the earthquake are also shown. Aftershocks, cumulative since the day following the earthquake, are
superimposed to the afterslip models, colored from black to red for early to late occurrence time. The
coseismic contour lines are superimposed to the afterslip models to facilitate comparison.

B07405 BARBOT ET AL.: PARKFIELD POSTSEISMIC DEFORMATION

6 of 26

B07405



sensitivity of the GPS array (Figure 3). We performed two
other series of inversions of coseismic and postseismic GPS
data varying the discretization of the fault plane as a
function of depth [Fialko, 2004a; Fialko et al., 2005]. In

these inversions we increased the along-strike and the
downdip dimensions of subfault rectangles by 25% and
50%, respectively, resulting in a sampling of the deepest
part of the fault by 5 to 4 slip patches, respectively. We find

Figure 5. Kinematic inversions (continued). GPS horizontal displacements (red arrows with two-sigma
uncertainties) and corresponding forward models (black arrows). The GPS data in the 3 year postseismic
transient can be explained by right-lateral afterslip on the coseismically ruptured fault segment. Origin is
at the geographic coordinate (N35.8150, W120.3740).
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that, similar to what appears in Figure 4, coseismic slip and
afterslip occupy a remarkably complementary area on the
fault plane. There is no resolvable overlap between afterslip
and coseismic slip. At later times, some afterslip occurs also
at greater depth, but the location cannot be precisely
inferred from the available data. Our estimate of the post-
seismic geodetic moment includes the poorly resolved deep
slip (Figure 3) that occurs in the last 2 years and may be
biased toward higher values in this period. Earthquake
locations correlate with areas of coseismic slip and seem
not to evolve spatially throughout the postseismic epoch.
Afterslip is confined to areas of low seismicity and does not
represent deformation due to aftershocks.
[12] Time-dependent kinematic inversions of GPS data

suggest that afterslip occurs at the periphery of the coseismic
rupture, in areas characterized by low aftershock activity.
Such aseismic creep is suggestive of spatial variations in
frictional properties on the San Andreas fault near Parkfield.
In particular, velocity-weakening areas appear to correspond
to zones of high seismicity and coseismic slip; velocity-
strengthening areas appear to pose an obstacle to rupture
propagation and to the occurrence of aftershocks, but favor
postseismic creep.

4. Models of Time-Dependent Deformation

[13] We investigate several mechanisms that might con-
tribute to the observed deformation pattern. The deforma-
tion may be localized on a frictional surface [Marone et al.,
1991; Marone, 1998; Scholz, 2002] or in a ductile shear
zone [Evans and Kohlstedt, 1995; Roberts and Turcotte,
2000; Montési, 2004]. In the latter case, the so-called plastic
instabilities can spread over a narrow, yet finite, volume
encompassing the fault zone. In case of a frictional inter-
face, all deformation is accommodated by slip on a narrow
fault. These two hypotheses give rise to specific constitutive
laws relating the effective stress to the slip rate.
[14] Shear failure and slip at seismogenic depth are

controlled by the Coulomb stress [Byerlee, 1978], which
is to the first order given by

t � ms ¼ 0 ð2Þ

where t is the amplitude of shear stress in the direction of
sliding, s is the effective normal stress accounting for the
pore pressure contribution (positive for compression) and m
is the coefficient of friction. We decompose shear and
effective normal stresses resolved on a fault into a
background (e.g., tectonic) level and a coseismic change,
respectively,

t ¼ tb þDt

s ¼ sb þDs
ð3Þ

In the context of strike-slip faulting, we further assume that
the change in the normal stress is negligible compared to the
tectonic and lithostatic contributions

Ds � sb ð4Þ

and that the preearthquake Coulomb stress is negligible
compared to the coseismic stress change,

Dt 	 tb � m0sb ð5Þ

Under these assumptions, the effective stress driving
afterslip on the fault plane is the shear component of
coseismic loading Dt. Subsequent evolution of stress
changes depends upon a particular mechanism of shear.
[15] Plastic instabilities can be modeled with linear or

power law creep rheologies [Weertman and Weertman,
1964, 1975; Evans and Kohlstedt, 1995]:

_g ¼ A
Dt
G

� �n

ð6Þ

where _g is the rate of plastic strain, n is a power exponent
between 1 and 5 indicating the degree of stress sensitivity, G
is the shear modulus, and A is the reference strain rate
controlling the timescale of deformation. For n = 1, the
creep rheology is linear and h = G/A is the viscosity.
Equation (6) may be coupled to thermal softening, which
implies depth-dependent parameters [Kohlstedt et al.,
1995]. Dependence on thermal or other specific state
parameters can simply be included by allowing parameter
A to vary spatially.
[16] Localized slip on frictional interfaces can be described

by rate- and state-dependent friction laws [Ruina, 1983;
Dieterich, 1992]

m ¼ m0 þ a ln
_s

_s0

� �
þ b ln q ð7Þ

where _s is the slip rate on the fault, m0 is the coefficient
of friction at a reference slip rate _s0, a and b are the
frictional parameters and q is a state variable subjected to
an evolution law. Under the consistency condition (2) and
the assumptions (4) and (5), the friction law can be written

_s ¼ _s0q� b=að Þe�t=as ð8Þ

where the ratio b/a is a work-hardening parameter,
weakening for b/a > 1 and strengthening for b/a < 1. An
unphysical feature of the original rate-and-state formulation
(7) is an asymptotic divergence of friction at small velocities
_s < _s0. We adopt a generalized version of equation (7),

m ¼ m0 þ a sinh�1 _s

2 _s0
qb=a

� �
ð9Þ

motivated by thermodynamic considerations [Lapusta et al.,
2000; Rice et al., 2001]. Under the same assumptions the
corresponding slip rate is

_s ¼ 2 _s0q� b=að Þ sinh�
t
as

ð10Þ

Note that formulations (7) and (9) or, equivalently,
formulations (8) and (10), are asymptotically equivalent at
high velocities, but equations (9) and (10) remain bounded
at small slip rates. We assume that most of the postseismic
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creep occurs at steady state ( _q = 0) and we ignore the
healing and slip-weakening effects. The steady state
assumption is valid only if the cumulative afterslip largely
exceeds the strengthening or weakening distance Dc of the
state variable. The magnitude of afterslip at Parkfield
reaches about half a meter (see Figure 4), which is several
orders of magnitude larger than values of Dc inferred from
laboratory experiments [Marone, 1998]. The steady state
assumption gives rise to a purely rate-strengthening
constitutive law

_s ¼ 2 _s0 sinh
Dt
as

� �
ð11Þ

which represents the direct effect between slip rate and
stress change. Note that formulation (11) resembles the
empirical relationship of Garofalo [1975] for power law
breakdown [Tsenn and Carter, 1987]. Velocity-strengthening
friction models are an approximation to the full rate- and
state-dependent friction model for a positive parameter
(a � b) and negligible evolution of the state variable, _q = 0
[e.g., Marone et al., 1991; Marone, 1998; Perfettini and
Avouac, 2007]. We note that the rate-strengthening (RS)
friction parameter _s0 does not correspond to the so-called
‘‘interseismic’’ velocity of the friction interface (see
discussion in Appendix C). Equation (11) relates the rate
of steady afterslip to coseismic stress change, and RS
parameter _s0 is a rock property that controls the timescale of
transient slip episodes similar to parameter A in power law
models.
[17] To test the predictive power of RS friction and power

law creep in explaining the GPS time series, we consider the
impulse response of a simple shear zone. For a planar shear

crack, afterslip is controlled by the effective stiffness of the
slip patch

G* ¼ C G

L
ð12Þ

where scalar C is a dimensionless constant close to 1 that
depends on the geometry [Eshelby, 1957; Kanamori and
Anderson, 1975; Shearer, 1999; Fialko, 2007] and L is the
linear dimension of the crack. The strain accumulated across
a ductile shear band of linear dimension L and thickness T
depends upon its aspect ratio a = CT/L. Figure 6 illustrates
the impulse response to an instantaneous stress change for
the linear and power law creep rheologies, as well as for the
classic and generalized rate-strengthening laws. Details of
calculations are given in Appendix A. The impulse response
for a linear rheology is

g tð Þ ¼ Dt0
aG

1� e�t=t0
� �

ð13Þ

where g is the strain across the ductile shear zone, Dt0 is
the initial shear traction, t0 is the relaxation timescale. A
schematic of the creep evolution described by equation (13)
is shown in Figure 6a (left) and superimposed on other
profiles as a dashed line. Linear creep is a particular case of
power law creep for the case n = 1 (see equation (6)), and of
the generalized rate-strengthening friction for large as/Dt0.
The power law response

g tð Þ ¼ Dt0
aG

1� 1þ t

t0

� � �1ð Þ= n�1ð Þ
 !

; n > 1 ð14Þ

Figure 6. Creep tests for a simple crack frictional surface. The stress and strain impulse responses for
(a) the linear and power law creep and (b) the rate-strengthening (RS) friction laws. For a step-like
increase in total strain, resulting from an instantaneous change in stressDt, some inelastic deformation is
triggered. The dotted profiles indicate the response of a linear rheology. The classic formulation of RS
friction is ill-posed for a creep test, whereas the generalized friction law remains bounded at small
velocities. The detail of calculations can be found in Appendix A.
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associated with the timescale

t0 ¼
1

A n� 1ð Þ
G

Dt0

� �n�1

ð15Þ

is illustrated in Figure 6 for a power exponent n = 2.
Compared to the linear case most of the deformation
happens at an early time but complete relaxation, however,
takes a much longer time. In case of rate-strengthening
friction, the dimensionless ratio

k ¼ Dt0
as

ð16Þ

controls the degree of nonlinearity during slip evolution,
similar to the exponent n for power law creep. The impulse
response of strain for RS friction is

s tð Þ ¼ Dt0
G*

1� 2

k
coth�1 et=t0 coth

k

2

� �� �
ð17Þ

where we defined the reference time

t0 ¼
1

2 _s0

as
G*

ð18Þ

Deformation is also characterized by high velocities at early
times, but reaches complete relaxation more rapidly,
compared to linear or power law models. Note that strain
rates predicted by equation (17) eventually vanish, as stress
is relaxed, in contrast to the prediction of the original form
of rate-dependent friction, shown in Figure 6b (left).
[18] We test whether the impulse response of power law

creep and the generalized rate-strengthening friction law are
able to explain the observed GPS time series. We use
solutions (13), (14), and (17) for the deformation of a
simple crack to fit the GPS time series. We optimize the
timescale t0, an amplitude and a nonlinear coefficient
(parameters n or k for power law and RS friction, respec-
tively) to reduce a misfit between the data, with associated
uncertainties, and the forward models. Inversions are per-
formed with a random walk and simulated annealing with a
positivity constraint on model parameters [e.g., Tarantola,
2004]. We first performed a series of inversion of individual
time series. We found that, regardless of the rheology
considered, inferred model parameters were remarkably
consistent among GPS stations and components. The uni-
formity of inferred timescale t0 and nonlinear coefficient is
indicative of a time-space separable source mechanism.
[19] Motivated by this finding, we perform a Principal

Component Analysis (PCA) of the GPS time series [Dong
et al., 2006]. Considering that individual time series are
ordered as lines in matrix X, we define the projection Y =
PTX, with P�1 = PT, such that

L ¼ Cov Yð Þ

¼ PTCov Xð ÞP
ð19Þ

where L is the diagonal covariance matrix of the PCA
modes. As one has

X ¼ PY ð20Þ

the original time series can be decomposed into a linear
combination of the PCAmodes [Menke, 1984; Preisendorfer
and Mobley, 1988]. Matrix Y is an orthogonal basis of X
because the individual times series that occupy lines of Y
have no correlation (in other words, Cov (Y) is diagonal).
We obtain the PCA decomposition of GPS time series by
applying the spectral decomposition of the covariance
matrix of X. The eigenvalues correspond to the variance of
individual modes in base Y. Eigenvalues and eigenvectorsL
and P are arbitrarily scaled. We normalize them consistently
so that the dominant mode eventually reaches 1 at the end of
the time series. As eigenvectors are a linear combination of
the original GPS signals, we obtain uncertainties on Y by a
simple error propagation method. At first approximation,
uncertainties on individual modes are reduced by a factor offfiffiffiffiffiffiffi
2N

p
, where N is the number of GPS stations. Figure 7

shows the first and second most dominant modes. The
decomposition consists of a time series and a spatial
distribution. The signal with most variance explains 95.2%
of the data. The time-dependent signal corresponds to a
postseismic transient and associated vector displacements
are consistent with right lateral motion on the fault. We
performed a kinematic inversion for fault slip using the
spatial distribution of displacement of the first mode shown
in Figure 7 (top right). The slip distribution is dominated by
a small slip patch centered at 5 km depth similar to the last
slip distribution in Figure 4. The second mode is due to a
common mode seasonal signal, which is not removed from
the SOPAC filtered time series [Langbein, 2008] and is
about 2 orders of magnitude smaller. The associated GPS
displacements appear to be generally perpendicular to the
fault. We consider the first mode to be representative of the
postseismic response.
[20] We test the possibility of the impulse response of

different rheologies to explain the dominant PCA mode. We
use a random walk with simulated annealing to find the
amplitude C, timescale t0 and nonlinear coefficient (n or k)
required by the data. In a series of inversions we impose the
degree of nonlinearity to illustrate its role in reducing the
data. Results are shown in Table 2. We compute the square
root of the weighted sum of the square of the residuals for
the first two months and for the entire duration of the time
series. These are reported in Table 2 as c1 and c2,
respectively. As we normalized the first PCA mode to reach
the value of 1 after 3 years, the inferred amplitude C of fit
functions is an indicator of the degree of completion
predicted by the different models. For example, values of
C ’ 1 indicate a postseismic transient close to termination
whereas higher values indicate an ongoing transient. For
both power law and RS friction rheologies, the residuals are
reduced by increasing the degree of nonlinearity. The best
model for power law corresponds to n = 6.9, associated with
an amplitude of C = 2.03. The best power law model
predicts that the post-Parkfield transient is only half com-
plete. The best RS friction fit to the PCA mode is superior
to those of power law models, as shown by the short-term
and the long-term residual norms. The best fit is obtained
for k = 7.0 and C = 1.25, indicating that the afterslip is
only 75% complete 3 years after the earthquake. The better
fit of the RS model favors the rate-strengthening creep
model over the power law shear zone model.
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[21] The excellent fit of the RS friction model to the
observed time series lends support to our assumptions (4)
and (5). The best power law creep model gives rise to an
inferior fit with a power exponent outside of the experi-
mentally measured range [Weertman and Weertman, 1964,
1975; Tsenn and Carter, 1987; Kohlstedt et al., 1995;
Montési and Hirth, 2003], and we conclude that the bulk
of postseismic relaxation is due to afterslip governed by a
generalized rate-strengthening friction model. All original
time series are well explained by equation (17) for values
of k ranging from k = 5 to k = 8. Best fit for the first PCA
mode is obtained, as shown in Figure 8 and Table 2, for
k = 7. Inferred magnitude of the corresponding timescale is
subject to greater uncertainty, with t0 = 4.8 ± 2.4 years.
[22] As evidenced by our geodetic inversions (Figure 4),

the afterslip occurring in the first 4 months following the
Parkfield earthquake is located between two patches of high
coseismic slip, at about 5 km depth, in an area having a
characteristic radius l = 2 km. In the first 4 month period,
the equivalent geodetic moment due to afterslip, assuming
G = 30 GPa, reaches 2.1 � 1018N (equivalent Mw 6.18),
compared to a cumulative seismic moment of aftershocks of
8.2 � 1014N (Mw 3.9) over the same time period in the top
10 km. The lack of coseismic slip and the occurrence of
essentially aseismic afterslip are interpreted as indicating the
presence of a velocity-strengthening area in the middle of a
nominally velocity-weakening layer at depth of 5 km.

[23] As postseismic creep gives rise to a total slip of s ’
0.5 m, an estimate of the effective stress drop is [e.g.,
Eshelby, 1957; Kanamori and Anderson, 1975; Shearer,
1999; Fialko, 2007]

Dt0 ¼ C
s

l
G ’ 2:5� 10�4 G ð21Þ

where G is the shear modulus of the upper crust and C is a
constant, of order of unity, that depends upon the geometry

Table 2. Best Fitting Parameters to the First Mode of the PCA

Decompositiona

Rheology C t0 n or k c1 c2

Power law 0.93 2.8 1 4.1 � 10�1 7.6 � 10�2

1.04 0.23 2 2.4 � 10�1 4.2 � 10�2

1.19 0.10 3 1.7 � 10�1 3.0 � 10�2

2.03 0.03 6.9 8.1 � 10�2 1.6 � 10�2

RS 0.93 0.38 1 3.9 � 10�1 7.2 � 10�2

0.94 0.47 2 3.4 � 10�1 6.2 � 10�2

0.99 0.9 4 1.7 � 10�1 3.2 � 10�2

1.25 4.8 7.0 3.2 � 10�2 1.0 � 10�2

aThe time series is fitted with the functional describing the impulse
response of power law creep and rate-strengthening (RS) friction. Fit
parameters C, t0, and n or k are the amplitude, the timescale, and the
nonlinear exponent (n for power law and k for RS), respectively, estimated
from the inversion. Misfits c1 and c2 measure the residual variance for the
first two months and for the 3 years time series, respectively.

Figure 7. PCA decomposition of GPS time series. The first mode, with 95% of the total variance,
corresponds to the postseismic signal. The associated GPS displacements exhibit the expected signature
of right-lateral slip on the fault and correspond to the cumulated surface displacement after 3 years. The
second mode, which represents 1.7% of the total variance, is due to a common mode seasonal signal,
which is not removed from the SOPAC-filtered time series [Langbein, 2008], and is about 2 orders of
magnitude smaller. The associated surface displacements are generally aligned perpendicular to the fault.
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of the slip patch. Static values of the shear modulus are not
well constrained, but likely vary between 3 and 30 GPa,
leading to estimates of the stress drop between Dt0 =
0.75 MPa and Dt0 = 7.5 MPa. For a uniform rock density
of r = 2700 kg/m3, the lithostatic pressure at 5 km depth
is p = 135 MPa. Using our inference of k = 7, a low-end
shear modulus, and assuming an effective normal stress
of s = 100 MPa, our low-end estimate of the frictional
parameter is

a ¼ Dt0
k s

’ 10�3 ð22Þ

Considering the range of possible values of the shear
modulus, estimate of the friction parameter can vary
between a ’ 10�3 and a ’ 10�2. Noting that parameter a
is a proxy for (a � b) in the context of full rate- and state-
dependent friction, our inferred value falls in the range of
frictional parameters observed in laboratory experiments,
with values for (a � b) lower than 10�2 at temperatures
corresponding to the middle of the seismogenic zone [Scholz,
1990, 1998; Marone, 1998]. Using the same assumptions,
the timescale inferred from fitting the GPS data gives rise to

_s0 ¼
Dt0
2G* t0

’ 5� 10�5m a�1 ð23Þ

The Maxwell relaxation time tm associated with afterslip on
a simple crack depends upon the effective crack stiffness,

tm ¼ Dt
G*_s

ð24Þ

The inferred value for the RS parameter _s0 corresponds to
linear relaxation timescales growing from tm = 0.45 year, at
onset of transient deformation, to tm ’ 200 years at later
times. Estimates of the velocity parameter based on GPS

time series and analytic solutions for a point source might
be biased by a spatially variable afterslip on the fault. The
effective timescale of deformation might be longer than that
for a point source, and therefore equation (23) should be
considered a lower bound. We conclude that the parameters
obtained from fitting equation (17) to the postseismic GPS
signal are consistent with a physical model of stress
relaxation. The better fit of the RS model within a
reasonable range of parameters contrasts with the inferior
fit obtained with a power law model that requires an
exponent inconsistent with the laboratory data. Notice that
the 3 year time series corresponding to the 14 GPS stations
can be explained with a model having only 3 degrees of
freedom. Another approach to explain the data, relating
surface displacements to rate of aftershocks [e.g., Savage et
al., 2007], requires many more degrees of freedom.
[24] The inferred rate-strengthening segment of the fault

experiencing an accelerated creep after the 2004 Parkfield
earthquake is estimated to be slipping at rates of 1.1 mm/a in
the interseismic period in response to slip at 33 mm/a below
the seismogenic zone [Murray et al., 2001], on the downdip
extension of the San Andreas fault (see Appendix C).
However, a shallow rate-strengthening patch was not
apparent in inferred slip distributions corresponding to the
interseismic period [Murray et al., 2001; Murray and
Langbein, 2006]. The surface velocities in GPS network
corresponding to this shallow creep patch alone vary be-
tween 0.01 mm/a at the closest station and 0.001 mm/a at
the furthest station. Such small surface velocity contribu-
tions are below the detection limit, given GPS uncertainties
and the rate of interseismic loading of 33 mm/a at the
bottom of the seismogenic layer.

5. Semianalytic Models of Afterslip

[25] As our analysis of the GPS data using solutions for a
simple crack impulse response (section 4) favored the

Figure 8. Functional fit to the dominant PCA mode of the postseismic component of the GPS time
series. The impulse response of linear constitutive laws (n = 1 for power law or k ’ 1 for RS friction,
shown by long-dashed profiles) only poorly simulate the observed time dependence of afterslip. (a) Best
fitting power law and (b) RS models, corresponding to parameters n = 6.9 and k = 7.0, respectively, are
represented by the thick solid lines. In other inversions, nonlinear coefficient n or k are imposed.
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generalized friction model, we further explore the latter
using full 4-D simulations with a finite source. We model
the aseismic creep occurring after the Parkfield event using
a semianalytical model of deformation in an viscoelasto-
plastic half-space. Our approach allows one to evaluate a
time-dependent deformation due to a quasi-static fault slip
in response to the driving coseismic stress changes. Our
model includes the linear and power law creep as well as the
generalized velocity-strengthening friction law, but on the
basis of the results in section 4, we focus on RS models. We
compute deformation due to fault creep using integral
transforms [Barbot et al., 2008a]. The time-dependent fault
creep is modeled by integrating the constitutive laws with a
second-order accurate Runge-Kutta method with adaptive
time steps. Details of our modeling approach and example
calculations are discussed in Appendix B.
[26] We evaluate the velocity-strengthening parameters

using our coseismic slip model as the initial condition
driving the afterslip sequence. Guided by results of kine-
matic inversions (Figure 4), we assume that areas of high
coseismic slip are velocity weakening and do not participate
in postseismic creep. We also assume that areas on the
periphery of high-slip asperities are predominantly velocity
strengthening. Because seismic slip may have propagated
into a transition between the velocity-weakening and
velocity-strengthening areas, we include this zone in our
model by limiting the coseismic slip distribution to areas
where coseismic slip was greater than 0.2 m (about 30% of
maximum coseismic slip). We compensate the reduction in
geodetic moment by rescaling the amplitude of the coseis-
mic slip model. The result is a more compact slip distribu-
tion where the two main coseismic slip patches are
separated by a RS patch that did not slip during the 2004
earthquake. The coseismic slip model is shown in Figure 4
by the contours. The rest of the fault is allowed to partic-
ipate in afterslip driven by the coseismic stress changes. We
do not constrain the rake of afterslip. The slip direction is
dictated by the instantaneous stress field (and may in
general have a dip-slip component).
[27] We compute displacements resulting from time-

dependent creep on a fault plane at the location of the
14 GPS stations. To evaluate how well the generalized rate-
strengthening model is able to explain the GPS data, we
perform a grid search to find the coefficient as that best
explains the postseismic time series. In each numerical
solution, we fit the GPS signals to find the reference strain
rate _s0 that gives rise to the largest misfit reduction at all
stations.
[28] Figure 9 shows snapshots of the simulated RS creep

evolution on the fault plane. Afterslip takes place in the
middle of the two patches of high coseismic slip and
propagates preferentially toward the free surface. At later
times our model predicts more shallow afterslip than is
actually deduced in kinematic inversions. We suggest that
this difference may result from the assumption of uniform
frictional parameters on the fault plane. A higher value of _s0
near the surface would delay the occurrence of shallow
afterslip. Investigations of the depth dependence of frictional
properties is beyond the scope of the study. Figure 10 shows
the GPS displacements and our best fitting model. For each
forward model associated with a value of as, one parameter,

_s0, controlling the timescale of deformation, is optimized
through a grid search. Amplitude of displacements at each
station is determined from the elastic Green function.
Stations CARH and MIDA, in the very near field, are the
only GPS stations showing a large misfit. This misfit may
be due to our assumption of afterslip occurring on a
geometrically simple fault plane. At the rest of the stations,
our model predicts the correct sense of horizontal displace-
ments, and most forward models are within the uncertainties
of GPS measurements (95% confidence interval). Despite
the approximations introduced in the initial condition, the
forward model results in more than 70% variance reduction.
[29] We computed a series of solutions for different

values of as ranging from 0.2 MPa to 1.4 MPa, assuming
a shear modulus of G = 30 GPa, and inverted GPS data for
the reference slip rate _s0. Variables _s0 and a in our
formulation correspond to the parameter V0 and the steady
state friction parameter (a � b), respectively, in spring-slider
analogs of rate- and state-dependent friction [e.g., Dieterich,
1994; Marone et al., 1991; Marone, 1998; Perfettini and
Avouac, 2007]. Figure 11 shows the misfit and inferred
velocity V0 as a function of the velocity-strengthening
parameter (a � b), assuming an effective normal stress
s = 100 MPa. We evaluated the misfit between data and
model during the first year of deformation (dashed profiles)
and the entire 3 years of data. Variance reduction is slightly
better for the shorter interval, but in general is quite
consistent. For both periods, we obtain the best fit for
(a � b) = 7 � 10�3 and _s0 = 20 mm/a. Smaller values of
(a� b) give rise to a higher misfit, but the variance reduction
remains sufficiently low for higher values of (a � b). Our
finite size source modeling essentially provides a lower
bound on the frictional parameter (a � b).
[30] Inferences of RS parameter (a � b) in our full 3-D

calculation are not biased by a particular choice of the shear
modulus in the homogeneous elastic half-space. Some bias
in estimating steady state friction parameters may arise due
to the presence of a compliant fault zone [Fialko et al.,
2002; Fialko, 2004b; Hamiel and Fialko, 2007; Barbot et
al., 2008a, 2009]. As we model the Parkfield coseismic
rupture and the subsequent creep using the same value for
the rigidity, corresponding to the compliant zone, this
potential bias is limited. Another bias may come from using
daily GPS solutions to derive the coseismic model, which
might map some early afterslip into the coseismic model.
We ignore the evolution of the state parameter. For this
reason, we expect our forward models to be less accurate in
the first few days following the rupture and to capture
accurately the longer timescale deformation. Parameters
inferred from 3-D calculations are consistent with our
impulse response estimates in section 4, and our preferred
value of (a � b) = 7 � 10�3, corresponding to the largest
misfit reduction, is at the high end of inferences from
laboratory experiments [Marone, 1998].

6. Discussion

[31] The 2004 Mw 6.0 Parkfield earthquake triggered a
transient deformation that was responsible for larger cumu-
lative surface displacements compared to those from the
main event. Velocities that are higher than the interseismic
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ones are still observed at near-field GPS stations 3 years
after the event. Our inversions of the continuous GPS
postseismic time series reveal that afterslip occurred con-
spicuously between two areas of high coseismic slip at
depth of about 5 km, in the middle of the seismogenic zone.
Numerous aftershocks following the earthquake are located
mostly in areas that participated in seismic slip, and not in
areas that hosted postseismic creep. We conclude that the
post-Parkfield transient deformation is due to aseismic slip
that relaxed the stress increase caused by the main shock.
Furthermore, observations of microseismicity and after-
shocks of previous Parkfield earthquakes have shown that
earthquakes occur repeatedly on the same asperities, sug-
gestive of variations in effective frictional properties on the
fault plane [Waldhauser et al., 2004]. Our time series
analysis and finite source modeling of the GPS data indicate

that afterslip occurred on a periphery of patches of high
seismic slip, and is likely governed by a rate-strengthening
friction law.
[32] Results of our modeling bear on the extrapolation of

laboratory measurements to natural faults. Our inferred
value of the steady rate-strengthening frictional parameter
is of order of (a � b) = 7 � 10�3. Typical laboratory
measurements at temperatures representative of the seismo-
genic zone suggest values of the friction rate parameter in
the range from 0 to 0.006, depending on the cumulative
shear displacement experienced by the samples [Marone,
1998; Scholz, 2002]. Morrow and Lockner [2001] found the
velocity dependence of friction (a � b) = 0.005–0.007 for
samples of the Hayward fault for a variety of rocks in
effective pressure conditions simulating depths of burial up
to 12 km. Experiments with clay minerals in pressure

Figure 9. Numerical simulation of afterslip with rate-strengthening (RS) friction. The simplified
coseismic model (t = 0 plot) is the initial condition for the postseismic fault creep. Time evolution of
afterslip is described by the generalized RS friction law of equation (11). Afterslip is not allowed to occur
in areas that slipped coseismically and propagates on the fault plane away from the coseismic patch. The
corresponding time series of surface displacements are shown in Figure 10. Snapshots are separated by
20 time steps. The numerical method is described in Appendix B.
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conditions relevant to the top 15 km revealed a rate-
strengthening friction with parameter a � b = 0.007
[Morrow et al., 1992]. Experiments on thick gouge layers
sheared between rough surfaces at high normal stress
[Marone et al., 1990] predict higher friction rate parame-
ters, and seem to be most consistent with our inferences of
(a � b) on a mature fault such as the San Andreas fault in
the Parkfield area.
[33] Johnson et al. [2006] modeled the afterslip evolution

following the 2004 Parkfield event using a full rate- and

state-dependent friction formulation. In their approach after-
slip is controlled by the preearthquake stress level on the
fault, the stress change due to the earthquake and frictional
properties on the fault (a, b, critical slip distance Dc and V0),
some of which are allowed to vary laterally and with depth.
They invert for a range of parameters that reproduces the
GPS 9 month time series. They find a rate-strengthening
coefficient of (a � b) = 10�4 � 10�3, an order magnitude
lower than values inferred from laboratory experiments. In
our study, we use longer (3 years) time series and constrain

Figure 10. Postseismic GPS data (solid line), two-sigma uncertainties (gray shade), and best forward
model (dashed lines) corresponding to the generalized rate-strengthening friction law for all the
continuous GPS stations. Model prediction generally agrees with the data with the exception of station
CARH and MIDA, in the very near field, which are affected by a fault migration.
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the fault frictional properties with (1) time series analysis
and (2) a pure rate-strengthening model with lateral varia-
tions in frictional properties. Our kinematic inversions of
afterslip show that much of postseismic slip occurs on a
patch between seismic asperities so we model a fault with
uniform frictional properties that we attribute to this slipping
patch. Our best afterslip model explains 70% of the 3 year
GPS signal and produces fit to the data that is comparable
to that of Johnson et al. [2006] (see Figure 11) over the first
9 months. A reasonably good performance of our simpler
model compared to the approach of Johnson et al. [2006]
can be explained by the fact that most of afterslip occurs in a
limited area and samples the frictional properties of the fault
at this location.
[34] The aftershock sequence following the 2004 Park-

field earthquake has a cumulative moment much lower than
the geodetic moment due to postseismic creep. The equiv-
alent geodetic moment for afterslip, assuming a shear
modulus of G = 30 GPa, exceeds 3.23 � 1018 N (Mw 6.3)
3 years after the earthquake whereas aftershocks account for
a moment of 5.96 � 1016 N (Mw 5.15) in the same period.
The higher moment of afterslip compared to cumulative
moment of aftershocks disfavors the assumption that
postseismic creep is driven by the occurrence of after-
shocks [Savage and Yu, 2007]. The depth distribution of
aftershocks is trimodal, as shown in Figure 12c (also, see
Figure 4). Most earthquakes occur between 3 and 9 km
depth, with cumulative magnitude of Mw 4.26. The rest of
the moment release is due to three large aftershocks that
occurred at greater depth (>10 km). The moment release due
to shallow (depth <10 km) aftershocks is found to be
strongly correlated with aseismic slip. Figure 12a shows
the cumulative moment of aftershocks occurring above
9 km depth and the equivalent geodetic moment of creep

estimated from our finite source modeling and the geodetic
inversions. The geodetic moment corresponding to our best
forward model is represented with the black solid line,
assuming a shear modulus of G = 30 GPa. The geodetic
moment inferred from afterslip kinematic inversions is
plotted as circles. Finally, cumulative aftershock moment
is shown by the dashed line. We did not remove a seismic
moment rate corresponding to background seismicity from
the cumulative aftershock moment. The moment of seis-
mic noise in interseismic times is immediately overshadowed
by the occurrence of larger magnitude aftershocks. Correla-
tion between creep and seismicity seems to start 4 days
(10�2 year) after the main shock. However, precise evalu-
ation of the kinetics of early creep in our model is limited by
our assumption of a pure rate-strengthening friction. In a
rate- and state-dependent friction model, the state variable
accounts for the effect of fault contact aging on the effective
friction. For the same stress initial condition, the initial
velocity is reduced compared to a pure rate-strengthening
model. As a result, the onset of excitation of aftershocks
by creep could happen earlier than our model predicts.
Figure 12b illustrates the relationship between the cumu-
lative aftershock moment and estimates of the equivalent
geodetic moment for the aseismic slip based on geodetic
inversions and finite source forward modeling. As creep
accounts for a moment release that is 2 orders of magnitude
greater than that due to aftershocks, data suggest that stress-
ing from aseismic slip in velocity-strengthening areas gov-
erns the seismicity rates in neighboring velocity-weakening
areas.
[35] Similar inferences were made in previous studies of

postseismic deformation in other locations, including the
1992 Landers, California [Perfettini and Avouac, 2007] and
the 2005 Nias-Simeulue, Sumatra [Hsu et al., 2006] earth-

Figure 11. Constraint on frictional parameters V0 and (a � b). The velocity best reducing the data for
the 13 selected stations (CARH is removed) is inverted using only 1 year of data (dashed profiles) and
3 years of data (solid lines). Results are shown for a series of (a � b) models, assuming an effective
normal stress of s = 100 MPa.
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quakes. Savage and Yu [2007] also showed that the rate of
aftershocks and surface velocities were linearly related
during the first year of the postseismic transient. At Park-
field, aftershocks and afterslip occur principally at depth of
about 5 km, in areas well resolved by the GPS network. The
aftershocks hypocenters do not overlap with inferred areas
of postseismic creep. An integrated view on seismic and
aseismic transients following the Parkfield earthquake
(Figure 4) suggests the presence of along-strike variations
in frictional properties of the fault in the middle of the
seismogenic zone. Such variations are likely due to prox-
imity of the Parkfield segment of the San Andreas fault to
the creeping section and might be rare in other locations,
where the transition from velocity-weakening to velocity-
strengthening behavior occurs primarily as a function of
depth.

7. Conclusions

[36] We investigated the coseismic and postseismic
deformation due to the Mw 6.0 2004 Parkfield, California,
earthquake. We used daily position time series from the
SCIGN network to derive our coseismic slip model. Inferred
strike-slip distribution exhibits two areas of high slip,
consistent with results of previous investigations. We find
a geodetic coseismic moment of Mw 6.16, somewhat higher
than the seismic moment of Mw 6.0. We next inverted the
horizontal components of the postseismic time series for
evolution of afterslip. Most of the postseismic data can be

explained by right-lateral afterslip on the fault plane that
ruptured coseismically. After 2 years, the cumulative post-
seismic geodetic moment reaches an equivalent magnitude
Mw 6.35, higher than our coseismic geodetic estimate of
Mw 6.16. During the first year following the earthquake,
afterslip is confined to the upper half of the seismogenic
zone, occurring principally around 5 km depth, and between
two areas of large coseismic slip. There is no resolvable
overlap between coseismic slip and afterslip. The aftershock
sequence took place in areas devoid of afterslip, with most
of the earthquakes occurring in areas that ruptured coseismi-
cally. The seismicity in the top 10 km has a cumulative
moment about 2 orders of magnitude smaller than the
equivalent geodetic moment of afterslip. We conclude that
the postseismic transient is dominated by aseismic slip
driven by coseismic stress changes and we interpret the
occurrence of afterslip and aftershocks in separate locations
as being due to along-strike variations in effective frictional
properties.
[37] Modeling of GPS time series using solutions for

shear cracks suggests that afterslip is more likely localized
on discrete planes rather than distributed over finite width
plastic zones with power law rheology. A rate-strengthening
friction law generalized for small velocities [Rice et al.,
2001] can explain the surface displacements at all stages of
the postseismic period. A distinction between candidate
mechanisms has been possible due to availability of tem-
porally dense GPS solutions. Power law models were found
to provide an inferior fit to GPS time series. To investigate

Figure 12. Aftershocks driven by aseismic creep. (a) The equivalent seismic moment of our preferred
RS creep model (solid line) compares well with the equivalent seismic moment inferred from kinematic
inversions (circles). Aftershocks moment (dashed line) is 2 orders of magnitude lower and follows the
creep evolution closely after 10�2 year (4 days). (b) Linear correlation between the moment magnitudes
of aftershocks and RS creep from two independent estimates of creep moment using geodetic inversion
(circles) and forward modeling (crosses). The lines are a linear fit to the points. (c) Depth distribution of
aftershocks. Moments in Figures 12a and 12b use the aftershocks that occurred in the top 9 km (shaded
depths).
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the rate-strengthening creep hypothesis further, we devel-
oped a new semianalytic method to evaluate the time-
dependent deformation due to coseismic loading in an
viscoelastoplastic half-space. The method uses integral
transforms to compute the three-dimensional static defor-
mation. The time integration for a given constitutive law is
performed using a second-order accurate Runge-Kutta
method with adaptive time steps. We modeled the post-
seismic transient using the generalized rate-strengthening
friction law and our coseismic slip model as initial condi-
tion. The best fitting model can explain 72% of all GPS
data, except at station CARH in the very near field, which
suffered a velocity reversal due to migration of the creep
interface. Finite sourcemodeling of the creep evolution puts a
lower bound on the rate-strengthening frictional parameter,
as > 0.5 MPa, in agreement with inferences from the simple
crack approximation. The same rate-strengthening forward
model can explain both the time dependence of GPS data
and the spatiotemporal evolution of creep on the fault plane
inferred from kinematic inversions.
[38] Assuming an effective normal stress of s = 100 MPa,

appropriate for 5 km depth, we infer a steady state rate-
strengthening friction parameter of (a � b) = 7 � 10�3,
which is on a high end of values measured in laboratory
experiments [Scholz, 1990, 1998;Marone, 1998]. Our result
suggests that laboratory data corresponding to high normal
stresses and thick gauge layers are most consistent with our
in situ inferences of frictional properties of mature faults
such as the San Andreas fault near Parkfield. Our modeling
results indicate that areas that ruptured during the 2004
Parkfield event continued to experience seismicity in the
postseismic period. The occurrence of unstable sliding (stick-
slip behavior), suggests that the respective areas are charac-
terized by a negative frictional parameter (a� b). The strong
correlation between creep and aftershock moments, as well
as the spatial anticorrelation between creep and seismicity
suggest that creep is governing the rate and magnitude of
aftershocks in the top 10 km of the seismogenic zone. This
scenario of reloading of the velocity weakening surfaces by
afterslip on nearby velocity-strengthening patches is sug-
gestive of strong lateral variations in frictional properties
along the Parkfield segment of the San Andreas fault.
Velocity-strengthening areas represent an obstacle to the
propagation of the main rupture and are responsible for the
aseismic relaxation of coseismic stress by creep, thereafter
governing the rate of seismicity in velocity-weakening
areas. These results emphasize the effect of aseismic defor-
mation on the rate of aftershocks and the spatiotemporal
distribution of slip throughout the seismic cycle.

Appendix A: Impulse Response of a Point Source

[39] A finite area of localized shear with linear dimension
L embedded in a elastic medium W with shear modulus G
can be idealized with a time-space separable spring-slider
model with the effective spring constant per unit area

G* ¼ C G

L
ðA1Þ

where scalar C is a constant close to 1 that depends on the
geometry [Eshelby, 1957; Kanamori and Anderson, 1975;
Shearer, 1999; Fialko, 2007]. We treat this idealization as
‘‘point source’’ because it ignores details of displacements
within the slipped area and provides an accurate approx-
imation in the far field. The point source approximation also
assumes that stress resolved on the slip area is uniform.
[40] The inelastic response of a medium to coseismic

stress change is, in general, the solution for a constant total
strain _����� = 0 subjected to some initial conditions or, using
equations (B21) and (B22), in terms of stress

D : _sþ F :s ¼ 0 ðA2Þ

where D and F are the elastic compliance and fluidity
tensors, respectively, and s is the Cauchy stress. Projecting
equation (A2) in the constant strain direction R and using
the point source approximation, we develop the associated
governing ordinary differential equations for localized shear
bands with power law creep and afterslip with rate-
strengthening friction.

A1. Power Law Shear Bands

[41] In a simple shear zone model s(t) is the displacement
across the finite shear band which relaxes the stress t = G*s.
A schematic of the geometry is shown in Figure A1. The
rheology of fault creep is described by equation (6) where
the plastic strain rate can be approximated by _g = _s/T, where
T is the thickness of the shear zone (see Figure A1). In the
case of linear creep of equation (6) with n = 1, the evolution
of shear stress across the ductile zone is governed by the
differential equation

_t þ aA t ¼ 0 ðA3Þ

where a = CT/L is the aspect ratio of the ductile zone. The
solution is given by

t tð Þ ¼ t0 e�t=t0 ðA4Þ

Figure A1. Schematic of the point source approximation
for a localized shear band of thickness T and linear
dimension L. The cumulated displacement s across the
ductile zone relaxes the stress t = G*s.
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where t0 is the initial (coseismic) loading and the timescale

t0 ¼
1

aA
ðA5Þ

is independent of the initial stress condition and controlled
by the aspect ratio of the ductile zone and the effective
rheology of rocks within the shear zone. As stress is relaxed,
cumulative displacement across the ductile volume is

s tð Þ ¼ t0
G*

1� e�aAt
 �
ðA6Þ

Displacement in the elastic medium exhibits similar time
dependence, but amplitudes decay away from the shear
zone. Similarly, for nonlinear creep, the governing equation
for stress on the fault plane is

_t
G
þ aA

t
G

� �n
¼ 0 ðA7Þ

and the decay of shear stress is

t tð Þ ¼ t0 1þ aA n� 1ð Þ t0
G

� �n�1

t

� � �1ð Þ= n�1ð Þ
ðA8Þ

where the timescale of deformation t0 scales with the
reference strain rate A, the aspect ratio a and the initial
stress t0

t0 ¼
1

aA n� 1ð Þ
G

t0

� �n�1

ðA9Þ

Integrating equations (6) and (A8), we obtain the displace-
ment evolution across the ductile zone

s tð Þ ¼ t0
G*

1� 1þ t

t0

� � �1ð Þ= n�1ð Þ
" #

ðA10Þ

or, in terms of strain,

g tð Þ ¼ t0
aG

1� 1þ t

t0

� � �1ð Þ= n�1ð Þ
" #

ðA11Þ

A2. Rate-and-State Creep

[42] For the generalized rate-strengthening friction, with a
constitutive relationship represented by equation (11), the
scalar ordinary differential equation for stress is

_t
G*

þ 2 _s0 sinh
t
as

� �
¼ 0 ðA12Þ

where a and _s0 are the frictional parameters and scalar s is
the fault normal stress (compression is assumed positive).
The degree of nonlinearity in the transient sliding depends
upon the dimensionless ratio

k ¼ t0
as

ðA13Þ

and the resulting stress evolution on the slip patch is

t tð Þ ¼ t0
2

k
coth�1 exp 2_s0

G*

as
t

� �
coth

k

2

� �
ðA14Þ

Introducing the timescale

t0 ¼
as

2 _s0G*
ðA15Þ

we obtain the slip evolution

s tð Þ ¼ t0
G*

1� 2

k
coth�1 et=t0 coth

k

2

� �� �
ðA16Þ

The generalized friction model is highly nonlinear for k	 1,
but is quasi-linear for k � 1. We note that the timescale t0
depends upon the size of the slipping patch.
[43] Time series of postseismic deformation can be com-

pared to predictions of equation (A6), (A11), or (A16).
Inferred timescale t0 and degree of nonlinearity (n or k in
case of power law and generalized rate-strengthening fric-
tion, respectively) can be used to constrain initial effective
stress and frictional parameters.

Appendix B: Numerical Model of
Time-Dependent Creep on Finite Faults
in an Elastic Half-Space

[44] We present a novel approach to evaluate the three-
dimensional time-dependent deformation due to a localized
creep in an otherwise elastic half-space. The method is
based on a continuum representation of fault slip. In
particular, our treatment extends the usual double-couple
representation of static faults and derive an expression for
the equivalent body force rate that reproduces the required
slip velocity on the fault. In section B1, we introduce a
formulation for slip systems that describes static slip and
creeping dislocations. In section B2, we derive a continuum
formulation of the constitutive and governing equations that
describe afterslip of a fault plane and associated elastic
deformation in a half-space. In section B3, we present
details of our numerical implementation.

B1. Continuum Representation of Dislocations

[45] Faults can be viewed as dislocations that introduce
an irreversible displacement discontinuity in an otherwise
elastic domain. These dislocations cannot simply be treated
using Dirichlet boundary conditions on each side of the
interface because only the relative displacement between the
two sides are formally known, as opposed to the absolute
position of the particles that lie across the contact. Boundary
conditions might be sensibly prescribed in terms of strain
(Neumann-type boundary conditions), but a difficulty arises
because of the discontinuous nature of the interface.
[46] Consider semi-infinite solid W with a traction-free

surface @W. We use a Cartesian coordinate system where
position in a half-space is denoted by x = (x1, x2, x3) with x3
positive downward and x3 = 0 at the surface @W. We adopt
the infinitesimal strain approximation of linear elasticity. A
fault S is defined by a surface

n xð Þ ¼ 0 ðB1Þ
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The normal unit vector on S is the unit vector

n̂ ¼ @n

@x
ðB2Þ

Hereafter, we denote S+ one side on the fault and S� the
other, such as n = 0+ on S+ and n = 0� on S�. After some
slip occurred on the fault surface, the previously adjacent
points across S are separated by s, which is the Burgers’
vector associated with the dislocation. We define the plastic
displacement ui(n), where superscript i stands for irrever-
sible or inelastic, due to slip on the fault as follows:

ui 0þð Þ � ui 0�ð Þ ¼ s ðB3Þ

A schematic of the geometry is shown in Figure B1. The
gradient of the inelastic deformation is the tensor

rui ¼ @ui

@x
¼ n̂ � @ui

@n
ðB4Þ

Defining the gradient

@ui

@n
¼ d nð Þ s ðB5Þ

where d(x) is the Dirac delta function, and integrating, we
find a continuum description of plastic deformation that
satisfies condition of equation (B3). Decomposing the
gradient into the canonical symmetric and skew-symmetric
parts

rui ¼ �����i þWi ðB6Þ

respectively, we obtain the eigenstrain associated with the
dislocation

�����i xð Þ ¼ 1

2
n̂� sþ s� n̂ð Þ d n xð Þ½ � ðB7Þ

The delta function of equation (B7) is a continuous
representation of the fault discontinuity at n = 0 and also

prescribes the location of the dislocation in the medium.
Notice that no intrinsic fault thickness is associated with
eigenstrain. In particular, eigenstrain is not defined as the
ratio of some cumulative displacement over some small, yet
finite, distance. The use of generalized functions to describe
seismic sources has been discussed by Backus and Mulcahy
[1976].
[47] Before completing the continuum representation of a

dislocation, we consider a purely static deformation. We
decompose the total strain ����� in the semi-infinite solid into
elastic and inelastic parts

����� ¼ �����e þ �����i ðB8Þ

respectively, where the inelastic strain, only occurring on
the dislocation, is formally valid everywhere in the solid
due to the use of the Dirac delta function (equation (B7)).
(In most of the domain W, we have ����� = �����e.) Using
decomposition of equation (B8) the Cauchy stress becomes

s ¼ C : �����e ¼ C : ������ C : �����i ðB9Þ

where C is the fourth-order elastic moduli tensor in W and
operator : is the double scalar product. The distinction
between elastic and plastic strains in the stress-strain
relationship of equation (B9) makes apparent the moment
density of the dislocations

m xð Þ ¼ C : �����i xð Þ ðB10Þ

Whereas the moment density of dislocations can be
obtained by other means [e.g., Aki and Richards, 1980;
Shearer, 1999], our formulation is advantageous because it
includes the location, size and magnitude of the disloca-
tions. Furthermore, using the Cauchy stress definition of
equation (B9) and conservation of momentumr � s = 0, we
find the inhomogeneous Navier’s equation

r � C : �����ð Þ þ f ¼ 0 ðB11Þ

where ����� is unknown and the body force density term is

f xð Þ ¼ �r � C : �����i xð Þ

 �

ðB12Þ

As in the case of the moment density, the equivalent body
forces for dislocations can be obtained using different
approaches [e.g., Eshelby, 1957; Burridge and Knopoff,
1964]. Note that expression (B12) contains information
about the double couple representation of dislocations as
well as their location and size in the half-space. For
example, the elastic potential energy of the dislocation is
simply

E ¼
Z
W
s : �����i xð Þ dV ¼

Z
S

s : s� n̂ dA ðB13Þ

which comes from the continuum representation of eigen-
strain of equation (B7), the symmetry of the stress tensor
and the definition of the Dirac delta function. The solution

Figure B1. A buried circular slip patch embedded in semi-
infinite solid W with free surface @W at x3 = 0. Slipping
surface is defined by n(x) = 0. Burgers’ vector of dislocation
is s = ui(0+) � ui(0�).
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displacement inW due to static slip described by equations (B7)
and (B12) is

u xð Þ ¼
Z
W
G x; x0ð Þ � f x0ð Þ dV

¼
Z
S

rG : C : s� n̂ dA

ðB14Þ

where G is the elastic Green function tensor, and last term is
obtained by integration by part and using the definition of
the Dirac delta function.
[48] The continuum representation of static dislocations

in terms of eigenstrain accurately captures the discontinuous
nature of displacement fields due to fault slip. The eigen-
strain is a forcing term in the strain domain which should
not be confused with the elastic strain in the near field of the
dislocation. Using the tensor inner product hA, Bi =ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A : B

p
and assuming purely tangential fault slip (no

opening or interpenetration), one can write [e.g., Nemat-
Nasser, 2004]

�����i xð Þ ¼ g xð ÞR ðB15Þ

where R is a unitary, symmetric, and deviatoric, second-
order tensor and g, the norm of �����i(x), is the total slip across
the dislocation. In particular, noting s = sŝ, one has

g xð Þ ¼ s d n xð Þ½ � ðB16Þ

The eigenstrain describes the slip on a fault patch. This
definition can be readily extended to represent slip
velocities across the dislocation. To do so, we define the
eigenstrain rate

_�����i xð Þ ¼ _g xð ÞR ðB17Þ

As shown for the case of static dislocations, the plastic
deformation rate _g = _s nominally applies to the fault
interface only but is formally valid in the entire domain W
by use of the Dirac delta function. We use this continuum
representation to formulate the constitutive equations in the
solid and at the contact interface in a uniform, consistent
manner. Various degrees of strain localization on a fault can
be readily modeled using Dirac’s delta, boxcar, Gaussian,
etc., functions.

B2. Body Force Representation of Fault Creep

[49] In a general case, a static dislocation with slip vector
s along a surface of normal n̂(x) is associated with the
eigenstrain

�����i ¼ 1

2
s� n̂þ n̂� sð Þ ðB18Þ

and, in a linear elastic medium W with elastic tensor C, with
the moment density m = C:�����i. The equivalent body force
(formally a body force density) for such a dislocation is
[e.g., Eshelby, 1957; Burridge and Knopoff, 1964; Nemat-
Nasser, 2004]

f xð Þ ¼ �r � C : s� n̂ð Þ ðB19Þ

and the resulting displacement u in the elastic half-space is
obtained with application of the elastic Green function
[Love, 1927; Nemat-Nasser and Hori, 1999]

u xð Þ ¼
Z
W
G x; x0ð Þ � f x0ð Þ dx0 ðB20Þ

[50] In an viscoelastoplastic material, with elastic com-
pliance tensor D and fluidity tensor F(x), the elastic strain
rate tensor is

_�����e ¼ D : _s ðB21Þ

and the irreversible plastic strain rate occurring on the fault
is

_�����i ¼ F : s ðB22Þ

where s = C : �����e is the Cauchy stress [Malvern, 1969], and
the amplitude of F is stress- and space-dependent. Note that
the fluidity tensor F has a nonvanishing value only on the
fault surface, even though it can be defined everywhere in W
by use of generalized functions. The total strain rate is the
sum of elastic and inelastic contributions

_����� ¼ _�����e þ _�����i ðB23Þ

Assuming infinitesimal strain, combining equations (B21),
(B22), and (B23) and integrating, we obtain

s tð Þ ¼ C :����� tð Þ �
Z t

0

C : _�����i sð Þ ds ðB24Þ

where the integrand

_m x; tð Þ ¼ C : _�����i x; tð Þ ðB25Þ

is the internal torque density applied in the solid to
gradually relax stress. The total strain ����� can simply be
evaluated from the state of current deformation

����� tð Þ ¼ 1

2
r� uþ r� uð ÞT
h i

ðB26Þ

We derive the solution velocities from the integration of
forcing terms

_f xð Þ ¼ �r � C : _�����i

 �

ðB27Þ

using the elastic Green function

_u xð Þ ¼
Z
W
G x; x0ð Þ � _f x0ð Þ dx0 ðB28Þ

We compute the time-dependent deformation by integrating
simultaneously equations (B24) and (B28).
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[51] The inelastic strain rate tensor _�����i is usually decom-
posed into a direction R and a scalar strain rate _g [Nemat-
Nasser, 2004]

_�����i ¼ F :s ¼ _gR ðB29Þ

While the decomposition (B29) is general, in the case of the
extreme localization of a discontinuous fault interface the
eigenstrain rate _g corresponds to the slip rate on the fault
_g = _s. The strain direction R for strike-slip and dip-slip
faults is a deviatoric, symmetric and unitary second-order
tensor that describes the geometry of the slip system. The
traction t(x) resolved on a fault surface can be decomposed
into normal and shear components,

t ¼ s � n̂ ¼ t � n̂ð Þ n̂þ t ðB30Þ

Noting s = sŝ, we assume that the slip rate vector is collinear
with the direction of shear traction evaluated on the fault
patch,

_s ¼ _s t̂ ðB31Þ

Extending the static case of equation (B18) to time-
dependent slip, the plastic strain rate direction becomes

R ¼ 1

2
t̂ � n̂þ n̂� t̂ð Þ ðB32Þ

and the corresponding equivalent body force rate, from
equations (B27), (B29), and (B31), simplifies to

_f xð Þ ¼ �r � _gC :Rð Þ ðB33Þ

[52] A dislocation slips only when a yield condition
g(s) = 0 is satisfied, such that

_g ¼
0; if g sð Þ < 0

f s; g; tð Þ; if g sð Þ ¼ 0

8<
: ðB34Þ

where in general the formulation _g = f(s, g, t) allows for a
direct effect, some work hardening and a possible healing.
We use the Coulomb yield surface given by equation (2).
Coseismic static displacements u(x, t = 0) and stress change
s(x, t = 0) define a set of initial conditions that govern the
subsequent inelastic deformation. Constitutive relationships
for plastic flow or generalized rate-strengthening friction,
equations (6) and (11), respectively, complete the descrip-
tion of our model.

B3. Numerical Implementation

[53] We extend the approach of Barbot et al. [2008a] to
three-dimensional deformation, and use integral transforms
to evaluate the elastic response of a half-space, i.e., to solve
equations (B20) and (B28) numerically. We perform the
convolution between the equivalent body forces and the
elastic Green function in the Fourier domain, taking advan-
tage of the convolution theorem and the fast Fourier
transform. The method is computationally efficient: the
evaluation of the instantaneous velocity field in a 5123

node grid with uniform sampling is obtained in a few
seconds on a parallel computer with shared memory archi-
tecture. One possible drawback of Fourier methods is the
periodicity of the numerical solution. We mitigate undesir-
able effects of periodic boundary conditions using suffi-
ciently large computational grids. We taper the fault
segments to reduce aliasing and temper stress singularities
[Barbot et al., 2008a]. Our approach allows one to compute
deformation due to the presence of buried faults of arbitrary
orientation.
[54] We benchmarked our numerical code against the

analytic solution of Okada [1992] for strike-slip and dip-
slip faults. Figure B2 shows the relative error between
analytic and numerical solutions at the location of the
GPS stations at Parkfield, for our inferred coseismic model.
Numerical error is usually smaller than 5%, and exceeds
10% in the far field where absolute displacements are
vanishingly small and at the precise location of the fault
where the displacement discontinuity is represented by a
continuous field. We also compared our solution to another
numerical approach. Figure B2 shows the relative error
introduced by the numerical Green function of Wang et
al. [2003] for a spatial sampling of D = 0.5 km and D =
0.2 km. As one can see from Figure B2, our model, with a
uniform sampling of D = 0.25 km performs well compared
to the method of Wang et al. [2003].
[55] We evaluate the integrals in equations (B28) and

(B24) using a second-order accurate Runge-Kutta scheme
with adaptive time steps [Abramowitz and Stegun, 1972].
From the instantaneous effective linear viscosity,

h tð Þ ¼ t
_g

ðB35Þ

we determine the characteristic relaxation timescale

tm ¼ h
G

ðB36Þ

where G is the shear modulus. We use a fraction of tm, also
referred to as the Maxwell relaxation time, for time
increments. Finally, we estimate the spatial gradients in
equation (B26) using a finite impulse response differentiator
filter [McClellan et al., 1973]. Filters are much better
estimates of localized deformation than simple finite
difference schemes because the latter smooth the derivative
estimates near discontinuities such as slip on a fault.
[56] Figure B3 shows a benchmark of our approach for a

simple geometry. We place a small slip patch in a coseismic
stress field with a choice of parameters constrained to
satisfy t0 = 1 year in equations (A5) and (A9). We compare
the time series of surface displacement at an arbitrary
location at the surface of the half-space to the impulse
response of linear and nonlinear rheologies (Figure B3b).
Our adaptive time steps are apparent for the nonlinear
power law creep, with shorter time increments at early time
of deformation and longer ones at later times, when most
stress has already been relaxed. The numerical solution is
very well fit by the expected impulse response of linear or
nonlinear rheologies and the theoretical timescale of defor-
mation is recovered within a 5% error. We conclude that our
modeling approach and its numerical implementation are
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sufficiently robust for modeling stress-driven afterslip with
linear as well as nonlinear rheologies.

Appendix C: Interseismic Slip Rates for a Slip
Patch

[57] The response of a rate-strengthening (RS) friction
patch to a constant interseismic strain rate obeys

_�����e þ _�����i ¼ _GR ðC1Þ

where _�����e and _�����i are the elastic and inelastic strain rates,
respectively, and _G and R are the amplitude and direction,

respectively, of the interseismic strain rate evaluated on the
fault patch. After the initial period of transient deformation,
the steady state response is inelastic only ( _�����e = 0) and the
rate of strain release due to the RS friction patch equals to
the strain rate imposed by interseismic loading

_g ¼ _G ðC2Þ

The strain rate of the slipping patch, _g, is given by

_g ¼ _s

C L
ðC3Þ

Figure B2. Relative error of numerical models compared to the analytic solution of Okada [1992] for
the Parkfield coseismic slip model. The displacement vector at the location of the 14 GPS stations is
estimated numerically with the method of Wang et al. [2003] (triangles) and with the one developed in
this study (circles). The percentage error is plotted as a function of the expected analytical solution for the
three components of displacement. The red triangles correspond to a denser sampling of the Wang et al.
[2003] Green function, which reduces the numerical error.

B07405 BARBOT ET AL.: PARKFIELD POSTSEISMIC DEFORMATION

23 of 26

B07405



where C is a dimensionless parameter depending upon the
geometry of the patch and L is the linear dimension of the
patch. The RS friction parameter _s0 is equivalent to
parameter V0 of classic rate-and-state friction for large
velocity, but does not represent the ‘‘interseismic’’ velocity.
Friction parameter _s0 controls the timescale of deformation
transients and the effective ‘‘viscosity’’ of the shear zone
(see equations (B35) and (B36)).
[58] In case of strike-slip faults, interseismic deformation

may be idealized by slip below the seismogenic zone at
rates corresponding to the long-term (averaged over multi-
ple earthquake cycles) plate motion [Savage, 1990]. The
velocity field for a long vertical strike-slip fault locked from
the surface to the depth H is

_u1 ¼
v

2p
tan�1 x2

H � x3
þ tan�1 x2

H þ x3

� �
ðC4Þ

where _u1(x2, x3) is the along-strike velocity, x2 is the across-
fault distance, x3 is depth and v is the long-term slip rate.
Consider a creeping patch in the locked zone at depth x3 <
H. The strain rate imposed on the creeping patch by
interseismic loading is

_G ¼ v

2p
H

H2 � x23
ðC5Þ

Assuming a circular patch of radius L, the creep rate is
[Eshelby, 1957]

_s ¼ _G
16

7p
L ðC6Þ

In the case of a fault slipping at the rate of 33 mm/a with a
locking depth of 15 km and a creeping circular patch of

radius L = 2 km buried at a depth of 5 km, the average creep
velocity is _u1 = 1.1 mm/a.
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