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SUMMARY

We consider deformation due to sill-like magma intrusions using a model of a horizontal
circular crack in a semi-infinite elastic solid. We present exact expressions for vertical
and horizontal displacements of the free surface of a half-space, and calculate surface
displacements for a special case of a uniformly pressurized crack. We derive expressions
for other observable geophysical parameters, such as the volume of a surface uplift/
subsidence, and the corresponding volume change due to fluid injection/withdrawal at
depth. We demonstrate that for essentially oblate (i.e. sill-like) source geometries the
volume change at the source always equals the volume of the displaced material at the
surface of a half-space. Our solutions compare favourably to a number of previously
published approximate models. Surface deformation due to a ‘point’ crack (that is, a
crack with a large depth-to-radius ratio) differs appreciably from that due to an
isotropic point source (‘Mogi model’). Geodetic inversions that employ only one
component of deformation (either vertical or horizontal) are unlikely to resolve the
overall geometry of subsurface deformation sources even in a simplest case of
axisymmetric deformation. Measurements of a complete vector displacement field at the
Earth’s surface may help to constrain the depth and morphology of active magma
reservoirs. However, our results indicate that differences in surface displacements due to
various axisymmetric sources may be subtle. In particular, the sill-like and pluton-like
magma chambers may give rise to differences in the ratio of maximum horizontal
displacements to maximum vertical displacements (a parameter that is most indicative
of the source geometry) that are less than 30 per cent. Given measurement errors in
geodetic data, such differences may be hard to distinguish.
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1 I N T R O D U C T I O N

Geodetic observations in many neovolcanic areas reveal episodes

of uplift and subsidence of the Earth’s surface that have been

attributed to migration of magma or other geological fluids at

depth (e.g. Mogi 1958; Davis 1986; Savage et al. 1987; Dvorak

& Dzurisin 1997). Inferred ground deformations often exhibit a

nearly axisymmetric pattern (e.g. Savage et al. 1987; Bianchi

et al. 1987; Dzurisin & Yamashita 1987; Lanari et al. 1998).

These observations are commonly interpreted in terms of a

point pressure source at depth (‘Mogi model’). The Mogi

model physically represents a uniformly pressurized spherical

cavity in an elastic half-space (Mogi 1958; McTigue 1987). This

model gained much popularity in volcano geodesy because it

has a simple analytical solution for surface displacements, and

in many cases does a reasonably good job of explaining field

observations. However, recent advances in quality and quantity

of geodetic measurements (in particular, the advent of satellite-

based techniques such as the Global Positioning System and

Interferometric Synthetic Aperture Radar) motivate more

detailed studies of the morphology and dynamics of the inferred

deformation sources. Interpretations of geodetic data hinge

upon the availability of accurate and computationally efficient

models of geologically reasonable mechanisms of deformation.

In particular, realistic models of magma-induced deformation

are of great importance for forecasts of volcanic and seismic

hazards in regions of contemporaneous magmatic activity (e.g.

Gudmundsson 1986; Bianchi et al. 1987; Dvorak & Dzurisin

1997).
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During the last two decades, significant progress has been

made in the development of theoretical models of deformation

due to subsurface fluid reservoirs. Davis (1986) has generalized

the Mogi model to a case of an anisotropic point source. Yang

et al. (1988) have offered approximate solutions for a finite

uniformly pressurized prolate cavity in an elastic half-space.

These solutions have been successfully used to interpret ground

deformation due to a number of geological and man-made

processes (e.g. Wu & Wang 1988; Linde et al. 1993; Fialko &

Simons 2000). In this paper we consider a model of surface

deformation due to magma injection into (or withdrawal from)

a finite oblate cavity (i.e. a magma sill). In a companion paper

(Fialko et al. 2001) we apply this model to study magma-

induced deformation in areas of active crustal magma bodies in

Socorro, New Mexico, and Long Valley, California.

2 P R E V I O U S M O D E L L I N G W O R K

A number of elastic solutions have been proposed to describe

deformations associated with sill-like magma intrusions. The

two-dimensionality of sheet intrusions such as sills and dykes

allows one to treat them as fluid-pressurized cracks in an elastic

medium (e.g. Pollard & Segall 1987). This is because strains

induced by magma-driven fractures are of the order of the

intrusion aspect ratio (the ratio of a characteristic thickness

to a characteristic length), and therefore are small everywhere

except for in a limited region near the fracture tip (e.g. Khazan

& Fialko 1995). Therefore, it is reasonable to expect that the

bulk of the host rock behaves essentially elastically on a time-

scale of an intrusion event. Early models of deformation due to

magma fractures considered dilational fluid-filled cracks in an

infinite elastic solid (Anderson 1938; Pollard 1973). Pollard &

Holzhausen (1979) presented theoretical solutions for a 2-D

arbitrarily oriented slit in an elastic half-space and computed

corresponding stress intensity factors at the tips of the slit, and

displacements at the free surface of a half-space. Extension

of these results to 3-D geometries proved to be difficult. Sun

(1969) obtained approximate expressions for vertical displace-

ments of the free surface due to a horizontal circular crack by

superimposing a full-space solution and an auxiliary stress

function that exactly satisfies traction-free boundary conditions

at the surface of a half-space. However, such a superposition

modifies prescribed boundary conditions at the crack surface.

As shown in Section 4, this modification leads to significant

errors in predicted displacements at the half-space surface

when the crack radius becomes comparable to or exceeds

the crack depth. Similar problem arises if an intrusion with a

small depth-to-radius ratio is approximated by a dislocation

(e.g. Davis 1983). In this case, errors in surface displacements

result from unphysical boundary conditions at the intrusion

surface (a constant displacement instead of a more realistic con-

stant pressure). Also, dislocation models poorly resolve stresses

near the crack tip, which limits their use in modelling of the

crack growth. While stress and displacement fields due to cracks

in an elastic half-space may be computed using numerical tech-

niques (e.g. finite element or boundary element methods) given

some adequate discretization of a problem, analytic solutions

are warranted because of their accuracy and computational

efficiency (the latter especially matters for inverse problems

that require the generation of many forward models). Dieterich

& Decker (1975) used a finite element model to compute ground

surface displacements for a variety of axisymmetric magma

chamber shapes, including two sill-like geometries. As we shall

demonstrate below, their results significantly overpredict the

spatial extent of deformation, and somewhat underpredict hori-

zontal displacements due to sills. Our model will be useful for

benchmarking and calibration of 3-D numerical codes that are

capable of handling complex loading geometries.

A simple 3-D model of a sill intrusion is a horizontal

penny-shaped crack in a semi-infinite elastic body (Fig. 1). An

axisymmetric elastic problem for a penny-shaped crack in a half-

space has been considered in engineering mechanics (Kuzmin

& Uflyand 1965; Srivastava & Singh 1969), but for a limited

range of crack depth-to-radius ratios, and many aspects of the

problem that are of geophysical interest (e.g. deformations at

the surface of a half-space) have not been addressed. We use an

approach developed by Guterman et al. (1996) to derive exact

solutions for displacements of the free surface of a half-space

due to an arbitrarily loaded axisymmetric crack, and numerically

evaluate our solutions for an important special case of a uni-

formly pressurized crack. We also present expressions for the

volume of a surface uplift/subsidence, and a corresponding

volume change at depth due to magma injection/withdrawal at

the source. Section 3 gives mathematical details of our solution.

Readers who are not interested in these details may proceed to

Section 4, which presents the results of our modelling.

3 S O L U T I O N S F O R S T R E S S E S A N D
D I S P L A C E M E N T S D U E T O A
P R E S S U R I Z E D H O R I Z O N T A L
C I R C U L A R C R A C K I N A N E L A S T I C
H A L F - S P A C E

Consider a horizontal penny-shaped crack with radius R and

depth H in an elastic half-space (Fig. 1). The vertical axis

in Fig. 1 is the axis of symmetry (positive downwards), with

an origin at the crack centre. The surface of the half-space is

assumed to be stress-free. The crack plane divides the half-

space into two domains, as shown in Fig. 1. We anticipate self-

similar solutions for stresses s(i)
jk ( j=r, z and k=r, z, where

r and z are spatial coordinates, and the index in parentheses

corresponds to the upper and lower domains of a half-space,

i=1, 2, see Fig. 1) and displacements U (i)
j that depend on the

ratio of the crack depth H to the crack radius R, h=H/R.

Accordingly, we normalize all variables having dimensionality of

length with respect to the crack radius R, and all variables having

dimensionality of pressure or stress with respect to the shear

modulus of the elastic half-space m. Thus, all variables below

are non-dimensional, unless noted otherwise. The boundary

conditions for the problem shown in Fig. 1 are as follows:

Figure 1. Schematic view of a horizontal circular crack in a

semi-infinite elastic body.
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for z=xh (at the free surface),

pð1Þzz ¼ pð1Þrz ¼ 0 for 0ƒr <? ; (1)

for z=0 (in the crack plane),

pð1Þzz ¼ pð2Þzz ¼ ÿ*pðrÞ ,

pð1Þrz ¼ pð2Þrz ¼ qðrÞ for 0ƒr < 1 , (2)

U ð1Þz ¼ U ð2Þz , U ð1Þr ¼ U ð2Þr for 1ƒr <? : (3)

In eq. (2), Dp(r) is the difference between the magma pressure

and the lithostatic pressure, t(r) is the shear stress at the crack

walls, and we assume that the top and bottom crack faces

have the same stress distribution. Compressive stresses are

taken to be negative and tensile stresses are positive. In the case

of an axial symmetry, solutions to the governing equations of

the theory of elasticity may be expressed through two harmonic

Papkovich–Neuber functions, P(i) and N(i), such that (e.g.

Whittaker & Watson 1963)

2U ðiÞz ¼ ð3ÿ 4lÞPðiÞ ÿ LNðiÞ

Lz
ÿ z

LPðiÞ

Lz
, (4)

2U ðiÞr ¼ ÿ
LNðiÞ

Lr
ÿ z

LPðiÞ

Lr
, (5)

pðiÞzz ¼ ÿ
L2NðiÞ

Lz2
þ 2ð1ÿ lÞ LPðiÞ

Lz
ÿ z

L2PðiÞ

Lz2
, (6)

pðiÞrz ¼ ÿ
L2NðiÞ

LrLz
þ ð1ÿ 2lÞ LPðiÞ

Lr
ÿ z

L2PðiÞ

LrLz
, (7)

where n is Poisson’s ratio. We wish to find functions P(i) and N(i)

that satisfy eqs (4)–(7) and boundary conditions (1)–(3). We use

a chain of integral transformations to reduce this problem to a

system of integral Fredholm equations of the second kind that

can be solved numerically (Kuzmin & Uflyand 1965; Srivastava

& Singh 1969; Guterman et al. 1996). Harmonic functions P(i)

and N(i) admit the following integral representation:

Pð1Þ ¼
ð?

0

h
Ach

�
mðzþ hÞ

�
þ Bsh

�
mðzþ hÞ

�i
J0ðmrÞ dm

shðmhÞ , (8)

Nð1Þ ¼
ð?

0

h
Cch

�
mðzþ hÞ

�
þDsh

�
mðzþ hÞ

�i
J0ðmrÞ dm

shðmhÞ , (9)

Pð2Þ ¼
ð?

0

EeÿmzJ0ðmrÞdm , (10)

Nð2Þ ¼ ÿ
ð?

0

FeÿmzJ0ðmrÞ dm
m

, (11)

where sh(x)= (exx exx)/2 is the hyperbolic sine, ch(x)=
(ex+exx)/2 is the hyperbolic cosine, J0 is the Bessel function

of the first kind and zero order, and A, B, C, D, E and F

are arbitrary functions of j (representations for P(2) and N(2)

are chosen such that the latter vanish at zp?). It may

be verified by direct substitution that expressions (8)–(11)

satisfy the Laplace equation in cylindrical coordinates. Putting

expressions (8)–(11) into equilibrium eqs (4)–(7) and making

use of boundary conditions (1) to eliminate two unknowns C

and D, we obtain

2U ð1Þz ¼
ð?

0

h�
ð1ÿ 2lÞBÿ mðzþ hÞA

�
sh
�
mðzþ hÞ

�
þ
�

2ð1ÿ lÞAÿ mðzþ hÞB
�
ch
�
mðzþ hÞ

�i
J0ðmrÞ dm

shðmhÞ ,

(12)

2U ð1Þr ¼
ð?

0

h�
ð1ÿ 2lÞAþ mðzþ hÞB

�
sh
�
mðzþ hÞ

�
þ
�

2ð1ÿ lÞBþmðzþ hÞA
�
ch
�
mðzþ hÞ

�i
J1ðmrÞ dm

shðmhÞ ,

(13)

pð1Þzz ¼
ð?

0

h�
Aÿ mðzþ hÞB

�
sh
�
mðzþ hÞ

�
ÿ mðzþ hÞAch

�
mðzþ hÞ

�i
J0ðmrÞ mdm

shðmhÞ , (14)

pð1Þrz ¼
ð?

0

h�
mðzþ hÞAþ B

�
sh
�
mðzþ hÞ

�
þ mðzþ hÞBch

�
mðzþ hÞ

�i
J1ðmrÞ mdm

shðmhÞ , (15)

2U ð2Þz ¼
ð?

0

h
Eð3ÿ 4lþ mzÞ ÿ F

i
eÿmzJ0ðmrÞdm , (16)

2U ð2Þr ¼
ð?

0

h
mzE ÿ F

i
eÿmzJ1ðmrÞdm , (17)

pð2Þzz ¼
ð?

0

h
F ÿ

�
2ð1ÿ lÞ þ mz

�
E
i
eÿmzJ0ðmrÞmdm , (18)

pð2Þrz ¼
ð?

0

h
F ÿ

�
ð1ÿ 2lÞ þ mz

�
E
i
eÿmzJ1ðmrÞmdm , (19)

where J1 is the Bessel function of the first kind and first order.

From conditions (2) and formulae (14) and (18), and (15) and

(19), respectively, we obtain the following relations between the

remaining unknown functions:

ð1ÿ a cthðaÞÞAÿ aB ¼ F ÿ 2ð1ÿ lÞE ,

aAþ ð1þ a cthðaÞÞB ¼ F ÿ ð1ÿ 2lÞE , (20)

where a=jh and cth(x)=ch(x)/sh(x) is the hyperbolic cotan-

gent. Note that eqs (20) automatically ensure continuity of

stresses in the crack plane for r>1. Using eqs (12), (13), (16)

and (17), we find that in the crack plane (z=0),

2ðU ð1Þz ÿU ð2Þz Þ ¼
ð?

0

h�
2ð1ÿ lÞcthðaÞ ÿ a

�
A

þ
�

1ÿ 2lÿ a cthðaÞ
�

B

ÿ ð3ÿ 4lÞE þ F
i
J0ðmrÞdm ,

2ðU ð1Þr ÿU ð2Þr Þ ¼
ð?

0

h�
1ÿ 2lþ a cthðaÞ

�
A

þ
�

aþ 2ð1ÿ lÞcthðaÞ
�

Bþ E
i
J1ðmrÞdm : (21)
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We introduce new functions

4ð1ÿ lÞ’ ¼
�

2ð1ÿ lÞcthðaÞ ÿ a
�

A

þ
�

1ÿ 2lÿ a cthðaÞ
�

Bÿ ð3ÿ 4lÞE þ F ,

4ð1ÿ lÞ( ¼
�

1ÿ 2lþ a cthðaÞ
�

A

þ
�

aþ 2ð1ÿ lÞcthðaÞ
�

Bþ E, (22)

so that expressions (21) and the boundary conditions (3) for the

continuity of displacements outside the crack (i.e. for r>1) give

rise toð?
0

’ðmÞJ0ðmrÞdm ¼ 0 ,

ð?
0

(ðmÞJ1ðmrÞdm ¼ 0 : (23)

Using relationships (20) and (22), functions A and B can be

expressed through new functions W and Y as follows:

A ¼ ð1ÿ eÿ2aÞ½a(þ ð1þ aÞ’� ,

B ¼ ð1ÿ eÿ2aÞ½ð1ÿ aÞ(ÿ a’� : (24)

Substituting eqs (24) into eqs (14) and (15) and satisfying the

boundary conditions on the crack surface (eq. 2), we obtain for

z=0 and 0jr<1ð?
0

h
’ÿ R1ðmhÞ’ÿ R3ðmhÞ(

i
J0ðmrÞmdm ¼ ÿ*pðrÞ ,

ð?
0

h
(ÿ R2ðmhÞ(ÿ R3ðmhÞ’

i
J1ðmrÞmdm ¼ qðrÞ , (25)

where R1(a)=(1+2a+2a2)ex2a, R2(a)=(1x2a+2a2)ex2a and

R3(a)=2a2ex2a. Eqs (23) and (25) represent a system of dual

integral equations for functions W and Y. These equations can

be solved by expressing W and Y in terms of the following finite

Fourier transforms:

’ðmÞ ¼
ð1

0

sin mt�ðtÞdt ,

(ðmÞ ¼
ð1

0

� sin mt

mt
ÿ cos mt

�
tðtÞdt : (26)

Substitutions (26) satisfy eqs (23) identically, while eqs (25) give

rise to a pair of Schlömilch equations (Whittaker & Watson

1963), whose solutions are the following Fredholm equations

of the second kind:

�ðtÞ ¼ ÿ 2

n

ðt

0

*pðrÞrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 ÿ r2
p þ 2

n

ð1

0

h
T1ðt, rÞ�ðrÞ þ T3ðt, rÞtðrÞ

i
dr ,

tðtÞ ¼ 2

nt

ðt

0

qðrÞr2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 ÿ r2
p þ 2

n

ð1

0

h
T2ðt, rÞtðrÞ þ T4ðt, rÞ�ðrÞ

i
dr :

(27)

Closed-form expressions for the integration kernels T1–4 in

eqs (27) are given in Appendix A. Eqs (27) can be solved

numerically, for example, using a method of successive approxi-

mations (e.g. Delves & Mohamed 1985), whereby a solution is

sought by iterating w(t) and y(t) using the right-hand sides of

eqs (27) until certain convergence criteria are met. As shown

in Appendix A, kernels T1–4 are smooth bounded algebraic

functions, which is essential for a numerical solution of eqs (27)

[we note that the solution of Srivastava & Singh (1969) gives

rise to kernels that are singular on the interval of integration].

Appendix A presents numerical solutions to a system (27) for a

particular case of hydrostatic fluid pressure inside the crack. In

the case of a non-hydrostatic stress distribution (for example,

resulting from viscous flow of magma along the crack), coupled

solutions for stresses at the crack walls and the concomitant

host rock deformation may be obtained by adding another level

of iterations to compute a viscous pressure drop that is consistent

with the crack opening and the prescribed magma rheology

(e.g. Fialko & Rubin 1999). Once the functions w(t) and y(t) are

found, stresses and displacements in the half-space can be

computed using formulae (12)–(19) after back-substituting w(t)

and y(t) into eqs (26), and then eqs (26) into eqs (24).

4 D I S P L A C E M E N T S O F T H E E A R T H ’ S
S U R F A C E D U E T O A P E N N Y - S H A P E D
C R A C K

Solutions for vertical and horizontal displacements at the free

surface of a half-space can be obtained by putting z=xh into

eqs (12) and (13). Making use of the expressions (24), we obtain

U s
z ¼ 2ð1ÿ lÞ

ð?
0

h
ð1þ mhÞ’ðmÞ þ mh(ðmÞ

i
eÿmhJ0ðmrÞdm ,

U s
r ¼ 2ð1ÿ lÞ

ð?
0

h
ð1ÿ mhÞ(ðmÞ ÿ mh’ðmÞ

i
eÿmhJ1ðmrÞdm : (29)

Substituting eqs (26) into eqs (28) and (29) and changing

the order of integration, we obtain final expressions for surface

displacements in the form

U s
j ðrÞ ¼

ð1

0

h
K�ðr, tÞ�ðtÞ þ Ktðr, tÞtðtÞ

i
dt , (30)

where Kw,y are analytic kernels given in Appendix B. Computing

surface displacements ultimately involves solving eqs (27)

to find image functions w(t) and y(t), which are then used to

calculate eq. (30). Fig. 2 compares maximum surface uplift due

to a uniformly pressurized crack calculated using our solutions

(see Appendix B) to an approximate analytic solution of Sun

(1969) for a deep crack (h&1) and an elastic solution for a thin

circular plate with clamped edges (Landau & Lifshitz 1986).

For large values of the non-dimensional crack depth (h>2), the

amplitude and shape of the surface uplift predicted by our

solution are in an excellent agreement with the model and field

experiments of Sun (1969), as well as with the point tensile

dislocation model (Davis 1983). The discrepancy between our

calculations and Sun’s model for small h is probably due to the

fact that in his model the boundary conditions on the crack

surface are not satisfied exactly (see Section 2). For sufficiently

small values of h, the amplitude of the maximum uplift pro-

duced by a penny-shaped crack is in a good qualitative agree-

ment with a thin circular plate model (dashed line in Fig. 2).

Fig. 3 shows profiles of vertical displacements of the free

surface normalized by the maximum uplift for several values of

h. For comparison we also plot the results of a finite element

modelling of Dieterich & Decker (1975 models D and E in their

Fig. 4). As one can see from Fig. 3, the differences between
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our semi-analytic solutions and the calculations of Dieterich &

Decker are quite substantial. We have validated the accuracy

of our model by numerical calculations using a 3-D boundary

element code DIS3D (Rubin 1992; Fialko & Rubin 1999).

The boundary element simulation of deformation due to a

penny-shaped crack with h=0.5, in which the crack has been

approximated by y900 square dislocations with prescribed

constant-pressure boundary condition, has converged to the

semi-analytic solution with a relative accuracy of a few per

cent. We note that the finite element calculations of Dieterich

& Decker (1975) agree reasonably with our solutions if the sill

radii corresponding to models D and E of Dieterich & Decker

are taken to represent the sill diameters (see filled symbols in

Fig. 3).

Vertical and horizontal displacements of the free surface due

to an axisymmetric oblate point source (that is, a crack with a

large depth-to-radius ratio h) are appreciably different from

those due to a spherically symmetric point source (Mogi 1958) at

the same depth. Fig. 4(a) shows displacement profiles normalized

by a maximum vertical displacement for the Mogi model and a

point crack model (i.e. h&1). As one can see from Fig. 4(a),

a ‘point crack’ gives rise to more localized deformation than a

‘point sphere’. Delaney & McTigue (1994) obtained a similar

result by comparing the Mogi model to a tensile dislocation.

Figs 4(b) and (c) illustrate various trade-offs between the source

geometry and/or the source depth that produce nearly identical

deformation patterns at the surface. In particular, surface dis-

placements due to a pressurized spherical cavity may be essentially

Figure 2. Maximum uplift of the free surface of a half-space pro-

duced by a penny-shaped crack (solid line) as a function of the non-

dimensional crack depth h. In the limit h%1, our model asymptotes to

an analytic solution for a deflection of a uniformly loaded thin circular

plate with clamped edges, Uz
max3 h4 (Landau & Lifshitz 1986 p. 68)

(dashed line). For h%1, our model coincides with the approximate half-

space solution of Sun (1969) (dotted line). Dimensional values of the

maximum uplift can be obtained by multiplying the vertical axis by

2(1xn)RDP/m, where R is the crack radius and DP is the dimensional

excess pressure inside the crack.

Figure 3. Profiles of vertical displacements of the free surface produced

by a uniformly pressurized penny-shaped crack for several values of the

non-dimensional crack depth h. Displacements are normalized by the

maximum uplift value Uz
max=Us

z(0) (see Fig. 2). The horizontal axis

has units of the crack depth. Open symbols denote the finite element

modelling results of Dieterich & Decker (1975 see their Fig. 4). Filled

symbols denote the respective models of Dieterich & Decker rescaled

assuming a doubled crack depth or a factor of two decrease in the crack

radius (see text for details).

Figure 4. A comparison of surface displacements due to a spherically

symmetric point source (Mogi model) and axially symmetric oblate

source (penny-shaped crack). All displacements are normalized by the

maximum vertical displacement Uz
max. The horizontal axis represents

radial distance from the source epicentre normalized by the source

depth. (a) A Mogi source and a point crack at the same depth. (b) A

Mogi source and a point crack that is 2/1.5=1.33 times deeper than the

Mogi source. Upper axis has units of the crack depth and lower axis has

units of the Mogi source depth. (c) Mogi source and a finite crack

(h=1.2) at the same depth.
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similar to those due to a point crack (h&1) at a greater depth

(Fig. 4b) and a finite crack (hj1) at the same (or shallower)

depth (Fig. 4c). The main difference in surface displacements

that potentially allows one to distinguish between the sill-like and

pluton-like (i.e. more isometric) magma chamber geometries is

a somewhat smaller ratio of maximum horizontal to maximum

vertical displacements for sills (Ur
max/Uz

max<30 per cent, Fig. 4)

than for spherical sources (Ur
max/Uz

maxy40 per cent). Note that

horizontal displacements alone are almost as insensitive to the

trade-off between the source geometry and the source depth as

vertical displacements are. Fig. 5 shows horizontal displace-

ment profiles for the Mogi source (dashed line), a point crack

(solid line) and a prolate cavity (dotted line) (Yang et al. 1988)

normalized by Ur
max. As one can see from Fig. 5, the pattern

of horizontal displacements due to a prolate spheroid and

the Mogi source can be virtually identical. Horizontal oblate

sources can potentially be distinguished from spherical or

prolate sources due to a faster decay of surface displacements in

the far field . However, decreasing displacement amplitudes in

the far field imply a decrease in the signal-to-noise ratio. Given

measurement errors and/or limited aperture of geodetic net-

works, differences seen in Figs 4 and 5 may be difficult to resolve

by field observations.

For a crack model, the ratio of maximum horizontal dis-

placements to maximum vertical displacements decreases with

the non-dimensional crack depth h, as shown in Fig. 6. This

result is expected, given that oblate sources are more efficient

in generating vertical (rather than horizontal) displacements.

Horizontal displacements in excess of 50 per cent of the maxi-

mum vertical displacement are usually thought to require an

essentially prolate source geometry (Dieterich & Decker 1975;

Yang et al. 1988). It should be borne in mind that the models

discussed so far consider elastic deformation in a homogeneous

isotropic medium. Relaxing one (or more) of the assumptions

of elasticity, homogeneity and isotropy may affect the predicted

deformation patterns. For example, as pointed out by Rubin

(1992), a reasonable anisotropy of the elastic moduli of the

upper crustal rocks may give rise to increases in the horizontal

displacements relative to the vertical displacements of the order

of several tens of per cent. Such an increase may result from

reductions in the effective horizontal stiffness due to void

opening in the presence of horizontal extension. Note that some

horizontal extension is always produced in the overlying rocks

as a result of magma chamber inflation. An increase in the ratio

Ur
max/Uz

max of the order of several per cent to a few tens of per

cent (compared to the isotropic half-space solutions) may also

result from an increase in the effective elastic stiffness of the

host rocks with depth (e.g. due to lithological stratification).

Fig. 7 shows the effects of a step-like increase in the elastic

rigidity on surface displacements due to the Mogi source.

Figure 5. A comparison of horizontal surface displacements due to a

spherically symmetric point source (Mogi model), axially symmetric

oblate point source (crack having h&1) and axially symmetric finite

prolate spheroid. The prolate spheroid has an axis aspect ratio of 3:1

and a ratio of the spheroid centre depth to the major axis of 5:3. All

displacements are normalized by the maximum horizontal displace-

ments, and distances from the source centre are given in units of the

Mogi source depth. The point crack is 1.5 times deeper and the prolate

spheroid 1.2 times shallower than the Mogi source.

Figure 6. Ratio of maximum horizontal displacements to maximum

vertical displacements as a function of the non-dimensional crack depth

h. For cracks that are small compared to their depth, the ratio of

maximum horizontal displacements to maximum vertical displacements

is about 30 per cent.

Figure 7. Theoretical surface displacements due to a spherical pressure

source in a homogeneous half-space (Mogi model, solid line) and a two-

layer half-space (symbols). The inset illustrates the geometry of the

problem. A solid circle denotes an isotropic pressure source and m1 and

m2 are the shear moduli of the upper and lower layers of a semi-infinite

elastic body, respectively.
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Increases in horizontal displacements relative to vertical displace-

ments similar to those seen in Fig. 7 are also expected for other

sources of dilation, including horizontal tensile cracks. For these

reasons, interpretations of geodetic measurements of magma-

induced deformation using isotropic models may be biased

towards spherically symmetric or prolate sources.

5 V O L U M E C H A N G E S D U E T O S I L L
I N F L A T I O N

An expression for a change in a sill volume DV due to a magma

injection or withdrawal can be found using solutions for

vertical displacements of the crack walls (eqs 21 for r<1),

*V ¼ 2n
ð1

0

h
U ð2Þz ðrÞ ÿU ð1Þz ðrÞ

i
rdr : (31)

Eq. (31) describes a change in the crack volume that results from

a pressure change inside the crack. Note that DV represents

the volume of the injected/withdrawn fluid only if the fluid

is incompressible; in the case of finite fluid compressibility,

the crack volume change DV will generally underestimate

a change in the fluid volume (e.g. Johnson et al. 2000). An

explicit expression for DV is derived in Appendix C. Fig. 8

shows the results of numerical calculations for the crack

volume change DV normalized by the crack volume change in

an infinite elastic body DV(?) (solid line in Fig. 8) for a range

of non-dimensional crack depths h. An increase in the ratio

DV/DV(?) with decreasing h reflects a decreasing resistance of

the overlying strata to a crack opening for a given excess magma

pressure. Also shown in Fig. 8 is the ratio of the volume of the

lower part of the crack,

*V ð2Þ ¼ 2n
ð?

0

U ð2Þz ðrÞrdr ,

to the total crack volume DV (dashed line). The ratio DV(2)/DV

characterizes the asymmetry of deformation with respect to the

crack plane, which is commonly used for defining a transition

from a sill to a laccolith (e.g. Pollard & Holzhausen 1979).

As one can see from Fig. 8, in a purely elastic model such a

transition is expected to occur when hj1. For h%1, the defor-

mation is essentially concentrated in the upper part of the crack.

In Appendix C we also obtain an expression for the corres-

ponding volume of the surface uplift (or subsidence, depending

on the sign of the excess magma pressure inside the crack) and

demonstrate that the surface uplift volume DVs identically

equals DV for any value of the crack depth-to-radius ratio h

or the Poisson’s ratio of the half-space n. Delaney & McTigue

(1994) came to a similar conclusion using a horizontal dis-

location model of Okada (1985). A one-to-one correspondence

between DVs and DV is perhaps surprising, as one might expect

the ratio DVs/DV to be less than unity as h increases and the

deformation becomes essentially symmetric with respect to

the crack plane. This result provides a theoretical justification

for using the volume of the surface uplift/subsidence as a direct

measure of volume changes at the source for sill-like magma

bodies.

6 C O N C L U S I O N S

We obtained exact solutions for stresses and displacements

due to an arbitrarily loaded axisymmetric crack in an elastic

half-space. These solutions may be used to investigate defor-

mation of the Earth’s surface associated with emplacement and

growth of sill-like magma intrusions. A horizontal circular

crack whose size is much smaller than its depth gives rise to a

more localized surface deformation than does the Mogi source

(i.e. a pressurized spherical cavity) located at the same depth.

The deformation patterns produced by a Mogi source, a small

crack at a larger depth, and a large crack at a shallower depth

may be essentially similar. Small differences in surface displace-

ments (in particular, in vertical displacements) due to various

axisymmetric sources imply an intrinsic trade-off between the

source geometry (e.g. oblate versus prolate) and the source

depth in inversions of geodetic data. Interpretations of geodetic

measurements of only one component of deformation (either

vertical or horizontal) are particularly vulnerable to this trade-

off. The use of homogeneous elastic half-space models may bias

the interpretation of geodetic data towards spherical or prolate

source geometries if the host rocks exhibit non-linear elastic

and/or transversely isotropic mechanical properties. We explicitly

relate variations in the excess magma pressure inside a sill

intrusion to changes in the intrusion volume. We show that the

volume of inflation (or deflation) of a magma sill exactly equals

the volume of the resulting uplift (or subsidence) at the Earth’s

surface for any values of the sill depth-to-radius ratio h and the

Poisson’s ratio of the host rocks n. Therefore, the volume of

the surface uplift inferred from field observations may be used

as a direct proxy for the volume increase of sill-like intrusions

during episodes of magmatic inflation.
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A Matlab program that calculates displacements of a half-space

surface due to a horizontal penny-shaped crack is available

Figure 8. Dependence of the ratio of the total crack volume DV to the

crack volume in an infinite elastic body DV(?) (solid line) and the ratio

of the volume of the lower part of the crack to the total crack volume

(dashed line) on the non-dimensional crack depth h. We assume

hydrostatic pressure inside the crack (see Appendix C).
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A P P E N D I X A : S O L U T I O N S T O
F R E D H O L M E Q U A T I O N S F O R T H E C A S E
O F A U N I F O R M L Y P R E S S U R I Z E D
P E N N Y - S H A P E D C R A C K

For a hydrostatic pressure distribution inside a penny-shaped

crack, Dp(r)=const=p0, and t(r)=0, integral equations (27)

give rise to the following system of equations for normalized

functions w�(t)=w(t)/p0 and y�(t)=y(t)/p0:

��ðtÞ ¼ ÿ 2t

n
þ 2

n

ð1

0

h
T1ðt, rÞ ��ðrÞ þ T3ðt, rÞ�tðrÞ

i
dr ,

�tðtÞ ¼ 2

n

ð1

0

h
T2ðt, rÞ�tðrÞ þ T4ðt, rÞ ��ðrÞ

i
dr : (A1)
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Kernels T1–4 in eqs (A1) are smooth bounded functions on the

interval of integration,

T1ðt, rÞ ¼
ð?

0

R1ðmhÞ sin mt sin mrdm

¼ 4h3
h
P1ðtÿ rÞ ÿ P1ðtþ rÞ

i
, (A2)

T2ðt, rÞ ¼
ð?

0

R2ðmhÞ
� sin mt

mt
ÿ cos mt

�� sin mr

mr
ÿ cos mr

�
dm

¼ h

tr

h
P2ðtÿ rÞÿ P2ðtþ rÞ

i
þ h
h
P3ðtÿ rÞ þ P3ðtþ rÞ

i
,

(A3)

T3ðt, rÞ ¼
ð?

0

R3ðmhÞ sin mt
� sin mr

mr
ÿ cos mr

�
dm

¼ h2

r

h
P4ðtÿ rÞ ÿ P4ðtþ rÞ ÿ 2r

�
ðtÿ rÞP1ðtÿ rÞ

þ ðtþ rÞP1ðtþ rÞ
�i

, (A4)

T4ðt, rÞ ¼ T3ðr, tÞ , (A5)

where expressions for R1–3 are given by eqs (25) and

P1ðxÞ ¼
12h2 ÿ x2

ð4h2 þ x2Þ3
,

P2ðxÞ ¼ lnð4h2 þ x2Þ þ 8h4 þ 2x2h2 ÿ x4

ð4h2 þ x2Þ2
,

P3ðxÞ ¼ 2
8h4 ÿ 2x2h2 þ x4

ð4h2 þ x2Þ3
,

P4ðxÞ ¼
4h2 ÿ x2

ð4h2 þ x2Þ2
:

Eqs (A1) are solved numerically using a method of successive

approximations (e.g. Delves & Mohamed 1985). The method

is robust for values of the non-dimensional crack depth

h>0.2; convergence of the iterated kernel series degrades as h

decreases, and the method becomes inapplicable for hj0.18.

Numerical integration is performed by subdividing the interval

of integration into four equal intervals and using a 16-point

Gaussian quadrature (Abramowitz & Stegun 1972) on each

interval. Iterations start with the initial guesses w�(t)=x2t/p
and y�(t)=0 corresponding to a full-space solution (i.e. hp?)

and continue until solutions converge within six significant

figures. Fig. A1 shows solutions to a system (A1) for several

values of h. We note that coefficients w�(1) and y�(1) represent

non-dimensional stress intensity factors at the crack tips of

modes I and II, respectively (Srivastava & Singh 1969; Guterman

et al. 1997).

A P P E N D I X B : S E M I - A N A L Y T I C
E X P R E S S I O N S F O R S U R F A C E
D I S P L A C E M E N T S

Substitution of eqs (26) into eqs (28) and (29) gives rise to the

following expressions for surface displacements Us
z and Us

r (for

simplicity, we assume hydrostatic pressure p0 inside the crack,

see Appendix A; solutions for an arbitrary stress distribution

on the crack surface can be derived using the same formalism):

U s
z

2ð1ÿ lÞp0
¼
ð1

0

h
S0

0 þ hS1
0

i
�rðtÞdtþ

ð1

0

S0
0

t
ÿ C1

0

� �
�tðtÞdt , (B1)

U s
r

2ð1ÿ lÞp0
¼
ð1

0

Sÿ1
1 ÿ hS0

1

t
ÿ C0

1 þ hC1
1

� �
�tðtÞdtÿ h

ð1

0

S1
1 �rðtÞdt ,

(B2)

where we denote

Sn
mðr, t; hÞ ¼

ð?
0

mn eÿmhJmðmrÞ sinðmtÞdm , (B3)

Cn
mðr, t; hÞ ¼

ð?
0

mn eÿmhJmðmrÞ cosðmtÞdm : (B4)

Evaluation of improper integrals (B3)–(B4) yields the follow-

ing closed-form expressions (Gradshteyn & Ryzhik 1994,

pp. 734–735):

S0
0 ¼

ffiffiffi
2
p

ht

X2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ X1

p , (B5)

S1
0 ¼

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 ÿ X1

p
ð2X1 þ X2Þ ÿ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ X1

p
ð2X1 ÿ X2Þffiffiffi

2
p

X 3
2

, (B6)

C1
0 ¼

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ X1

p
ð2X1 ÿ X2Þ þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 ÿ X1

p
ð2X1 þ X2Þffiffiffi

2
p

X 3
2

,

Sÿ1
1 ¼

t

r
ÿ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 ÿ X1

p ffiffiffi
2
p

r
, (B8)

Figure A1. Numerical solutions to eqs (A1) for several values of the

crack depth-to-radius ratio h (labelled).
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S0
1 ¼

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ X1

p
ÿ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 ÿ X1

pffiffiffi
2
p

rX2

, (B9)

C0
1 ¼

1

r
ÿ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ X1

p
þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 ÿ X1

pffiffiffi
2
p

rX2

, (B10)

C1
1 ¼

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ X1

p
ð2X1 ÿ X2Þffiffiffi

2
p

X 3
2

, (B11)

S1
1 ¼

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 ÿ X1

p
ð2X1 þ X2Þffiffiffi

2
p

X 3
2

: (B12)

In eqs (B5)–(B12),

X1 ¼ h2 þ r2 ÿ t2, X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

1 þ 4h2t2

q
: (B13)

The results of calculations for Us
z and Us

r using expressions

given in Appendices A and B are shown in Figs 2–4.

A P P E N D I X C : I N T R U S I O N V O L U M E
C H A N G E D V A N D T H E A S S O C I A T E D
S U R F A C E U P L I F T V O L U M E D V S

After substituting expressions (21) and (22) into (31), we obtain

the following equation for the intrusion volume change DV:

*V ¼ ÿ4nð1ÿ lÞ
ð1

0

rdr

ð?
0

’ðmÞJ0ðmrÞdm : (C1)

Integration over r yields

*V

4nð1ÿ lÞ ¼ ÿr

ð?
0

’ðmÞJ1ðmrÞ dm
m

����r¼1

r¼0

¼ ÿ
ð?

0

’ðmÞJ1ðmÞ
dm
m

, (C2)

where I|ba=I(b)xI(a) denotes evaluation at integration limits.

Making a substitution (26) and assuming that the crack is held

open by a hydrostatic excess pressure p0 (see Appendix A), we

obtain

*V

4nð1ÿ lÞp0
¼ ÿ

ð1

0

dt�rðtÞ
ð?

0

sinðmtÞJ1ðmÞ
dm
m
: (C3)

In eq. (C3), an improper integral over j has the form of

eq. (B3) (with n=x1, m=1, h=0, r=1), and from eq. (B8)

one can infer thatð?
0

sinðmtÞJ1ðmÞ
dm
m
¼ t (C4)

(note that in eq. B8 X2xX1=0 for h=0; see eqs B13). Thus, we

finally obtain

*V

4nð1ÿ lÞp0
¼ ÿ

ð1

0

t�rðtÞdt : (C5)

For a particular case of hp? (that is, for a crack in an infinite

elastic body), Q�(t)=x2t/p (see Fig. A1), and from eq. (C5) the

corresponding crack volume is DV(?)=8(1xn)p0/3. Multiply-

ing this result by a dimensional factor R3, where R is the crack

radius, and recalling that p0 represents the ratio of the dimen-

sional excess fluid pressure to shear modulus of the medium,

we retrieve an analytic solution for a volume of a uniformly

pressurized penny-shaped crack in an infinite elastic body (e.g.

Sneddon 1951, p. 491). The ratio DV(h)/DV(?) is shown in

Fig. 8.

An expression for the associated volume of uplift of the

half-space surface can be found in a similar way,

*V s ¼ ÿ2n
ð?

0

U s
zðrÞrdr : (C6)

Putting an expression for Us
z (eq. 28) into eq. (C6) and

changing the order of integration, we obtain

*V s

4nð1ÿ lÞ ¼ÿ lim
r??

r

ð?
0

h
ð1þ mhÞ’ðmÞ þ mh(ðmÞ

i
eÿmhJ1ðmrÞ dm

m
:

(C7)

Utilizing the results presented in Appendix B for a uniformly

pressurized crack, expression (C7) gives rise to

*V s

4nð1ÿ lÞp0
¼ÿ lim

r??
r

ð1

0

dt

�h
Sÿ1

1 þ hS0
1

i
�rðtÞ

þ
hSÿ1

1

t
ÿ C0

1

i
�tðtÞ

�
: (C8)

It is straightforward to show using expressions (B8)–(B10) and

(B13) that

lim
r??

rSÿ1
1 ¼ t , (C9)

lim
r??

rS0
1:0 , (C10)

lim
r??

rC0
1:1 : (C11)

Thus, eq. (C8) reduces to

*V s

4nð1ÿ lÞp0
¼ ÿ

ð1

0

t�rðtÞdt : (C12)

Comparing eqs (C12) and (C5), we deduce that DVs/DVw1

for any values of the non-dimensional crack depth h and the

Poisson’s ratio n of an elastic half-space. Delaney & McTigue

(1994) arrived at the same conclusion using elastic solutions

for a horizontal rectangular dislocation. We note that our result

for sill-like magma bodies holds for any axisymmetric distri-

bution of stresses on the sill surface. For the Mogi source

DVs/DV=2(1xn), that is, for compressible rocks the volume of

surface uplift may exceed the volume increase at the source by

more than 50 per cent (Delaney & McTigue 1994).
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