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[11 Thermal perturbations associated with seismic slip on faults may significantly affect
the dynamic friction and the mechanical energy release during earthquakes. This paper
investigates details of the coseismic temperature increases associated with the
elastodynamic propagation of shear cracks and effects of fault heating on the dynamic
fault strength. Self-similar solutions are presented for the temperature evolution on a
surface of a mode II shear crack and a self-healing pulse rupturing at a constant velocity.
The along-crack temperature distribution is controlled by a single parameter, the ratio
of the crack thickness to the width of the conductive thermal boundary layer, w. For
“thick” cracks, or at early stages of rupture (iw > 1), the local temperature on the crack
surface is directly proportional to the amount of slip. For “thin” cracks, or at later times
(w < 1), the temperature maximum shifts toward the crack tip. For faults having slip zone
thickness of the order of centimeters or less, the onset of thermally induced phenomena
(e.g., frictional melting, thermal pressurization, etc.) may occur at any point along the
rupture, depending on the degree of slip localization and rupture duration. In the absence
of significant increases in the pore fluid pressure, localized fault slip may raise temperature
by several hundred degrees, sufficient to cause melting. The onset of frictional melting
may give rise to substantial increases in the effective fault strength due to an increase in
the effective fault contact area, and high viscosity of silicate melts near solidus. The
inferred transient increases in the dynamic friction (“‘viscous braking’”) are consistent with
results of high-speed rock sliding experiments and might explain field observations of the
fault wall rip-out structures associated with pseudotachylites. Possible effects of viscous
braking on the earthquake rupture dynamics include (1) delocalization of slip and
increases in the effective fracture energy, (2) transition from a crack-like to a pulse-like
rupture propagation, or (3) ultimate rupture arrest. Assuming that the pulse-like ruptures
heal by incipient fusion, the seismologic observations can be used to place a lower bound
on the dynamic fault friction. This bound is found to be of the order of several
megapascals, essentially independent of the earthquake size. Further experimental and
theoretical studies of melt rheology at high strain rates are needed to quantify the effects of
melting on the dynamic fault strength.  INDEX TERMS: 3210 Mathematical Geophysics: Modeling;
5104 Physical Properties of Rocks: Fracture and flow; 7209 Seismology: Earthquake dynamics and
mechanics; 7260 Seismology: Theory and modeling; 8010 Structural Geology: Fractures and faults;
KEYWORDS: frictional heating, fault strength, pseudotachylite, melting, viscous stress, thermal runaway
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1. Introduction

may constitute a significant (if not dominant) part of the

[2] The efficiency at which earthquakes convert the
potential energy of elastically deformed rocks into seismic
radiation depends on dissipative losses (e.g., work done
against friction) on earthquake faults. Although the amount
of energy dissipated during earthquakes is generally
unknown, indirect estimates suggest that frictional losses
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earthquake energy budget [e.g., Kanamori and Anderson,
1975; McGarr, 1980; Scholz, 1990, p. 165]. Because most
of the energy dissipated on a fault is ultimately converted
into heat, there is a possibility that the coseismic increases
in temperature may affect the frictional properties of rocks
in the fault zone, and the dynamic stress drop during
earthquakes [Sibson, 1977; Lachenbruch, 1980]. Over the
last two decades, significant insights into the earthquake
dynamics have been obtained using the laboratory-derived
rate and state friction models [Dieterich, 1992; Ruina, 1983;
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Figure 1. A schematic view of a dynamically propagating mode II crack. The crack has a thickness 2w,

and is rupturing bilaterally at a constant velocity da/dt = V,.

Tse and Rice, 1986]. While the rate and state friction may
adequately describe the nucleation and initial rupture phases
of seismic instabilities, theoretical arguments [e.g., McKenzie
and Brune, 1972; Cardwell et al., 1978], field observations
[Price, 1970; Sibson, 1975; Swanson, 1992], and experimen-
tal data [Spray, 1993; Tsutsumi and Shimamoto, 1997;
Goldsby and Tullis, 2002] indicate that the coseismic
temperature increases may dramatically modify the constitu-
tive behavior of the fault zone rocks at seismic slip rates of the
order of 1 m/s. A better understanding of interactions
between the frictional heating and the dynamic fault strength
requires a detailed knowledge of spatiotemporal variations in
temperature that lead to the onset of the thermally induced
variations in friction. In this paper I investigate thermal
evolution of two-dimensional (2-D) elastodynamic ruptures
having a finite thickness of a slip zone, and propagating at a
finite velocity. In particular, I address the question of where
on the slipping fault the onset of the thermally induced
weakening (or strengthening) is likely to occur. Implications
from theoretical results are then discussed in the light of
available experimental and field data relevant to the dynam-
ics of seismic slip.

2. Spatiotemporal Evolution of Temperature
on a Fault Plane

[3] Thermal aspects of seismic faulting were considered
by a number of studies. Jeffreys [1942] obtained dimen-
sional estimates for the coseismic temperature increases on
a fault slipping at a constant velocity, assuming that the fault
is infinitesimally thin, and the frictional heat production is
balanced by the conductive heat loss to the surrounding
rocks. He found that temperature increases of the order of
10 K (i.e., sufficient to cause melting) should occur after
only a few centimeters of slip at 1 km depth. McKenzie and
Brune [1972] obtained one-dimensional time-dependent
solutions for the Jeffrey’s problem, and Cardwell et al.
[1978] extended the results of McKenzie and Brune [1972]
to a case of a finite thickness of the slip zone. Solutions of
Jeffreys [1942]; McKenzie and Brune [1972] and Cardwell
et al. [1978] all assume a constant slip velocity (or,
equivalently, an infinite rupture velocity, or an infinite fault
size). Such an assumption is invalid for the elastodynamic
shear instabilities characterized by significant along-rupture
variations in particle velocities [Scholz, 1990; Freund,
1998]. Richards [1976] presented double integral expres-
sions for a temperature distribution on a surface of an
infinitesimally thin circular shear crack expanding at a
constant velocity. However, he did not evaluate his results
numerically, and such an evaluation appears to be difficult
(P. Richards, personal communication, 2000). Lee and

Delaney [1987] and Andrews [2002] have considered tem-
perature increases near the leading edge of a propagating
crack in the context of thermal pressurization of pore fluids.

[4] Dimensionally, the temperature increase AT due to
fault slip D may be obtained by balancing the work against
friction, o, D, and the conductive heat loss to the ambient
rocks, 2wepAT [e.g., Cardwell et al. 1978],

ar=2
2wep

(1)
where o,is the shear stress acting on a fault, ¢ and p are the
heat capacity and density of the host rock, respectively, and
2w is the thickness of the slip zone (gouge layer), or the
width of the conductive thermal boundary layer, whichever
is larger. For infinitesimally thin shear cracks, the width of
the thermal boundary layer is w. = \/2kt,, where & is the
thermal diffusivity of the host rocks, and # is the duration of
slip. Note that in case of fluid-assisted heat removal from
the fault surface (e.g., due to thermal pressurization), the
effective width of the thermal boundary layer may be
significantly larger than the width of the conductive
boundary layer w.. More detailed predictions of the
temperature increase accounting for the along-fault varia-
tions in slip velocity, and the nonsteady heat transfer require
numerical experiments. [ start by considering the time-
dependent thermal evolution of a two-dimensional shear
crack.

2.1. Coseismic Temperature Increases Due to a
Crack-like Rupture

[s] Consider a mode II (plain strain) crack rupturing
bilaterally at a constant speed V. (Figure 1). The crack half
length a is zero prior to the rupture initiation, and linearly
increases with time after the onset of seismic instability,
a(t) = tV,. The host rock temperature 7 is presumed to obey
a 1-D diffusion equation (heat conduction in slip-parallel
direction is neglected),

or_ 0T 0
a "

N cop’ @)

where y is the crack-perpendicular coordinate, and Q is the
rate of frictional heat generation within the slipping zone,

>0,y <w

O(x.y,t) =4 2w(x) ot 3)

ar(x) OD(x,1)
0, [y >w,

where 0D/0t is the local slip velocity. For simplicity, I

assume that the thickness of the gouge layer is constant
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along the crack, and the shear strain rate is uniform across the
gouge layer [Cardwell et al., 1978]. Laboratory measure-
ments of the frictionally generated heat indicate that
the assumption of a uniform shear within the slip zone
may be adequate [Mair and Marone, 2000]. A solution to
equation (2) subject to the initial condition 7(x, y, 0) = Ty,
where T is the temperature of the host rocks prior to faulting,
is [e.g., Morse and Feshbach, 1953; Cardwell et al., 1978],

— ! L (y - C-)z Q(x,€7 T)
T(X7y7t)TO_ZCpﬁ\/t“,/_mexp[4H(T—l):|X \/ﬁ deT:

4)

where fy = x/V, is the time at which the rupture front passes
point x. Substituting equation (3) into equation (4), and
taking the improper inner integral, one obtains

1 t
To=—

y—=w

ot [%m(r —7)

Further analytic insights are possible for a case of a self-
similar crack propagation. The latter implies that the along-
crack displacement profile D(x, ) may be expressed in terms
of a single similarity variable x = x(x, #) (that is, the crack
propagates preserving its shape),

T —

(erf [HW
2kt —T)
> dD(x,T)
aT

or(x)dr. (5)

D(x,1) = a(t)eD(x), (6)

where ¢ is the characteristic shear strain due to the crack, ¢ =
D(0, t)/a(t). The strain € is of the order of the ratio of the
earthquake stress drop to the shear modulus of the host rocks,
and is apparently independent of the ecarthquake size
[Kanamori and Anderson, 1975; Scholz, 1990; Abercrombie,
1995]. Hereafter, € is taken to be constant. It is convenient to
introduce similarity variables

Nondimensional along-fault coordinate x = %, (7)

2

Nondimensional fault thickness w =

An expression for the local slip rate in terms of the new
variables is obtained by differentiating equation (6),

oD

A dimensional analysis of equations (5) and (1) suggests the
following similarity variable for temperature,

T — T,
[ P——
T

(10)

nondimensional temperature

where

(11)

7 oqV€ i7
cp V1K
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Figure 2. Variations of the nondimensional excess
temperature 6(x) along a mode II crack propagating at a
constant rupture speed under constant frictional stress.
Labels denote the nondimensional thickness of a slipping
zone w (see equation (8)). Open circles denote finite
difference solutions to equations (3), (2), and (1), for w =2
and 0.5.

is a characteristic temperature scale for frictional heating
assuming a perfectly sharp fault contact (see equation (1)).
2.1.1. Linear Elastic Fracture Mechanics
Approximation

[6] A classic case of a self-similar elastodynamic rupture
is a crack slipping under constant dynamic friction, o, (x) =
const = g,. A zone of inelastic yielding (or, in case of slip
on a preexisting fault, a zone of transition from static to
dynamic friction) at the crack tip is neglected. This is the
Linear Elastic Fracture Mechanics (LEFM) approximation,
in which the displacements along the crack are characterized
by a well-known elliptic profile [e.g., Lawn, 1993; Freund,
1998],

D(x,t) = a(t)ey/1 —x2,¢>0,]x] < 1, (12)
and the corresponding slip velocity is
D__Ye (13)
ot 1—x2

[7] Substituting equation (13) into equation (5), and
making use of the similarity variables (equations (8) and
(10)), one obtains the following expression for the along-
crack temperature distribution in the middle of the slip zone

(y=0),

IRV o I e
G(X)fﬂ}\ﬁ/X ef{z\/ﬂl—&)} N

(14)

Numerical solutions to equation (14) are shown in Figure 2
and further discussed in Appendix A. A family of curves in
Figure 2 illustrates a spatiotemporal evolution of tempera-
ture on the slipping fault surface. For faults that are thicker
than the thermal diffusion length scale, or at early stages of
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rupture (i.e., w > 1), the temperature increase along the fault
is proportional to the amount of slip, as one might expect.
For thin faults, or later during the rupture (w < 1), the
temperature distribution is very different, with temperature
being maximum near the crack tip, and monotonically
decreasing from the tip toward the crack center. Note that
the instantaneous temperature maximum near the crack tip
does not imply cooling of the crack surface behind the tip
(see Appendix A). For the nondimensional fault thickness w
of the order of unity, the maximum temperature is reached
somewhere between the crack center and the rupture front
(Figure 2). The semianalytical solution to equation (14) has
been verified with numerical simulations of the boundary
value problem (2)—(6) using a finite difference code
DifFuse [Fialko and Rubin, 1998]. The finite difference
calculations are in excellent agreement with the semi-
analytic solution to equation (14) (see open circles in
Figure 2).

[8] The elevated temperatures near the crack tip produced
by thin shear cracks are perhaps surprising, given that shear
displacements are always maximum at the crack center. The
inferred anticorrelation between the temperature and the
amount of slip stems from a competition between the rates
at which the frictional heat is generated at the crack surface,
and removed to the ambient rocks by conduction. Generation
of frictional heat at the tip of a perfectly sharp LEFM crack is
singular as the thickness of the conductive boundary layer is
zero, while the slip velocity is infinite (see equation (13)).
Nonetheless, the excess temperature at the tip is zero for
cracks having finite thickness (w > 0). For cracks that are
much thinner than the conductive boundary layer (w < 1), the
temperature field develops a shock-like structure, with the tip
temperature exceeding the temperature at the crack center by
about 10% (Figure 2). Assuming that the thickness of the slip
zone is constant during an earthquake, equation (14) predicts
that the maximum temperatures are initially attained at the
center of a crack-like shear instability. As the earthquake
rupture expands, the temperature maximum may migrate
toward the rupture fronts. For the thermal diffusivity of the
ambient rocks k = 10~° m%/s, and rupture durations of t=1—
10 s (corresponding to the rupture sizes of ~5—50 km), this
transition will occur for faults that have thickness of the order
of v/2kt ~2—5 mm or less. The critical fault thickness may be
larger still if the heat removal from the fault involves some
advective transport by the pressurized pore fluids, and the in
situ hydraulic diffusivity exceeds the thermal diffusivity k.
Because both the conductive heat transfer and the fluid
percolation obey the diffusion equation, the effects of a
nonnegligible pore fluid flow may be accounted for by using
the effective thermal diffusivity k., > k that lumps the
conductive and advective components of heat transfer.

[v] The distribution of temperature off the crack plane is
illustrated in Figure 3 for a particular case w = 0.5. As
expected, the thermal boundary layer develops behind the
rupture front, and expands into the surrounding rocks as the
crack grows. Heating of thick shear cracks (w > 1) is
essentially adiabatic, and gives rise to a nearly isothermal
core having thickness of the order of the crack thickness. In
the limit of an infinite rupture velocity (V, — oo) and
uniform slip (D(x) = const), results presented above coin-
cide with the infinitesimally thin fault solutions of McKenzie
and Brune [1972], and the finite thickness fault solutions of
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Figure 3. Temperature field 0(x, y/w) associated with the
dynamic propagation of a shear crack given constant
friction on the crack surface, for w = 0.5. The dashed line
denotes the boundary of the slip zone.

Cardwell et al. [1978] upon replacing €V, with D/t in
equation (11), and putting x = 0 in equation (14).
2.1.2. Effect of the Crack Tip Process Zone

[10] Experimental studies of the dynamic crack propaga-
tion in various materials including glasses, metals, and
polymers reveal the near-tip temperature increases of the
order of 10—100 K even for the tensile mode of failure
under atmospheric pressure [e.g., Guduru et al., 2001].
These temperature increases are thought to result from
plastic working within the process zone at the crack tip
[Rice and Levy, 1969]. Because the rate of the inelastic
energy dissipation at the crack tip is likely to be signifi-
cantly greater in case of shear failure under high confining
pressure, it is instructive to quantify the thermal contribu-
tion of the process zone involved in shear rupture. An
elegant refinement of the LEFM approach that avoids the
stress singularity at the crack tip is the cohesive zone model
[Leonov and Panasyuk, 1959; Barenblatt, 1959; Dugdale,
1960]. Originally proposed for tensile (mode I) cracks, this
model postulates that a thin in-plane region of strength
degradation exists at the rupture front. Cohesive stresses
within the process zone are assumed to balance the driving
stresses acting on the developed crack, so that the stresses
are finite everywhere. Some macroscopic yield strength o,
is usually taken to represent the peak stresses attainable
within the process zone. The crack growth occurs when a
critical displacement D, is exceeded at the base of the
process zone. Ida [1972] and Palmer and Rice [1973] have
adopted the cohesive zone model for shear cracks (in which
case it is also referred to as the slip weakening, or post-
yielding model). Although the assumption of a thin in-plane
process zone may not be quite valid for either tensile or
shear cracks in the Earth [e.g., Levy et al., 1971; Fialko and
Rubin, 1997; Manighetti et al., 2001], the cohesive zone
model provides an instructive end-member description of
deformation in the near-tip region (e.g., unlike the LEFM
model that predicts a blunt crack tip with infinite slip
velocity, the cohesive model predicts a cusp-like crack tip
with zero slip velocity).
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Figure 4. A two-dimensional plain strain shear crack in an infinite elastic medium. The imposed shear
stress at the infinity is o¢. The crack has a constant thickness 2w, and a constant interfacial shear stress o,;.
At the crack tips there are process zones having length Az and shear stress oy.

[11] Consider a crack having a cohesive zone with a
constant yield stress o,. The rest of the crack surface is subject
to a constant friction o, as illustrated in Figure 4. Assuming
that the crack is rupturing bilaterally at a constant velocity V,,
solutions for the crack displacements and particle velocities
(equations (6) and (13)) can be obtained in a closed analytic
form (Appendix B). Figure 5 a shows solutions to
equation (14) for a crack having a cohesive zone that
comprises 5% of the crack half length a, Az/a = 0.05, and a
ratio of the stress drop (oy — o0,) to dynamic friction o, of
0.336. Conditions of equilibrium (equation (B4) in Appendix
B) dictate that the corresponding ratio of the yield stress o, to
dynamic friction o, is 2.664. Assuming that all work done
against cohesive stresses and static friction in the process
zone is ultimately converted into heat, results shown in Figure
5 a suggest that the thermal effects of the process zone can be
significant. In particular, higher shear stresses within the
process zone give rise to temperature increases in the crack
tip region that are about a factor of 2 greater compared to
predictions of the LEFM model (compare solid and dashed
curves in Figure 5a). Also, the tendency for a shift of the
temperature maximum toward the crack tip, as well as the
magnitude of the temperature increase are appreciably
amplified, especially for thin faults (w < 1). Simulations in
which the size of the process zone is decreased at the expense
ofadecrease in D, and an increase in o, such that the fracture
energy is unchanged (see Appendix B), indicate that for the
infinitesimally thin cracks the maximum near-tip temperature
0 is proportional to the ratio of the process zone friction to the
crack friction o/o,,. It is interesting to note that in the limiting
case o,/0, — oo the process zone becomes infinitesimally
small, and the displacements and velocities along the crack
asymptotically approach the LEFM solution (equations (12)
and (13)), yet the along-crack temperature distribution
significantly deviates from the LEFM solution (Figure 2).
This difference is due to the LEFM assumption ofno slip (and
hence no thermal dissipation) in the region of singular
stresses at the crack tip. The magnitude of the near-tip heating
is substantially attenuated in case of thick faults (Figure 5a).

[12] The crack tip model assuming a constant cohesive
stress predicts that the slip velocity has a weak logarithmic
singularity at the base of the process zone x = 1 — Aza
(see equations (1) and (B5)). I point out that the near-tip
temperature increases seen in Figure 5a (solid lines) are due
to higher stresses, and not the singular particle velocities

within the process zone. This conclusion is corroborated by
calculations that use the same particle velocities, but assume
no increase in friction in the process zone compared to the
rest of the crack (i.e., o; = 04, Figure 5b). In the latter case,
the temperature increases predicted by the cohesive zone
model are smaller than those predicted by the LEFM model,
especially near the crack tip, due to lower rates of the energy
dissipation. At distances greater than several process zone
lengths behind the rupture front, the temperature increases

2

1.5

(b) 0.1

Non-dimensional excess temperature 0
o

0.4 0.6 0.8 1

0 0.2
Non—dimensional along—fault distance

Figure 5. Temperature distribution along a 2-D shear
crack having a cohesive zone at the tip (Figure 4). The ratio
of the cohesive zone length to the crack half length is taken
to be 0.05. The base of the cohesive zone is marked by a
vertical dotted line. Solid lines denote temperatures in the
middle of the gouge layer (y = 0), for a range of
nondimensional fault thicknesses w. Dashed lines denote
the respective predictions of the LEFM model (Figure 2).
(a) oo, = 2.664. (b) o/o,=1.
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Figure 6. A self-healing pulse having length a propagating at a constant speed V,. The remote shear
stress is 0, and frictional stress on the slipping surface is o, The pulse length is a, and the thickness of

the slipping zone is 2w.

inferred from the LEFM and the cohesive zone model are
similar, as one might expect. Simulations shown in Figure 5b
might be relevant if the fracture energy is consumed off the
fault plane, or spent on processes other than frictional
heating, such as the creation of new surfaces, chemical and
phase transformations, etc. Such nonthermal dissipation,
however, may be small compared to the amount of work
done against friction for earthquakes occurring on mature
faults [e.g., Sibson, 1980].

2.2. Coseismic Temperature Increases Due to a
Self-Healing Pulse

[13] Detailed near-field observations of a large number of
crustal earthquakes indicate that the slip duration, or the so-
called rise time, at any point on the fault appears to
constitute only a fraction of the total rupture duration
[e.g., Kanamori and Anderson, 1975; Heaton, 1990; Beroza
and Mikumo, 1996; Olsen et al., 1997]. This is inconsistent
with the crack-like models of the earthquake rupture (e.g.,
Figure 1) which predict that the slip should continue until
the rupture front has ceased propagating (equation (1)). In
this section I consider frictional heating associated with the
pulse-like seismic ruptures. The geometry of the problem is
shown in Figure 6. As in the previous analysis, it is assumed
that the slipping zone has a constant thickness 2w, and a
constant dynamic friction o, The rupture front propagates
at velocity V,, and is trailed by the healing front at a
distance a. Elastodynamic solutions to this problem were
discussed by Yoffe [1951] for a mode I pulse, and Freund
[1979] for a mode II pulse. For a self-healing pulse having a
constant length a, I anticipate steady state solutions for the
coseismic temperature field in the reference frame of the
moving rupture front. The appropriate similarity variables are

—tV,
Along-fault coordinate x = AL 1, (15)
a
. . . _ 2V,
Nondimensional fault thickness w = w, (16)
ak

T—-T
Nondimensional temperature 0 = 7 O,

(18)

The along-fault displacements and the rate of slip are
assumed to obey the following relationships,

D) = aey/T—C,

(19)

oD Viex

o 1o

That is, the LEFM-like asymptotic behavior is assumed at
the fault tip (x = 1). Because the assumption of a constant
dynamic friction does not warrant fault healing [Freund,
1979; Heaton, 1990], the latter is artificially imposed at the
trailing edge (x = 0); possible physical mechanisms of fault
healing are discussed in Section 3. Upon nondimensiona-
lization using variables in equation (18), equation (5) gives
rise to the following formula for the along-fault temperature
variations in the middle of the slip zone (y = 0) and the slip
velocities described by equation (20),

(20)

€dt
Vi-¢

Solutions to equation (21) are shown in Figure 7 (also see
Appendix A). The near-tip structure of the temperature field
due to a steady state pulse is similar to that due to a self-
similar expanding crack (compare Figures 2 and 7). At the
leading edge of an infinitesimally thin shear pulse there is a
thermal shock of amplitude 7" (equation (18)). The fault
temperature monotonically decreases toward the healing
front, where the temperature falls to about one half of the
maximum value (Figure 7 and Appendix A). For “thick”
pulses (w > 1), the fault temperature increases toward the
healing front proportionally to the amount of slip. For
intermediate fault thicknesses of the order of unity, the
initial fault heating behind the rupture front eventually gives
way to cooling before the arrival of the healing front. This
behavior is qualitatively different from the temperature
variations on a surface of an expanding crack, which
indicate a progressive heating at every point along the crack
as long as the rupture continues (Appendix A). The inferred
cooling toward the healing front of the steady state pulse for
w < 5 is caused by a decreasing heat generation due to a

VT

=57 /x ot [2\/2(X =)

21
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Figure 7. Variations of the nondimensional excess
temperature 0(y) along a self-healing pulse. Labels denote
the nondimensional thickness of a slipping zone w (see
equation (18)).

vanishing slip velocity, and efficient removal of heat by
thermal diffusion. For the characteristic risetimes a/V,. of the
order of seconds, the steady state LEFM pulses need to be
thicker than 51/2ka/V, ~ 1 cm to experience maximum
temperatures at the healing front. Simulations including a
process zone at the leading edge of a pulse predict a near-tip
temperature field that is analogous to that due to a self-
similar crack (e.g., Figure 5a).

3. Discussion

[14] Theoretical modeling of the coseismic frictional
heating (Figures 2 and 7) indicates that the effective
thickness of the earthquake slip zone controls not only the
magnitude of the temperature increase, but also where on a
fault the maximum temperature is reached. The intrinsic
length scale that separates the thin fault heating (character-
ized by the inverse proportionality between the fault tem-
perature and the amount of slip) from the thick fault heating
(in which the temperature is directly proportional to slip) is
the thickness of the thermal boundary layer /2xf.
For typical risetimes of moderate-to-large earthquakes of
t=1-10 s, the corresponding length scale is of the order of
several millimeters (assuming a purely conductive cooling)
or greater (if the heat advection by pore fluids is non-
negligible). There is field evidence that the primary slip
surfaces of major crustal faults may have widths of the order
of 1 cm or less [e.g., Sibson, 1975; Suppe, 1985; Chester
and Chester, 1998]. While faults are also known to be
associated with considerably wider (1—10° m), and possibly
scale-dependent zones of damaged rock with reduced
effective elastic moduli [Scholz, 1990; Ben-Zion, 1998;
Fialko et al., 2002; Vidale and Li, 2003], it is conceivable
that these macroscopic compliant fault zones do not accom-
modate significant inelastic shear strain. In particular, wide
damage zones may be a result of volumetric deformation
generated off the fault plane by passing rupture fronts, and/
or multiple earthquakes on subparallel slip planes within the
fault zone. The characteristic thickness of a layer that
accommodates the bulk of slip in individual earthquakes
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is poorly known, especially at the seismogenic depths.
Laboratory experiments and theoretical modeling indicate
that shear deformation of rocks tends to produce an extreme
slip localization that is ultimately limited by the rock
microstructure (e.g., grain size) [Sammis et al., 1987; Mora
and Place, 1994; Scruggs and Tullis, 1998; Sleep et al.,
2000]. If so, both the thin and thick fault heating regimes
discussed above might be relevant to earthquakes.

[15] The magnitude of maximum temperature perturba-
tions due to frictional heat dissipation on a surface of a crack-
like earthquake rupture is shown in Figure 8 for a range of
the slip zone thicknesses 2w. A transition from a thick to a
thin fault heating regime results in a change in scaling of the
maximum temperature with time from AT o ¢ to AT o /4,
respectively. This transition occurs at a characteristic time
t. = 2w?/k (i.e., corresponding to w = 1). Using the
laboratory-derived estimates of fault friction at the seismo-
genic depths of the order of the o, = 10® Pa [e.g., Byerlee,
1978], solutions to equation (14) suggest that faults that are
thinner than a few meters are capable of generating the
coseismic temperature increases of the order of 10—103 K.
In case of high friction, the melting temperatures are likely to
be reached before the transition from a thick to a thin fault
heating regime, even for faults that are as thin as a few
millimeters (solid lines in Figure 8). Only extremely localized
faults slipping under a low dynamic friction are predicted to
experience such a transition (see dashed lines in Figure 8
corresponding to o, = 107 Pa). Note that the magnitude of the
temperature increase is proportional to the dimensionless
group o,V,ew/cpr (equations (10) and (11)), so that the
maximum temperatures due to loading conditions other than
those assumed can be readily obtained by a simple rescaling
of the dimensional results shown in Figure 8 (e.g., a factor of
2 decrease in the assumed strain drop ¢ would result in a
factor of 2 decrease in AT, and so on).

[16] As one can see from Figure 8, thermal effects are
expected to be especially significant for faults with highly
localized slip zones (i.e., having characteristic thicknesses
of the order of 0.1 m or less) [also, see Sibson, 1977,

Slip, m
2 —1 0
10° 10 1Q _ /19
M o - Z30
. 5 QAT -7 o
% «4\6\ Y- = vlﬁv“
O 102L -7 g
E’ 10 /////
g ,,\0‘“
Siop S
3
= /00“\ A
o Wz Wz
10 = 3 0 4
10 10 10 10

Rupture duration, s

Figure 8. Coseismic temperature increases on the surface
of a mode II LEFM crack, as a function of the rupture
duration #, and the slip zone thickness 2w. Solid lines
correspond to the dynamic friction o, = 10® Pa, and dashed
lines correspond to o, = 10 Pa. All calculations assume
V.=3km/s, e=10""% k= 10"° m%s, and ¢ = 10° J/kg/K.
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Cardwell et al., 1978; Kanamori and Heaton, 2000].
Theoretical results presented in Section 2 describe thermal
evolution of the slipping fault prior to the onset of the
thermally induced variations in friction, and become inap-
plicable after the constitutive properties of the slipping fault
surface are substantially modified by the coseismic temper-
ature perturbations. Thermally activated mechanisms that
may affect the fault resistance to shear include thermal
pressurization [Sibson, 1973; Lachenbruch, 1980; Mase
and Smith, 1987; Segall and Rice, 1995], frictional melting
[Jeffreys, 1942; McKenzie and Brune, 1972; Sibson, 1975;
Maddock, 1986], and flash heating of fault asperities [Rice,
1999]. These mechanisms are generally believed to result in
a substantial fault weakening, and increases in the earth-
quake stress drop. Given a possibility of a feedback between
the dynamic fault friction and the coseismic heating, calcu-
lations shown in Figures 2, 5, and 7 predict quite different
slip histories for thick and thin faults. For thick (w > 1)
crack-like ruptures (Figure 1), the initial phase of unstable
slip is expected to have a relatively low stress drop. The
onset of the thermally induced weakening occurs around the
earthquake nucleation site, and is followed by a secondary
rupture phase with a higher stress drop propagating toward
the rupture front. The initiation of the secondary high stress
drop phase corresponds to a characteristic rupture size
2wATeploze, where o, is the dynamic fault friction prior
to thermal weakening, and AT is the activation temperature.
Assuming the fault thickness of 10 cm, the activation
temperature of the order of 10* K, and the fault friction of
the order of 10® Pa [Byerlee, 1978], the corresponding
rupture size is of the order of hundreds of meters to
kilometers for typical earthquake strains of 10~%—107>,
respectively. There is no tendency for a transition from a
crack-like to a pulse-like rupture mode, as the central part of
a crack continues to weaken with increasing temperature.
Pulse-like ruptures that are thicker than 5w (~1 cm assum-
ing conductive cooling and typical risetimes of the order of
seconds) are likely to experience highest temperatures at the
healing front, so that in case of thermal weakening and thick
faults, healing is ought to be caused by nonthermal mech-
anisms. In contrast, thin (w < 1) elastodynamic instabilities
may thermally weaken near the rupture front, so that the
region of high stress drop will propagate in the direction
opposite to the rupture direction until it reaches the nucle-
ation site. The initiation of the secondary high stress drop
phase corresponds to a characteristic rupture size
k(A Tep)*/V(o4€)*. Note that the thermal weakening can
occur nearly instantaneously along a significant portion of a
slipping fault (Figures 2 and 7). In case of an extreme slip
localization, or provided that the tip process zone substan-
tially perturbs the near-tip temperature field, the temperature
weakening might be one of the physical mechanisms
causing healing of the pulse-like earthquake ruptures. How-
ever, there is still no tendency for a transition from a crack
to a pulse mode of propagation.

[17] If the initial frictional heating does not result in a
substantial fault weakening (e.g., in the absence of pore
fluids, or due to high dynamic permeability of the fault
gouge zone during rupture), continued slip on faults that are
thinner than 1—-10 cm may produce temperature increases of
the order of several hundred degrees (Figure 8), sufficient to
cause melting. While it is commonly believed that the onset
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of melting results in a dramatic drop in the fault friction
[Jeffreys, 1942; McKenzie and Brune, 1972], there exist
theoretical arguments and laboratory data suggesting that a
transition from frictional to viscous sliding may be in fact
accompanied by considerable increases in the dynamic fault
strength.

[18] For shallow crustal faults, the frictional stress on a
fault o, is presumed to obey an empirical Mohr-Coulomb
relationship,

a7 < p(on = p), (22)
where |1 is the effective coefficient of friction, o, is the fault-
normal stress, and p is the pore fluid pressure. The direct
proportionality between the shear and normal stresses in
equation (22) is a consequence of an imperfect contact
between the sliding rock interfaces [Bowden and Tabor,
1954; Byerlee, 1978]. Laboratory experiments suggest that
most of the resistance to slip comes from a relatively small
contact area between riding asperities that are likely to
sustain much higher stress than o [e.g., Teufel and Logan,
1978]. Given sufficiently high slip rates, temperature
increases on such contacts may result in weakening of the
asperities (e.g., via plasticity, dislocation creep, microscopic
melting, etc.). This weakening may manifest itself in an
apparent reduction in the frictional stress o, [Rice, 1999].
However, as the asperity contacts are progressively
weakened and flattened, the total contact area between the
mating surfaces is expected to increase, both at the expense
of the thermomechanical erosion of the asperities, and due
to accumulation of melt in the “lowlands”. This increase in
the total contact area may in principle offset the reduction in
the peak stress supported by the asperities, so that the
overall frictional resistance to sliding may increase. A
spectacular increase in shear stress at the onset of
macroscopic melting has been observed in the rotary shear
experiments of Tsutsumi and Shimamoto [1997] at sliding
velocities of 70 cm/s. A similar transient strengthening is
also reported in the high-speed rock sliding experiments of
Spray [1993].

[19] After a continuous film of melt is formed on a fault
surface, most of the resistance to slip comes from viscous
deformation of a melt layer, rather than a Mohr-Coulomb
friction (equation (22)). Assuming that the melt has a
Newtonian rheology, the viscous stress o, due to simple
shear of fluid between two parallel surfaces (Couette flow)
is given by [e.g., Turcotte and Schubert, 2002, p. 229]

_ Dy

2w’ (23)

Oy

where D is the sliding velocity (hereafter, the dot operator
denotes differentiation with respect to time z, f = 9f/0f), 1 is
the dynamic melt viscosity, and 2w is the thickness of the
melt layer. Viscosity of silicate melts varies greatly. For
supersolidus crystal-free granitic melts, 1) is of the order of
10*~10® Pa s, depending on a volatile content [McBirney,
1993; Rubin, 1995]. A comparison of equations (22) and
(23) suggests that frictional fusion does not necessarily
imply a drop in shear stress on a fault surface. For example,
assuming D = 1 m/s, 1= 10° Pa s, and 2w = 1 mm, from
equation (23) one obtains a shear stress of ~1 GPa, of the
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order of the theoretical strength of crystalline rocks, and an
order of magnitude greater than the average Mohr-Coulomb
failure stress for the upper crust (equation (22)) [Scholz,
1990, p. 136]. Mafic melts have considerably lower
viscosities O(10—107) Pa s, and are likely to provide smaller
viscous resistance during incipient melting. Nonetheless,
increases in the apparent frictional resistance of gabbro
reported in the high shear rate experiments of Tsutsumi and
Shimamoto [1997] suggest that melting of mafic rocks may
as well result in viscous braking. Factors that might
contribute to increases in the effective viscosity of frictional
melts include a high volume fraction of solid particles,
viscoelastic effects, and nonlinear melt rheology at high
strain rates.

[20] If the onset of melting is accompanied by increases
in shear stress exceeding the static friction, or the intrinsic
rock strength, the fused fault may be abandoned, and the
slip may be transferred to a new subparallel plane. Sidewall
rip-out structures associated with some pseudotachylite-
bearing faults [e.g., Swanson, 1992] may be an example
of such a thermally induced “defocusing” of seismic slip.
Similarly, Otsuki et al. [2003] describe subparallel sequen-
ces of millimeter-wide pseudotachylite layers in the exposed
core of the Nojima fault in southwest Japan. While they
suggest that the total number of the observed pseudotachy-
lite layers is representative of the number of past earth-
quakes on the fault, it is possible that the multiple melt
layers could be produced during individual earthquakes by
slip transfer due to viscous braking. The progressive jump-
ing of the slip surfaces in the fault-perpendicular direction
might contribute to an increase in the effective fracture
energy of an earthquake. If the available driving stress is
insufficient to initiate sliding on a new surface, the slip
velocity will initially decrease. The subsequent evolution of
slip depends on the thickness of the formed melt layer.
Provided that the driving shear stress is constant, there is a
critical thickness that separates the layers that monotonically
decelerate and ultimately freeze from those that eventually
accelerate and localize strain, resulting in a so-called thermal
runaway [Fialko, 1999]. The timescale corresponding to the
transition from viscous braking to lubrication is controlled
by rheologic properties of the friction-generated melts. A
necessary condition for melt lubrication to occur is that the
timescale for thermal runaway is small compared to the
duration of seismic slip. A detailed analysis of the thermo-
dynamics of frictional melting is hindered by the lack of
empirical data pertinent to the rheologic properties of silicate
melts at strain rates O(10°—10%) s~ ' that might be typical of
seismic slip.

[21] The transient thermal strengthening may affect the
earthquake rupture in several ways. If the near-solidus
temperatures are first reached near the rupture front (i.e.,
for w < 1), they might give rise to fault branching and
increases in the effective fracture energy, as discussed
above. If the onset of viscous braking occurs near the crack
center (i.e., for w > 1), the resulting patch of high friction is
expected to extend toward the rupture front. If the patch size
becomes large compared to the crack size, the crack
propagation may be ultimately terminated. Faults having
thickness of the order of the thermal boundary layer,
w ~ O(1), are most vulnerable for the thermal lock-up
(see Figure 2). Finally, if the length of the crack segment
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Table 1. Slip Pulse Characteristics of Some Earthquakes and the
Inferred Lower Bound on Dynamic Friction®

Event Year Magnitude Risetime, s Dy, m 04 MPa
Michoacan 1988 8.1 5.0 6.5 32
Borah Peak 1983 7.3 0.6 1.47 5.0
San Fernando 1971 6.5 0.8 2.5 34
Imperial Valley 1979 6.5 1.0 1.8 53
Morgan Hill 1984 6.2 0.3 1.0 5.2
Palm Springs 1986 6.0 0.4 0.45 13.4
Coyote Lake 1979 5.9 0.5 1.2 5.6

iSee Heaton [1990]. Assumed thermophysical parameters are A7 =
500 K; thermal diffusivity k = 10~° m?/s; heat capacity ¢ = 10 J/kg; rock
density p = 2.7 x 10° kg/m>.

between the rupture front and the melting front is greater
than the critical length for the dynamic instability (i.e., the
length of an equilibrium crack on the verge of propagation),
there may be a transition from the bilateral crack to the
unilateral pulse propagation. That is, as the central section
of the crack becomes permanently locked once the temper-
ature approaches solidus, the expanding melting front
becomes the healing front of a pulse of slip trailing the
rupture front. In this scenario, the slip occurs as long as the
fault surface remains subsolidus. A necessary condition for
the pulse healing due to thermal strengthening is that the
fault has to be sufficiently thick compared to the diffusion
length scale (to ensure the along-fault increases in temper-
ature, see Figures 2 and 7), yet sufficiently thin to raise
temperature to solidus (see equations (1) and (18)),

OdD

S5V2kt <2
Kt < W<ATcp

. (24)

Equation (24) suggests the following lower bound on the
level of the dynamic friction o,

- 5vV2ktATcp

A (25)

Od

All parameters on the right hand side of equation (25) can
be either inferred from laboratory measurements (i.e., the
thermophysical constants k, ¢, and p), or determined from
seismic data (i.e., the risetime ¢ and the slip amplitude D).
Table 1 lists the observational data for several pulse-like
earthquake ruptures compiled by Heaton [1990], along with
the respective estimates of the minimum dynamic fault
friction calculated using equation (25), assuming the
activation temperature A7 = 500 K. While the seismic
energies of earthquakes listed in Table 1 differ by more than
two orders of magnitude, the inferred lower bound on the
dynamic friction is essentially independent of the earth-
quake size, and is found to be of the order of several
megapascals. This is comparable to the earthquake stress
drops, but significantly smaller than the average Mohr-
Coulomb strength of the upper crust (assuming Byerlee’s
friction and hydrostatic pore pressures). Assuming that
viscous braking is the mechanism responsible for pulse
healing, it can be argued that the actual dynamic friction
cannot significantly exceed the lower bound (equation (25)).
This is because an increase in the fault thickness necessary
to offset the higher friction imply an increase in the
thickness of the fused layer, which may ultimately render
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the viscous braking inefficient (equation (23)). Other
mechanisms proposed to explain the short duration of
seismic slip, and the pulse-like mode of rupture include
stress heterogeneities [e.g., Day, 1982; Beroza and Mikumo,
1996], strong velocity weakening [Perrin et al, 1995;
Zheng and Rice, 1998], and slip between dissimilar material
interfaces [Ben-Zion and Andrews, 1998]. It is possible that
a variety of mechanisms may be responsible for the
observed short risetimes of large earthquakes.

[22] Field observations of pseudotachylites (veins of dark
aphanitic rock in the cores of the exposed fault zones) are
evidence that at least in some cases the coseismic frictional
heating is sufficiently robust to produce macroscopic melt-
ing [Price, 1970; Sibson, 1975; Wallace, 1976; Swanson,
1992; Wenk et al., 2000]. However, pseudotachylites are not
commonly found in the majority of the exposed fault zones.
Assuming hydrostatic pore pressures and Byerlee’s friction
[Byerlee, 1978], melting during moderate-to-large earth-
quakes can be prevented only if seismic slip is distributed
over a zone having thickness of the order of tens of
centimeters to meters (or greater). Even if the fault friction
is low (e.g., 04 < 20 MPa, sufficient to satisfy the heat flow
paradox of the San Andreas fault [Brune et al., 1969;
Lachenbruch and Sass, 1980]), melting seems unavoidable
if the thickness of a slipping region is less than a few
centimeters (Figure 8). The apparent paucity of pseudota-
chylites in thin cores of the exposed faults that presumably
produced earthquakes in the past [e.g., Chester and Chester,
1998] therefore constitutes what may be called a second, or
a local heat flow paradox. One possible explanation is that
pseudotachylites might ubiquitously form in situ, but not be
readily preserved in the exhumed rocks [Wallace, 1976].
The absence of melting might be also interpreted as evi-
dence for extremely low shear stresses associated with
faulting [e.g., Price, 1970]. An alternative possibility is that
the viscous braking arrests slip during early stages of
melting. This implies that the fault fusion is generally a
self-terminating process, and the formation of macroscopic
melt veins may require special circumstances (e.g., high
shear stress, favorable thickness of the slip zone, and
volatile-rich frictional melt). If so, greater efforts may be
warranted for obtaining field constraints on the maximum
temperatures experienced by seismogenic faults.

4. Conclusions

[23] T presented semianalytic solutions for fault heating
during seismic instabilities. The thermal history of seismic
slip is deduced for 2-D models of the elastodynamic shear
rupture. Self-similar solutions for the temperature evolution
on the fault surface are obtained for the case of a mode II
crack, and a self-healing pulse having a constant thickness
of the slip zone, and rupturing at a constant velocity.
Provided that friction on a slipping fault is constant (or
variations in friction are small compared to the subsequent
thermally induced stress perturbations), the along-fault
temperature distribution depends on a ratio of the fault
thickness to the thickness of the thermal boundary layer.
Faults that are thicker than the thermal boundary layer
experience maximum temperatures in the center (in case
of a bilaterally rupturing crack), or at the healing front (in
case of a pulse-like rupture). Conversely, faults that are
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thinner than the thermal boundary layer generate maximum
temperatures at the rupture front. For the observed earth-
quake risetimes of the order of seconds, and using the
laboratory values of the thermal diffusivity of ~10~° m?/s,
the corresponding transitional thickness is of the order of
millimeters. The near-tip temperature increases may be also
encouraged by high shear stresses acting in the crack tip
process zone. The thermal effect of the process zone is
inversely proportional to the fault thickness.

[24] The inferred along-fault temperature variations may
affect the pattern and amount of seismic radiation, depend-
ing on whether the fault rheology is temperature weakening
or temperature strengthening. The experimental measure-
ments of the rate and state dependent friction properties
indicate a modest temperature strengthening at low slip rates
[e.g., Blanpied et al., 1998]. However, it is believed that
such strengthening is offset by velocity weakening at high
(seismic) slip rates. Other models that explicitly consider the
effect of temperature on the dynamic fault friction, includ-
ing the thermal pressurization, and frictional melting,
assume that faults generally weaken at elevated temper-
atures. However, few available measurements of dynamic
friction at the seismic slip velocities reveal that the onset of
macroscopic melting (i.e., a transition from a dry friction to
a viscous rheology) may result in significant increases in the
fault resistance to shear. This resistance likely stems from
increases in the effective contact area between the fault
surfaces, and high viscosities of the frictionally generated
silicate melts. Transient increases in viscous stresses at the
onset of frictional fusion (termed “viscous braking’) may
affect the earthquake ruptures in several ways, including
(1) defocusing of seismic slip, (2) transition from a crack-
like to a pulse-like rupture mode, or (3) ultimate rupture
arrest. This implies that frictional fusion may be a self-
terminating process, which may explain a relative paucity of
pseudotachylites in the exposed fault zones. Assuming that
the viscous braking is a dominant mechanism for healing of
narrow slip pulses, a combination of theoretical results
presented in this paper with seismologically determined
characteristics of several pulse-like earthquakes [Heaton,
1990] allows one to place a lower bound on the dynamic
fault friction of the order of several megapascals.

[25] The semianalytic solutions for the thermal evolution
of shear instabilities have been verified with the fully
numerical finite difference simulations. The finite difference
model can be readily used to perform more sophisticated
simulations accounting for, e.g., the along-fault variations in
the dynamic friction and the thickness of the gouge layer, as
well as the coupling between the local shear stress, temper-
ature, and slip rate. Such simulations are not yet warranted
due to a lack of empirical data describing the fault zone
properties and the characteristic seismic strain rates. Further
understanding of the energetics of faulting requires labora-
tory investigations of the rheologic properties of the fric-
tionally generated melts at high strain rates, and constraints
from field observations on (i) the range of fault thicknesses
involved in individual slip events, and (ii) the average
temperatures attained on the surface of exposed faults that
presumably generated seismic events in the past.

[26] The feedbacks between the frictional heat generation,
the temperature dependent fault resistance to shear, and the
seismic radiation are likely to result in a wide range of
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possible behaviors, implying a significant richness and
complexity in the earthquake rupture dynamics. As seismic
and geodetic observations in the near field of large earth-
quakes provide an increasingly detailed view of the rupture
histories [Wald and Heaton, 1994; Beroza and Mikumo,
1996; Olsen et al., 1997; Ide and Takeo, 1997], future
models of the earthquake source may benefit from explicitly
considering the thermodynamic effects of faulting.

Appendix A: Solutions for Coseismic Heating in
the Limit of Zero Fault Thickness

[27] For an infinitesimally thin LEFM crack (w — 0) one
may take advantage of the limiting relationship

erf(xk) 2
,1133 x &S b, (AD)
and reduce equation (14) to
1! d
o) =5 [ . (A2)
X
- (2)

A further evaluation of equation (A2) leads to elliptic
integrals, and so one must resort to numerical integration.
The latter is somewhat complicated by the fact that the
integrand is singular on both limits of integration. Therefore
special treatments, such as analytical removal of singula-
rities, and custom integration quadratures, are needed for an
accurate solution to equation (A2).

[28] A numerical solution to equation (A2) is shown in
Figure 2 (case w = 0). The temperature on a perfectly sharp
mode II crack monotonically increases from the crack center
(x = 0) toward the crack tip (x = 1). The exact values of the
nondimensional temperature at the crack center and the
crack tip can be readily obtained from equation (A2),

1t dg
9(0):5/0 172_:1, (A3)
I T L S I
W =55 lm | e v 9

The temperature at the crack tip exceeds the temperature at
the crack center by about 10%, in agreement with numerical
calculations shown in Figure 2.

[20] Note that the along-crack increases in the dimension-
less temperature 6 inferred for thin shear cracks (Figure 2)
do not imply that the crack walls cool off behind the
propagating rupture front. It can be shown using
equations (8) and (14) that the time derivative of the
(dimensional) temperature,

or _o(6T) T ox . T (0 o0
o *E“E&T*?(TX&)’ (A3)

is positive at any point along the crack. In particular, for
perfectly sharp cracks (w = 0), 6/2 > 0.5, while x06/0x <
max(00/0x) < 0.2 (see Figure 2), so that the temperature on
the crack surface 7(x, 0, ¢) steadily increases with time. The
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characteristic rate of the temperature increase is proportional
to the inverse square root of time, 7/t ox ¢ ', as expected
of a conduction-dominated heat transfer [e.g., Carslaw and
Jaeger, 1959].

[30] Let’s now consider a temperature rise due to an
infinitesimally thin self-healing pulse. For the case w —
0, equation (14) becomes

e (S
o) =5 [ e
x VE—XVI—¢
A numerical solution to equation (A2) is shown in Figure 7

(w=0). The nondimensional temperature at the healing front
of the pulse is obtained by putting x = 0 in equation (A6),

(A6)

6(0)—1 b VEde  /al(3/4)
2 )y VI=E  T(1/4)

where I is the factorial function, I'(x)= [3°¢* le™'dt. Fory =1
(i.e., at the pulse tip), equation (A6) reduces to equation (A4).
Thus, for an infinitesimally thin self-healing pulse, the
temperature at the rupture front exceeds that at the healing
front by almost a factor of 2 (Figure 7).

[31] Unlike in the case of a self-similar crack, the instan-
taneous temperature behind the rupture front of a self-
healing pulse may either increase or decrease, depending
on the nondimensional pulse thickness w,

~ 0591, (A7)

Q|
2%

or_ox .,
ot ot ox

I

T. (A8)

Equations (AS8) and (18) indicate that the temperature
evolution on the surface of a steady state pulse is controlled
by the slope of the 6(x ) curve, implying heating for 96/0x <0
(w > 1), and cooling for 90/0x > 0 (w < 1, see Figure 7).

Appendix B: Analytic Expressions for Particle
Velocities Due to a 2-D Crack With a
Slip-Weakening Process Zone

[32] Because the equilibrium equations are identical for
mode I (tensile) and mode II (in-plane shear) loading,
solutions for mode II cracks can be readily obtained from
the mode I solutions by replacing normal stresses and
displacements with shear stresses and displacements.

[33] Let o(x) be a distribution of shear stresses acting on a
crack surface, and o, be a far-field shear stress prior to
faulting. The crack slip that satisfies equations of elastic
equilibrium is given by [e.g., Khazan and Fialko, 1995,
equation (11)],

D()—%/ﬁd/%

The finiteness of stresses at the crack tip is ensured by
requiring that the stress intensity factors at the crack tips are
Zero,

. (B1)

o(x) — 0o

Vet

(B2)
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(see Khazan and Fialko [1995] for details). In general,
solutions to equation (B1) may be obtained numerically for
an arbitrary slip-weakening law and a driving stress
distribution (o( — o(x)) that satisfies constraint equation (B2).

[34] For a piecewise constant symmetric distribution of
frictional stresses on the crack surface, as shown in Figure 4
in the main text,

o4, |x| <a—Ar
o(x) = (B3)

o5, a—Ar <|x| <a,

evaluation of equation (B2) provides an expression for the
length of the equilibrium process zone Ap

Ar i rox—co}
— =1—sin|= .

a 2 0y — 0y

(B4)

Equation (B1) can be as well integrated analytically
yielding expressions for both the displacement and the
displacement gradient as functions of the nondimensional
along-crack coordinate x = x/a,

o) 20 6, — aF(x,D) ~ Flx~L) - (B5)
2a(1 —v)
D(x)= BT (0 = 0a)[(X + L)F(x, L) = (X = L)F(x, —L)],

(B6)

where L = 1 — Ay/a is the nondimensional length of the
crack behind the process zone, and function F' is given by

1-UH(1 -7 +UV +1
U+v ’

F(U,V)=log (B7)

Particle velocities on the crack surface can then be
calculated using equation (1) in the main text.

[35] Although equilibrium solutions presented above
describe quasi-static cracks, they can be also used to
analyze the dynamic crack propagation provided certain
conditions, such as the constant subsonic rupture velocity,
and small-scale yielding (i.e., 1 — L < 1) are met
[Broberg, 1978; Rice, 1980]. In a coordinate frame of a
moving crack tip, the near-tip displacement profile expe-
riences a relativistic shrinking by a factor  that is a
function of the ratio of the rupture velocity ¥, to a limiting
velocity V; (V; being the Rayleigh wave velocity for mode I
and Il cracks, and shear wave velocity for mode Il
cracks). The function B(V,/V,) assumes values from unity
to infinity as the ratio V,/V, varies from zero to unity [e.g.,
Andrews, 1976; Freund, 1998, p. 234]. The size of the
dynamic process zone is given by A4 = A/B, where Ay
is the equilibrium process zone length for a quasi-static
crack (equation (B4)). The process zone becomes shorter
as the rupture speed increases, up to vanishing when
the limiting rupture velocity is approached (V, = V)
[lda, 1972]. This is the LEFM limit, and the solution in
Section 2.1.1 is retrieved.
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[36] Introducing an effective fracture energy as a work
required to evolve the stress on a crack surface from oy to
o4, Go = Doy, — o4), where D, is the critical slip-
weakening displacement at the base of the process zone
(x = L), from equation (B6) one obtains

4a(l —v)

TH

1
G, = (05 — od)zL logz (B8)

For a constant rupture velocity V,. < ¥}, the assumption of a
self-similar crack growth implies L = const. It follows that
the fracture energy G, the slip-weakening displacement D,
and the process zone length Az are all assumed to linearly
increase with the crack length.

[37] Since the temperature increases due to faulting
considered in Section 3 are nondimensionalized using a
characteristic strain drop e, it is necessary to express € in
terms of the imposed boundary conditions and material
properties for comparisons between different crack geome-
tries and loading conditions. Making use of equations (B6)—
(B7), one obtains

41— 1+ V112
=Y 5, — o)L tog VI =L

a T L

(B9)

For the LEFM crack (L — 1), equations (B9) and (B4)
reduce to

2(1 —v)

€= (00 — 04). (B10)
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