Outline

- Recap
- Tutorial
- Example
 - What parameters did we use?
 - What results did we get?
 - What could we have done better?
- Where do we go from here?
Previously in geodesy seminar...

- **Ingredients:**
 - Rinex files for campaign stations
 - A few continuous stations for anchoring the solution
 - Log sheets
 - Tables

- **Simplified recipe:**
 - `sh_gamit` – obtain positions
 - `sh_glred` – compute repeatabilities
 - `globk` – velocities
Sources of error:

- Troposphere (mainly water vapor)
- Ionosphere
- Multipath
- Unmodeled motions of the station
- Misbehaving receiver
- Stabilization
Previously in geodesy seminar...
Previously in geodesy seminar...
Previously in geodesy seminar...
- Obtain daily positions
 - Choose continuous sites (as many as you can!)
 - Constrain solution for one station (or more, but be careful!)
 - Get good *a priori* coordinates for continuous and campaign stations
 - Iterative solution
GLRED/GLOBK

- GLOBK is a smoothing Kalman filter and can incorporate random walk process noise in its estimation (method for accounting for temporally correlated noise in time series).
- Combines daily solutions into survey average. Combines many years of data to generate position, velocity, offset, and postseismic parameter estimates. Not uncommon to have 10000 parameters in these solutions.
- GLRED and GLOBK are the exact same thing.
- To do most of the dirty work, GLOBK invokes GLORG.
Applies constraints.
Performs stabilization.
Aligns sites to chosen reference frame.
Computes covariance matrices for your Kalman filter.
For a small network, pos_org and rate_org: xtran ytran ztran, NOT xrot, yrot, zrot

To down-weight noisy segments or equalize continuous and survey-mode data in a combined h-file, can add random noise (units are m)
- sig_neu all .001 .001 .003
- sig_neu ankr .005 .005 .020 2002 10 1 0 0 2002 11 30 24 0
- sig_neu EMED0504 .010 .010 .1

To account for temporal correlations in time series we typically use random-walk (RW) process noise with the mar_neu command (units m²/yr)
This is a way of tying your solution to a reference frame.

Need 4 or more stabilization sites for estimating translation.

A stabilization site should have

- high quality data over the full span of your study
- coordinates well-known in ITRF2008, to tie your solution to the global network.

You can use sites that do not have well-known ITRF coordinates, if you are sure they are of high quality and you included them in your GAMIT solution.
Stabilization

- **stab_site**: list of sites used in stabilization.
- **stab_it**: number of iterations, and sigma-cutoff to remove a site.
Non-linear effects

- Earthquakes
- Non-documented effects
- Use eq_file to get updated position and velocity solutions.
- Make sure eq_file matches your data.

2010-04-04 M_w7.2
What can go wrong?

- **globk**
 - H-files not used: removed automatically for high chi2, coordinate adjustment, or rotation (max_chii command)
 - High chi2 increment: inconsistent data. Can be an issue when estimating orbits (RELAX mode) if MIT GLX file use different modelling (e.g. Albedo, gravity field)
 - Station “missing”: not present in h-file or renamed out (use glist)

- **glorg**
 - Stabilization fails: too-few sites in stabilization
 - Large uncertainties: poor stabilization
 - Too-small uncertainties for some stabilization sites: rotation parameters absorbing coordinate adjustment
 - High chi2 in equate: inconsistent data
 - Wrong velocity for equated sites: unmatched apriori
Where’s the fault?
Previously in geodesy seminar...
Velocities
Velocities

Missing sites?
What could we do better?

- Choose more continuous sites at the beginning.
- Include more sites with well-known a priori coordinates in stab_site list (4 or more).
- Add 0.5 of white noise to the continuous GPS estimates to avoid overweighting continuous GPS position estimates (sig_neu)
- Apply random walk to campaign solutions to approximate correlated noise. (mar_neu)
- Constrain campaign solution.
- Play with various parameters until it works.
Velocities

<table>
<thead>
<tr>
<th>Long. (deg)</th>
<th>Lat. (deg)</th>
<th>E & N Rate (mm/yr)</th>
<th>E & N Adj. (mm/yr)</th>
<th>E & N ← RHO</th>
<th>H Rate (mm/yr)</th>
<th>H adj. ← SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>244.26496</td>
<td>33.06981</td>
<td>26.05 10.70</td>
<td>-2.05 -0.28</td>
<td>4.09 3.77</td>
<td>0.04</td>
<td>-0.75</td>
</tr>
<tr>
<td>244.17511</td>
<td>32.95470</td>
<td>31.07 13.13</td>
<td>-31.07 13.13</td>
<td>8.29 1.37</td>
<td>3.96</td>
<td>2.48</td>
</tr>
<tr>
<td>244.16328</td>
<td>33.18707</td>
<td>0.14 0.05</td>
<td>-0.14 0.05</td>
<td>905.20 905.20</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>244.13828</td>
<td>33.17909</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
<td>0.00 1000.00</td>
<td>1000.00 -0.000</td>
<td></td>
</tr>
<tr>
<td>244.11213</td>
<td>33.17681</td>
<td>-36.31 5.20</td>
<td>-36.31 5.20</td>
<td>8.86 9.08</td>
<td>3.16</td>
<td>-1.10</td>
</tr>
<tr>
<td>244.09900</td>
<td>33.12567</td>
<td>-18.07 2.88</td>
<td>-18.07 2.88</td>
<td>3.96 3.64</td>
<td>-9.09</td>
<td>9.09</td>
</tr>
<tr>
<td>244.05426</td>
<td>33.12591</td>
<td>-26.52 8.78</td>
<td>-26.52 8.78</td>
<td>7.28 4.84</td>
<td>16.39</td>
<td>16.39</td>
</tr>
<tr>
<td>244.03559</td>
<td>33.12562</td>
<td>-26.67 9.64</td>
<td>-26.67 9.64</td>
<td>4.75 5.55</td>
<td>16.81</td>
<td>16.81</td>
</tr>
<tr>
<td>244.02212</td>
<td>33.29223</td>
<td>-22.23 7.26</td>
<td>-22.23 7.26</td>
<td>2.06 3.77</td>
<td>17.14</td>
<td>17.14</td>
</tr>
<tr>
<td>244.01399</td>
<td>33.12561</td>
<td>-30.18 7.28</td>
<td>-30.18 7.28</td>
<td>4.55 5.91</td>
<td>1670</td>
<td>1670</td>
</tr>
<tr>
<td>244.00047</td>
<td>33.12560</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
<td>0.00 1000.00</td>
<td>1000.00 0.000</td>
<td></td>
</tr>
<tr>
<td>243.96487</td>
<td>33.12548</td>
<td>-31.32 9.41</td>
<td>-31.32 9.41</td>
<td>9.41 4.29</td>
<td>22.75</td>
<td>22.75</td>
</tr>
<tr>
<td>243.91466</td>
<td>33.08068</td>
<td>-33.89 15.85</td>
<td>-33.89 15.85</td>
<td>5.50 7.08</td>
<td>14.34</td>
<td>14.34</td>
</tr>
<tr>
<td>243.91112</td>
<td>33.13467</td>
<td>34.44 8.33</td>
<td>34.44 8.33</td>
<td>8.33 4.08</td>
<td>14.34</td>
<td>14.34</td>
</tr>
<tr>
<td>243.88729</td>
<td>33.29621</td>
<td>-27.36 8.06</td>
<td>-27.36 8.06</td>
<td>8.06 4.28</td>
<td>14.34</td>
<td>14.34</td>
</tr>
<tr>
<td>243.87746</td>
<td>33.14254</td>
<td>-31.65 12.82</td>
<td>-31.65 12.82</td>
<td>8.32 9.85</td>
<td>14.34</td>
<td>14.34</td>
</tr>
<tr>
<td>243.83416</td>
<td>33.15881</td>
<td>-33.85 16.70</td>
<td>-33.85 16.70</td>
<td>4.07 10.36</td>
<td>14.34</td>
<td>14.34</td>
</tr>
<tr>
<td>243.81603</td>
<td>33.21533</td>
<td>-31.88 11.96</td>
<td>-31.88 11.96</td>
<td>1.48 10.06</td>
<td>14.34</td>
<td>14.34</td>
</tr>
<tr>
<td>243.75297</td>
<td>33.15982</td>
<td>-46.27 12.15</td>
<td>-46.27 12.15</td>
<td>12.15 5.52</td>
<td>14.34</td>
<td>14.34</td>
</tr>
<tr>
<td>243.67771</td>
<td>33.26019</td>
<td>-33.33 13.71</td>
<td>-33.33 13.71</td>
<td>0.81 3.02</td>
<td>14.34</td>
<td>14.34</td>
</tr>
<tr>
<td>243.59823</td>
<td>33.03906</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
<td>0.00 1000.00</td>
<td>1000.00 0.000</td>
<td></td>
</tr>
<tr>
<td>243.58830</td>
<td>33.13100</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
<td>0.00 1000.00</td>
<td>1000.00 0.000</td>
<td></td>
</tr>
</tbody>
</table>

VEL STATISTICS: For 2 Sites WMRMS ENU 2.86 0.28 0.72 mm/yr NRMMS ENU 0.78 0.07 0.29 hw78.gsl
What’s up with these uncertainties?
Velocities

What are these arrows pointing to?
Reference Frames

- Align the estimated site positions and possibly velocities to a set of well-defined locations.
- By default, ITRF08 is used.
- Popular options for campaign GPS:
 - North American ref. frame
 - Regional ref. frame
 - Local ref. frame
- Apr files for certain ref. frames are included in GAMIT/GLOBK, you can specify them instead of ITRF.
- Use “velrot” to rotate velocities into a reference frame that you like.
What now?

- We need velocities in the fault-parallel direction to quantify deformation.
- Use velrot to rotate velocities to fault azimuth (46 degrees West).
Deformation across southern SJF

- Elsinore Fault
- Coyote Creek Fault
- San Andreas Fault
Questions