1) Derive a second-order accurate finite difference equation for a first derivative du/dx that uses a “one-sided” stencil - that is, values u_{i-2}, u_{i-1} u_i (or u_i, u_{i+1}, u_{i+2}) to evaluate the derivative of u at point x_i.

2) Determine the order of accuracy of the following FD equation to the PDE

$$u'_t + vu'_x = 0,$$

$$u_{i,j+1} = u_{i,j-1} - \frac{v\Delta t}{\Delta x}(u_{i+1,j} - u_{i-1,j})$$

where $v = \text{const}$, and indexes i and j correspond to discrete values of $u(x_i, t_j)$.

3) Implement a finite difference solution to the flux-conservative initial value problem

$$u'_t + vu'_x = 0,$$

on an interval $x=[0 1]$, subject to the initial condition $u(x, 0) = \sin(4\pi x)$ and boundary condition $u(0, t) = 0$. Assume $v = 1$. Use the first-order FD approximation for the time derivative u'_t, and the following FD approximations for u'_x: (i) first-order upwind scheme; (ii) second-order centered scheme; (iii) second-order centered scheme with the Lax substitution ($u_{i,j} \rightarrow \frac{1}{2}(u_{i+1,j} + u_{i-1,j})$). Choose Δx to ensure an adequate spatial resolution of your solution (a simple visual inspection will suffice for now), and explore how your FD solutions depend on a time step Δt.