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We review recent results concerning the theology of the lithosphere with special attention to 
the following topics: 1) the flexure of the oceanic lithosphere, 2) deformation of the continental 
lithosphere resulting from vertical surface loads and forces applied at plate margins, 3) the 
theological stratification of the continents, 4) strain localization and shear zone development, and 
5) sCrain-induced crystallographic preferred orientations and anisotropies in body-wave velocities. 
We conclude with a section citing the 1983-1986 rock mechanics literature by category. 

INTRODUCTION 

Improved geophysical observations, continuum me- 
chanical modeling, and application of laboratory 
measurements of mechanical properties of rocks to 
problems associated with plate dynamics have led 
to advances during the period 1983-1986 in our 
understanding of the rheology of the earth's lithosphere. 
Rheological models for the oceanic lithosphere, applied 
to large-scale deformations at plate boundaries and 
within plate interiors, have been further developed using 
elastic, elastic-plastic, and viscoelastic formulations. 
These models have been further refined by incorporating 
nonlinear stress and temperature dependencies into the 
viscous response of Maxwell-type viscoelastic rheological 
models, consistent with experimental measurements 
of the mechanical properties of rocks at elevated 
temperatures. In addition to flexure at trench-rise 
systems, deformation of the oceanic lithosphere has 
been examined within plate interiors in response to 
large horizontal compressional forces and thermally- 
derived stresses, and constrained by measured ocean 
floor topographic profiles, marine geoid anomalies, and 
the distributions and focal mechanisms of earthquakes. 

Rheological models for the continental lithosphere 
have likewise emerged in this quadrennial period, 
based upon a continuum approach to the large-scale 
structures developed in diverse tectonic settings, and 
upon experimentally-determined mechanical responses 
of crustal and mantle lithologies. The mechanical 
behavior of the confiuental lithosphere is coinplicated 
by its compositional heterogenei• and complex thermal 
history, and cannot, as yet, be as closely constrained as 
that of the oceanic lithosphere. Nevertheless, favorable 
comparisons of model results with observed structures 
have led to insights into the tectonics and mechanical 
response of the continents. 
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Rather than attempt a discussion of the entire 
literature pertinent to the rheologies of the oceanic and 
continental lithospheres, we select several current lines 
of research for discussion which we feel are particularly 
important and noteworthy. We review recent results 
concerning 1) the flexure of the oceanic lithosphere, 
2) deformation of the continental lithosphere resulting 
from vertical surface loads and forces applied at 
plate margins, 3) the rheological stratification of 
the continents, 4) strain localization and shear zone 
development, and 5) strain-induced crystallographic 
preferred orientations and anisotropy of elastic wave 
velocities. We conclude with a section citing the 1983- 
1986 rock mechanics literature by category. 

1. FLEXURE OF THE OCEANIC LITHOSPHERE 

The concept of rigid plates constituting a lithosphere 
overlying a more fluid-like asthenosphere has been most 
successful in describing the tectonics of the ocean basins, 
owing in part to the relatively high strength of the 
oceanic lithosphere. As shown by the bulges in sea 
floor topography, geoid anomalies, and other flexural 
features which extend into the oceanic lithosphere from 
loads applied at deep ocean trenches and seamounts, 
the oceanic lithosphere is capable of supporting 
large differential stresses over extended geologic times. 
Consistent with these observations, yield envelopes for 
the oceanic lithosphere, based upon experimentally- 
determined mechanical properties of rocks which 
constitute the oceanic crust and upper mantle [e.g, 
Goetze and Evans, 1979; Brace and Kohlstedt• 1980; 
Kirby• 1983], require loads in excess of those generally 
available for significant inelastic deformations within 
plate interiors. Thus, with the exception of relatively 
gentle flexural features, displacements and deformation 
tend to localize at plate boundaries. 

Analyses of flexure of the oceanic lithosphere have 
been particularly rewarding due to the relatively 
simple geometries involved and the wide range of 
geophysical constraints which can be placed upon 
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model results. Models of plate flexure have included 
elastic• as well as elastic-plastic rheologies• based upon 
experimentally measured mechanical properties, and 
have been compared with observed vertical seafloor 
surface displacements• gravity anomalies• distributions 
of seismicity, and the inferred loading and environmental 
conditions. Flexural models over the period 1983- 
1986 have been extended to oceanic plates of widely 
differing ages and within differing tectonic settings 
based upon elastic, elastic-plastic, viscoelastic, and 
layered rheological models. Among the most important, 
developments which have come from these studies has 
been the definition of the lithosphere-asthenosphere 
interface based upon time-dependent yield strength, 
which coincides with the seismically defined lithosphere 
and, for a given tinhe of loading, corresponds 
approximately to an isothermal contour within the 
upper mantle. 

Elastic plate models, although largely surpassed by 
more realistic rheological models, have provided a 
useful first order approximation to the behavior of the 
lithosphere and have recently been applied to evaluate 
the state of stress near ridge-transform intersections 
[Morgan and Parmentier, 1984] and in determining 
the thermoelastic bending stresses generated by lateral 
variations in heat flow [Bills, 1983]. Within the context 
of flexural features of the ocean floors, elastic plate 
models have been used to characterize plate bending 
resistance in terms of an effective flexural rigidity 
and elastic plate thickness. Comparisons of calculated 
flexural rigidities and effective plate thicknesses for 
oceanic plates of differing ages at the time of 
loading have revealed a particularly important trend of 
increasing flexural strength with age [e.g., Watts, 1978, 
1982; Bodine et al., 1981] which closely parallels models 
of plate cooling. Recent contributions have been made 
by matching gravitational anomalies calculated from an 
elastic flexure model with SEASAT altimeter profiles 
of globally distributed oceanic trench systems [McAdoo 
and Martin, 1984; McAdoo et al., 1985] and determining 
effective elastic thicknesses for plates ranging in age 
between 22 and 160 m.y. Effective plate thicknesses 
determined over this interval ranged from 27 to 63 kin, in 
agreement with the relationship between plate thickness 
and the square root of lithospheric age as suggested by 
Bodine et al. [1981]. The improved geographic coverage 
provided by the SEASAT altimeter data has indicated 
that regional compressional stresses normal to trench 
trends are not needed to account for the observed geoid 
profiles [McAdoo et al., 1985]. 

While the central core of lithospheric plates 
may remain elastic during flexure, stresses within 
the upper lithosphere are likely to be limited 
by pressure-dependent brittle failure. Changes in 
mechanical properties of the oceanic lithosphere with 
age, comparable with trends of cooling, reveal the 
importance of temperature-dependent ductile processes 

at the base of the lithosphere. Recent 1nodeling 
efforts of outer rise-trench systems have therefore been 
focused on the development of more realistic, composite 
layer models which are consistent with the results of 
experimental rock mechanics [Goetze and Evans, 1979; 
Kirb•l, 1980, 1983]. In addition to matching bathymetric 
and gravity profiles [McAdoo et al., 1985], these layered 
rheological models predict lithospheric plate thicknesses 
more consistent with those derived from maximum 

depths of intraplate seismicity [Wiens and Stein, 1983, 
1984, 1985]. Significantly, the base of this mechanically- 
based lithosphere appears to correspond to an isotherm 
of between 700 to 800 ø C, when compared with thermal 
cooling models of the oceanic plates [Parsons and 
$½later, 1977], reflecting the exponential temperature 
dependence of creep. 

In addition to models of flexure near plate margins, 
layered rheological models have been applied to a 
unique example of intraplate flexural buckling within 
the central Indian Ocean [McAdoo and Sandwell, 
1985; guber, in press] apparently resulting from large 
horizontal compressional stresses associated with the 
Indian-Eurasian plate collision. McAdoo and Sandwell 
[1985] examined the thinning of the elastic core of 
an elastic-plastic plate as yield conditions associated 
with brittle fracture and plastic flow within the upper 
and lower regions of the plate, respectively, were 
reached. Using both plastic and lab-based nonlinear 
viscous models for the lithosphere overlying a viscous 
asthenosphere, guber [in press] examined both the 
flexural buckling of a plate of uniform thickness and the 
growth of instabilities in a hydrodynamic flow model 
of the lithosphere. While differing in approach, these 
models predict fold wavelengths of 200 km, consistent 
with those of the seafloor topographic undulations and 
geoid anomalies associated with buckling. 

As the combined thicknesses of the basalts and 

gabbros of the oceanic crust do not generally exceed 
6-7 km, the mechanical properties of the oceanic 
lithosphere are likely to be controlled by the materials of 
the upper mantle. Experimental determinations of the 
fracture, frictional, and flow properties of peridotires 
and of olivine, the predominant phase of the upper 
mantle, have been extensive, spanning an enormous 
range of environmental conditions and have had an 
important influence upon modeling efforts. Given the 
distribution of pressure and temperature with depth 
in the oceanic lithosphere, stresses within the upper 
regions of the lithosphere may be predicted by Coulomb 
laws for fracture and laws for frictional sliding on 
pre-existing fractures, whereas ductile flow within the 
lower regions of the lithosphere 1nay be constrained by 
laboratory-based ductile creep relations. The principal 
uncertainties of these applications stein from conjectures 
regarding fluid pressure and chemistry, hydrothermal 
alteration, and olivine grain size within the lithosphere. 

Lower bounds to inelastic yielding within the upper 
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oceanic lithosphere have been based upon the frictional 
response of rocks with pre-existing fractures. Frictional 
behavior of rocks and minerals are relatively insensitive 
to rate of deformation at room temperature and 
exploratory experiments suggest that temperature also 
has a small effect up to 400øC. With the exception 
of hydrous minerals, these data may be described by 
two relatively simple, linear friction laws, depending 
on the range of normal stresses [Biterlee, 1968; Brace 
and KoMstedt, 1980; Kirbit, 1983]. Written in terms of 
principal stresses and assuming fracture surfaces of all 
orientations 

(a• - as) = 3.9 a3 
(a• - •ra) = 210 + 2.1 

for aa < 120 MPa (la) 

for aa > 120 MPa (lb) 

Although a3 in these relations may be well constrained 
by the lithostatic load under dry conditions, pore 
fluid pressures Pt may reduce the effective minimum 
principal stress cr• = as - Pt, leading to reductions in 
differential stresses. Recent results for dunitc [Pinkston 
and Kitbit, 1982; Pinkston et al.• 1986] have roughly 
confirmed these relations for o!ivine under anhydrous 
conditions at pressures of up to 700 MPa and 
temperatures to 600øC but with somewhat lower 
as coefficients. Large departures from this relation 
were observed, however, for samples with only trace 
quantities of water and hydrous alteration products on 
grain boundaries. Whether a result of pore pressures 
decreasing the effective pressure, the markedly lower 
frictional strengths of the hydrous minerals, or the 
result of alteration reactions, the presence of fluids at 
shallow depths within the oceanic lithosphere may lead 
to significant reductions in its strength within the brittle 
field. 

The base of the mechanical lithosphere in ocean 
basins may be defined physically by the exponential 
temperature dependence of creep for olivine. While 
experimental work is still needed to characterize 
its transient creep properties, steady state flow 
laws for olivine are now well established under 

anhydrous conditions and in the presence of water 
for both oriented single crystals and coarse-grained 
polycrystalline aggregates (Table 1) and work is well on 
its way to determining the effects of grain size, water, 
oxidation states within the mantle, defect chemistry, 
and presence of partial melts. Creep laws for olivine 
under conditions which favor dislocation processes may 
be represented by a thermally activated power law 

•, = Ao "• exp(-H*/RT) (2) 

where 8• is the steady-state creep rate, •r = (al -a3) 
is the differential stress, T is absolute temperature, A 
is a material constant, n a dimensionless constant of 
the order 3.4 to 4.5, and H* = E* + PV* is the 

activation enthalpy (E* is the activation energy, V* is 
the activation volume, and P is the hydrostatic pressure 
or mean normal stress). Of greatest impact to flexural 
models of the lithosphere are the combined effects of 
geothermal gradients and the strong dependence of 
creep upon temperature, the non-Newtonian power- 
law dependence upon stress, and the time-dependent 
nature of strength within the lowermost regions of the 
lithosphere. While creep rates may be presumed to 
vary smoothly with increasing temperature at depth, 
a critical temperature can be defined operationally 
within a given time frame, corresponding to an effective 
mechanical discontinuity between the lithosphere and 
asthenosphere. The non-linear dependence of strain 
rate, characteristic of dislocation creep, also has an 
important geophysical impact, affecting the distribution 
and pattern of strains resulting from various loading 
sources. Although eqn. (2) is non-Newtonian by 
definition, it can be expressed in terms of a simple 
viscous relation 

1 

2rt 

by defining an effective viscosity 

al-'• exp (H* / RT) 
(effective) = 2A (4) 

which may vary locally as a function of stress. The 
final feature we emphasize in the relation (2) is its time 
dependence. If we invert eqn. (2), the steady-state stress 
at fixed strain rate is 

•o = exp(H*/nRT) (5) 

is time dependent for a given strain increment. a• is the 
strain-independent counterpart of • in constant stress 
tests. In addition, this form of the flow law exhibits 
a powerful exponential effect of inverse temperature 
on the steady state strength, an effect that leads to 
plate-like behavior. Over the time of flexural loading, 
viscous relaxation within the lower lithosphere may 
lead to reductions in lower lithosphere stresses and the 
amplification of stresses within the upper lithosphere 
[Kusznir, 1982; Bott and Kusznir, 1984]. 

The experimental data for the flow of olivine are 
among the most extensive of earth materials; however, 
applications to the rheology of the lower lithosphere 
involves uncertainties associated with the important 
effects of water [Chopra and Paterson, 1{}81; Mackwell 
et al., 1985] and possible contributions of grain- 
size sensitive diffusional creep at fine grain sizes 
[Karato, 1984; Karato et al., 1986; Chopra, 1986]. As 
fluid inclusions within mantle xenoliths are composed 
primarily of CO2 [e.g., Green and Gue•!uen, 1983; 
Bergman and Dubessy, 1984; Royefta eta/., 1986; Tingle 
et al., 1986], H20 is not expected to be the dominant 
fluid within the upper mantle. Nevertheless, only 
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TABLE 1. Steady-State Flow Law Parameters for Olivine: Dislocation Creep 
•, = Act n exp(-H*/RT) H* = E* + PV* 

Karato et al. [1982] 3.9 
GS = 0.02 to 0.2 mm 

P = 0.1 MPa 

Kirby [1983] 
interpretation of single-crystal 
theology and diffusion data 

P = 0.1 MPa 

Chopra and Paterson [1984] 
GS = 0.1 and 0.9 mm 

P = 300 MPa 

Green and Hobbs [1984], 
Green and Borch [1986] -- 

P = 1000-3000 MPa 

Zeuch [1984] 
GS = 0.3 mm --- 

P = 1000-1500 MPa 

(exponential stress dependence 
at differential stresses of 

370-1290 MPa) 
Karato et al. [1986] 

GS = 0.03 to 0.06 mm -- 
P = 300 MPa 

Wet 

Chøpra and Paterson [1981] 
Anita Bay dunire 
GS = 0.1 mm 

P = 300 MPa 
Aheim dunire 
GS = 0.9 mm 

P = 300 MPa 

Chopra [1986] 
GS -- 0.01 mm 

P = 300 MPa 

(at T = 1100øC) 
Karato et al. [1986] 

GS = 0.03 to 0.06 mm 
P = 300 MPa 

log•o A n H* V* 
(MPa-". s,l, ) ..... (kJ mol -x ) . (m 3 mo! -'• ) 

3.5:!::0.6 528:!::63 

4.8:/::1.2 3.5:k0.6 533:k60 (17 ::t:: 4) X 10 -a 

4.46-1-0.18 3.64-0.2 535:k33 

3-3.5 

594 

4.0-1-0.2 3.4:k0.2 444=k24 

2.6-1-0.2 4.5:k0.2 4984-38 

3-3.5 

(28 to 36) x10 -½ 

GS = Grain Size. 

trace quantities of intracrystalline H•O are required 
[Mackwell et al., 1985] for hydrolytic weakening, well 
within the range of concentrations measured in mantle- 
derived olivines [Miller and Rossman, 1985] and garnets 
[Aines and Rossman, 1984]. Recent experimental efforts 
have also been aimed at the mechanical behavior 

of polyphase peridotites, olivine-basalt partial melts, 
and very fine-grained olivine aggregates (Table 2). 
Of particular importance has been the discovery of 
nearly linear rheologies for partial melts and fine- 
grained olivine aggregates associated with diffusional 
transfer creep mechanisms [Cooper and Kohlstedt, 1984; 
Chopra, 1986; Karato et al., 1986]. These rheologies 
similarly are expressed in terms of eqn. (2), but 

incorporating a grain size dependence in the pre- 
exponential term A, and with values of n ranging 
between 0.9 to 1.5. Application of these recent results 
to the mantle will require models of olivine grain size 
[Ross, 1983; Karato, 1984] and extrapolations of the 
competing dislocation and diffusional creep rheologies, 
in addition to those of its thermal structure. While linear 

viscous flow in the mantle requires serious consideration 
[Ranalli, 1984; Ranalii and Fischer, 1984; Karato et 
d., 1986], the predominance of microstructural and 
textural evidence from naturally deformed ultramarie 
xenoliths and massifs [e.g., Gueguen and Nicolas, 1980; 
Ross, 1983] suggest that dislocation creep processes 
are important in the upper mantle. In addition, while 
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TABLE 2. FlOw Law Parameters of Mantle Materials' Effects of Grain Size, Melt, and Mineralogy 

Material 

SynthetiC: oiivine 
aggregate (Mg, Fe)•Sio4 

GS = 0.01 mm 
P = 300 MPa 

Synthetic d•nite 
aggregat• (Mg• Fe)2SiO4 

GS = 0.007 to 0.06 mm 
P = 300 MPa 

Oilvine -• basalt liquid 
partial mel• 

G8 = 0.003-0.013 mm 
P = 0.1 MPa 

8pinel lherzolite 
partial melt 

P -• i000 MPa 

i o = 

' 10g •0 A n H* Comments 
) mol ) 

3.3 

1.5 

3-3.5 

1.4 

at 11000C 1 
•r =350-672 MPa 
at 1200ø-1300 ø C 1 

•r =28-150 MPa 

at 1300ø C 2 
GS = 0.03-0.06 mm 
at 1300ø C 2 

GS = 0.007-0.03 mm 

0.94-0.2 385 at 1300ø-1400ø C 3 

Ref.• .... 

-11.6 2.95 36-117 at 900ø-1100øC 4, 5 

Fe2Si04 single crystals 22.2 64-1 9324-220 6 

tRelerences:' 1. chopra [19861, 2.'Karato et •t. '[1986], 3. Cooper and Kohistedt [19841, 4. Bussod and 
Christie [1983], 5. Bussod and ChriStie [1984], 6. Ricoult and Kohlstedt [1984]. 

the success of flexural models incorporating nonlinear 
olivine rheologies in predicting seafloor bathymetric and 
gravitational profiles are not necessarily diagnostic of 
the underlying creep laws, plate thicknesses derived 
froin dislocation creep laws are in excellent agreement 
with the depth distribution of intraplate earthquakes 
[ Wiens and Stein, 1983, 1984, 1985]. 

Due to the relatively similar times of loading involved 
in flexure of the oceanic lithosphere within various outer 
rise-trench systems, modeling efforts have not required 
the incorporation of the time dependence of creep 
explicitly. However the strength of the lower lithosphere 
may differ under other loading conditions and time 
duration. In order to capture the time dependence of 
the mechanical lithosphere, DeRito et al. [1986] have 
developed a viscoelastic plate model for flexure in which 
elastic stresses within the lower lithosphere decay by 
time-dependent nonlinear creep. Using a Maxwell-type 
model, a characteristic time rM 

•elast 2• 
= '.' = -- (6) 

ecreep E 
can be defined [Melosh, i980] as the time required for the 
inelastic creep strain under a constant load to equal the 
elastic strain due to the same load (and can be expressed 
equivalently in terms of viscosity •/and Young's modulus 
E). Using the effective viscosity (eqn. 4) for power law 
creep 

exP(H'/RT) 
r• (effective) = EA•r,•_•'' (7) 

depends upon temperature as well as stress. 

Turcotte and Schubert [1982] similarly have defined a 
characteristic relaxation time r• as the time required 
for an elastic strain to relax by non-linear viscous 
flow to half its initial value in a spring and non- 
linear dashpot model subject to a constant total 
strain constraint (as opposed to constant stress). This 
rheological parameter r• exhibits identical temperature 
and stress dependencies as the Maxwell time. 

During flexure, three subhorizontal rheological layers 
develop as functions of plate loading and geothermal 
gradients. Within the cold upper regions of the plate, 
characteristic times rM are much greater than the time 
of loading t(•r•t > t) corresponding to elastic behavior, 
whereas at intermedia're levels, •'• • t corresponding to 
transitional viscoelastic behavior, and at deeper levels, 
•'•t < t corresponding to a predominantly viscous 
rheology. Under flexural loads, stresses and •'• within 
the plate vary with depth. A strength parameter P. is 
defined as 

•r rM (generally bounded 
_ = 

O'elast TM +t by 0 < I] <_ 1) 

(differential stress is normalized with respect to the 
elastic stress that would be present at the same strain 
at t = 0). E varies with depth just as • varies 
with temperature and flexural stress. Using this model, 
DeRito et al. [1986] determined contours of equal E and 
showed an approximate correspondence of the base of 
the lithosphere, as defined by the E --- 0.3 contour, to the 
700øC isotherm based on a plate cooling model. Thus 
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the lithosphere and asthenosphere are defined by the 
Maxwell time in relation to the time scale of loading. 

2. DEFORMATION OF THE CONTINENTAL LITHOSPHERE 

Despite the far more complex thermal and mechanical 
structure of the continents, significant developments 
in our understanding of the continental lithosphere 
have resulted from simples yet elegant• continuum 
mechanical plate models employing elastic• viscous, 
viscoelasti% and plastic rheologies. Among these, 
flexural models have been developed for the subsidence 
of continental plate margins during rifting and crustal 
thinning associated with thermal heating and extension 
[Park and Westbrook, 1983; Alvafez et al., 1984], 
the development of large-scale intracontinental basins 
[Bills, 1983; Larnbeck• 1983; Garner and Tur½otte, 
1984; Nunn and Sleep, 1984], and the response of 
the continental crust to vertical loads associated with 

surface topography, erosion [Stephenson• 1984] and 
plate scale faulting [Owens, 1983]. Constrained by 
sedimentation and erosional histories, these models 
have produced estimates of elastic flexural rigidities, 
time-dependent viscoelastic responses, and effective 
mechanical plate thicknesses. In addition, models of 
rifting and graben formation [Bott and M'it/•en• 1983; 
Keen• 1985] have been developed using an upper 
brittle layer to represent the shallow crust overlying 
temperature-dependent viscous and viscoelastic layers 
representing the lower crust and mantle. On an entirely 
different time scales models have been developed for the 
elastic strain accumulations coseismics and postseismlc 
viscoelastic response associated with great earthquakes 
using models of a plate-scale crack within an elastic 
lithosphere overlying a viscoelastic asthenosphere [œi 
and Rice• 1983a, b; Melosh and Raefsky, 1983; Bonarede 
et al., 1984s 1985; Cohen and Krarner• 1984; Thatcher 
and Rundle, 1984; Li and Kisslinger• 1985; Reilinger• 
1986]. Models of stress diffusion and associated surface 
displacements, combined with active monitoring of 
seismically active faults should provide close constraints 
on the rheological properties of the continental 
lithosphere on this time scale. 

Perhaps the most provocative results concerning the 
large-scale structures and tectonics of the continents 
have come from model studies of continental deforma- 

tions associated with convergent, divergent, and tran- 
scurrent plate motions. Compared with deformations 
within the oceanic lithosphere, deformation of continen- 
tal plates is far more penetrative and complex. How- 
ever, neglecting heterogeneities in crustal lithologies and 
in environmental conditions, continental deformations 
have been modeled to first order by examining the me- 
chanical response of continental plates with relatively 
simple, uniform rheologies to applied displacements at 
their boundaries. Applying displacement boundary con- 
difions to the continental Eurasian plate associated with 
its collision with India, Tapponnier and Molnar [1976] 

were able to match many of the tectonic features of the 
Himalayan arc and, on the basis of plastic slip-line anal- 
ysis, predicted the patterns of strike-slip faulting and 
seismic activity [Khattri and T•ta•i• 1983]. 

More recently, the continental lithosphere has been 
modeled as a thin viscous plate, with either NewtonJan 
or power-law stress dependencies, overlying an invis- 
cid asthenosphere [Bird and Piper• 1980; En•lland and 
McKenzie, 1982; Bagland et al., 1985; Bngland and ttouse- 
rnan• 1986; Houseman and En•lland• 1986b]. Assuming 
that vertical gradients of horizontal velocities within the 
thin plate are small• vertical averages of strain rates and 
stresses were related by a depth-averaged rheology, inte- 
grating the plate's temperature-dependent viscosity over 
its vertical temperature gradient. Comparisons of lateral 
deformation fields within this thickness-averaged plate 
resulting from boundary conditions associated with con- 
tinental collisions, extension• and strike-slip plate mo- 
tions [Bn91and et al., 1985] have yielded striking rela- 
tionships between the length scales of penetrative conti- 
nental deformation, the directions of relative plate mo- 
tions• and lithosphere rheology. Deformation fields asso- 
ciated with compressional and extensional plate inter- 
actions may be four times wider than those associated 
with transcurrent plate motions. Widths of intraplate 
deformation were also affected by the stress exponent, 
decreasing approximately as n- •/a. 

Crustal thickening in compressional regimes associ- 
ated with continental collisions have been modeled us- 

ing this same thickness-averaged model/Houseman and 
•gn91and• 1986b; England and Houseman, 1986], as well 
as a thin visco-plastic plate model [Vilotte et al., 1984, 
1986]. Although the rheological relations of continental 
crust lithologies are not known with great confidence 
(see next section), application of these models to the 
continental Indian-Eurasian collision have provided cal- 
culated distributions of crustal thickness which closely 
resemble the topographic patterns of the Himalayan arc 
and Tibetan plateau. These models have furthermore 
shown that once a thickened crustal plateau has formed, 
further increases in crustal thickness are inhibited by 
buoyancy forces and strain rates within the plateau are 
significantly reduced. 

Crustal thinning and necking associated with 
extensional deformations of continental plates have 
been examined in simple layer models [l•letcher and 
Hailer, 1983; Ricard and Froidevauz, 1986] with plastic 
and power-law flow behavior. Modeling the brittle, 
upper lithosphere as a plastic plate and the underlying 
lithosphere as a power law material whose effective 
viscosity decreases with depth, Fletcher and Hailer 
[1983] evaluated the development and spacing of 
extensional flow instabilities. Choosing a plastic plate 
thickness of 10-15 kin, consistent with the seismically- 
determined brittle/ductile transition within the Basin- 
and-Range Province of the western United States, they 
predicted necking instabilities with a spacing of 35- 
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60 km, in excellent agreement with the observed horst 
and graben spacings of 20-50 km. 

Although simple, thickness-averaged plate models 
have provided extremely valuable insights into the 
large-scale structures and dynamics of continental 
deformations, more elaborate rheological models will be 
required to evaluate these colnplex tectonic regimes. 

3. P,,HEOLOGICAL STRATIFICATION OF THE 
CONTINENTAL LITHOSPHERE 

Even the oceanic lithosphere with its thin crust 
and its simple mineralogy dominated by olivine and 
pyroxenes is not likely to be rheologically monolithic. 
Systematic variations in environmental parameters 
such as lithostatic pressure (vertical normal stress 
•,z), the state of stress •rij, fluid pressure P;, 
temperature T and the chemical effects of reactive 
fluids can give rise to spatial variations in the 
relative activities of inelastic processes, processes 
that place limits on the stresses that can be 
supported by the lithosphere. These processes include 
jointing, hydraulic fracturing, brittle shear faulting, 
•ductile faulting, • semi-brittle deformation (distributed 
microfracturing and intracrystalline plasticity), low 
temperature intracrystalline plasticity, high-tempera- 
ture recovery creep, high-temperature transient creep 
and grain-size-sensitive high-temperature creep. In 
view of the fact that many of the rheological laws 
that characterize these processes are not known with 
confidence for olivine-bearing rocks and that even the 
distribution of environmental parameters that influence 
rock strength are not firmly established, it would not 
be surprising that current rheological models for the 
oceanic lithosphere are oversimplified [see Chapple aad 
Forsyth, 1979; Goetze arid Evans, 1979; Ashby and 
Vetall, 1978; Kirby, 1977, 1980, 1983, 1985; Brace and 
KoMstedt, 1980; McNutt and Menard, 1982; Carter and 
Tsenn, 1987; Tsenn and Carter, 1987]. 

Consider now the added complexities of the 
continental lithosphere. First, the thicker continental 
crust is mineralogically more complex, with at least 
ten minerals needed to describe it at the 2% level 

in abundance. Second, the crust has segregated 
radiogenic elements that are important heat sources, the 
distribution of which is crucial in predicting the spatial 
variation of temperature and hence, ductile strength. 
Third, the crust also tends to segregate fluids such as 
melts, hydrothermal fluids and CO2 because partial 
melting in the mantle very effectively segregates the 
volatile species into melts and because lower density 
mafic and more acidic melts are gravitationally unstable 
in the mantle and rise in the crust to the point of 
neutral buoyancy. Also the movement of hot fluids 
affects the thermal structure. Fourth, a whole host 
of petrological and geochemical processes attend the 
presence and movement of hot, chemically aggressive 
fluids, processes that include melt wetting of grain 
boundaries, hydrothermal alteration, metasomatism, 

hydrothermal dissolution and crystal growth and 
intracrystalline diffusion of hydrogen, water and related 
species. These petrological and geochemical processes 
give rise to a spectrum of weakening processes, such as 
hydrolyric weakening, chemically assisted crack growth, 
solution transfer creep, melt transfer creep, and solute 
effects on creep processes [see reviews by Sibson, 1984 
and Kirby, 1983, 1984, 1985]. 

A simplified view of the rheology of the continental 
lithosphere is to consider only the effects of gross crustal 
mineralogy, neglecting the physical and chemical effects 
of fluids. Olivine retains high strength to temperatures 
as high as 1000-1200øC at typical laboratory strain 
rates and high confining pressures. This is in contrast 
with the thermal weakening of crustal rocks and 
minerals (Table 3) at temperatures as much as 500øC 
below the corresponding weakening temperature Tc of 
olivine [Bird, 1978; Brace and Kohlstedt, 1980; Chen and 
Molnar, 1983; Kirby, 1985; Carter and Tsenn, 1987]. 
These interpretations of the rock-mechanics literature 
have brought rock-mechanics support to the concepts 
of a crustal asthenosphere and the interpretation of 
the crust-mantle boundary as a possible theological 
discontinuity. If the temperature at the crust mantle 
boundary is below Tc for olivine but above Tc for the 
rocks appropriate to the lower crust, then the lower crust 
will be weak and the mantle below the crust-mantle 

boundary will be comparatively strong. 
The above interpretations of the rock-mechanics 

data have been motivated by independent geological 
and geophysical observations that suggest locally weak 
lower continental crust and, at the same time, strong 
uppermost mantle. These observations include: 

1) Evidence for decoupling of upper crust froin 
the upper mantle during large-scale thrusting 
connected with continental collisions and evidence 

for large-scale intraplate thrust faults soling into 
the lower crust [Bird, 1978]. 

2) Stress relaxation in the middle to lower crust 
implied by the vertical deflections in response to 
rapid changes in small surface loads on continental 
interiors, loads such as glacial lakes [McAdoo, 1985, 
1987]. 

3) On a larger scale and over longer load duration, 
the evidence for isostatic compensation in the lower 
crust suggested by the relatively uniformly high 
topography in the northern Himalayas and Tibetan 
plateau [Bird, 1978]. 

4) Small wavelength scales of basin-and-range topog- 
raphy in the extensional tectonic regime, implying 
flow within the lower continental crust in connec- 

tion with "pinch and swell"extensional deformation 
[Zuber et al., 1986], with large wavelength features 
corresponding to flow in the mantle asthenosphere 
below. 

5) The general lack of seismicity in the lower 
crust [$ibson, 1982, 1983, 1984a, b; Meissner and 
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TABLE 3. Steady-State Flow Law Parameters for Crustal Rocks and Minerals 

•, = Aa '• exp(-H*/RT) 
MaterlaP log 10 A n H* Comments 

(•r•-- •-• ) (kJ mo• -• ) 
Ref.• 

Albite rock 
Anorthosite 

Quartzite 

Quartzite (wet b) 

Aplite 
Westerly granite 

Westerly granite 
) 

Quartz diorite 
Biotite single 

crystals 
Glinopyroxenite 

18 3.9 234 1 
16 3.2 238 1 

9.0 2.0 167 c•-quartz field 1 
11 2.9 149 c•-quartz field 2 
6.9 1.9 123 c•-quartz field 3 

10.4 2.8 184 a-quartz field 4 
-- 4 300 fi-quartz, vacuum dried 5 

at 800 ø C 

-- -- 195 c•-quartz field, transient 6 
strains to 0.8% 

-- -- 51 fi-quartz, transient strains 6 
to 0.8% 

10.4 2.4 160 c•-quartz, water from talc 2 
10.8 2.6 134 c•-quartz, 0.4 wt. % water 5 

added 

9.1 1.8 167 c•-quartz, 0.4 wt. % water 3 
added 

12 3.1 163 1 

8.5 2.9 , 106 c•-quartz field 7 
6.4 3.4 139 c•-quartz field 3 
-- -- 165 a-quartz field, 6 

transient strains to 
0.8% 

-- -- 44 fi-quartz, transient 6 
strains to 0.8% 

7.7 1.9 137 c•-quartz field 3, 8 

11.5 2.4 219 c•-quartz field 3 
- 19 10 30 compression direction 9 

at 45øto (001) 
17 2.6 335 1 

-260 83 220 at 2300-900 ø C 10 
-5 5.3 380 at 800ø-1100 ø C 10 

Clinopyroxenite 5.17 3.3 490 11 
(wet b ) 

Diabase 17 3.4 260 1 

Carrara marble 48.6 7.6 418 drying procedure not described 12 
33.2 4.2 427 drying procedure not described 12 

Natural rocksalt -7.24 4.10 33.6 Avery Island 13, 14, 15 
-6.82 1.39 28.8 Paradox Formation 13, 14, 15 
-2.33 4.50 72.0 Permian Basin 13, 14, 15 
- 1.59 5.01 82.3 Richton Dome 13, 14, 15 
-5.41 4.90 50.2 Salado Formation 13, 14, 15 
-2.06 2.22 62.9 Vacherie Dome 13, 14, 15 

Synthetic rocksalt -- -- 37, 74 for n = 6, 3, respectively 16 
-0.7 5.8 96 pure NaC1 17 
-1.4 6.5 126 NaC1 (+0.3% K +) 17 
0.8 4.6 115 NaC1 (+0.3% Mg 2+ ) 17 
-3.9 5.7 72 NaC1 (+0.3% Ca 2+) 17 

Anhydrite -- 1.5-2.0 114-152 18 
Bischofite -- 4.4 59 at •r < 3.0 MPa 19 

-- 1.5 67 at •r > 1.5 MPa 20 
Carnallite -- 4.5 -- 20 

Ice Ih -2.8 4.7 36 at T _• 195 K 21 
5.10 4.0 61 at 195-240 K 21 
11.8 4.0 91 at 240-258 K 21 

•References: 1. Shelton and Tullis [1981], 2. Koch [1983, manuscript], 3. Hansen and Carter [1982], 4. Jaoul 
et al. [1984], 5. Kronenberg and Tullis [1984], 6. Ross et al. [1983], 7. Carter et al. [1981], 8. Hansen and Carter 

[1982] 9. Kronenberg et al. [1985], 10. Kirby and Kronenberg [1984], 11. Boland and Tullis [1986], •2. Schmid et al. i1980], 13. Pfeifie and Senseny [1982], 14. Handin et al. [1986], 15. Wawersik and Zeuch [1986] 16. Gangi 
1983], 17. Heard and Ryerson [1986], 18. M(iller et al. [1981], 19. Urai [1983], 20. Urai [1985], 21. Kirby et al. 
1987]. 

a All samples oven dried at 100ø-200øC before testing unless noted otherwise. 
b "Wet" samples: water added in sealed capsule, unless noted otherwise. 
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$treklau, 1982; Chef, and Molttar, 1983] and the 
occurrence of mantle earthquakes in the Tibetan 
plateau and other localities around the world [Chen 
and Molt, at, 1983], suggesting locally a weak lower 
crust and strong uppermost mantle. 

6) The large theoretical effect of yielding in the lower 
continental crust on reducing the resistance to 
bending of the continental lithosphere [DeRito et 
a/., 1986] indicates that internal yielding must be 
considered in flexural models of the continental 

lithosphere with relatively thick crust. 
7) Reconciliation of the average deviatoric stress 

levels due to geodynamic forces and topographic 
loads and the yield stresses of crustal materials 
based on experimental rock mechanics suggests 
that stress relaxation can take place in the lower 
crust, amplifying the deviatoric stress by reducing 
the thickness of the load-bearing section of the 
continental lithosphere [Kusznir and Park, 1984]. 

8) The relatively narrow zone of accumulation of 
strain and its release along the San Andreas fault 
suggests a viscoelastic response of the middle to 
lower crust to plate-scale loading [Turcotte et al., 
1984]. 

9) The preferential rifting of continental crust and 
lithosphere compared to the oceanic lithosphere, 
leading to ridge jumps, the formation of new ocean 
basins, and the development of micro-continents 
and displaced terranes IV ink et al., 1984]. Despite 
the steeper average geothermal gradients of the 
oceanic regions, the extensional loads required to 
rift continents, consisting of crustal lithologies of 
substantial thicknesses overlying mantle lithologies, 
appear to be lower than those required to rift 
oceanic plates made up primarily of olivine and 
pyroxenes. 

4. STRAIN SOFTENING AND STRAIN 
LOCALIZATION IN SHEAR-ZONES 

Extreme strain localization in shear zones is 

demonstrated by offsets and "drag" in pre-existing 
strain markers that cross these zones as well as the 

exclusive presence of shear-zone deformation features 
that are known only to develop in the laboratory at very 
high strain. What are the characteristics of the shear- 
zone materials compared to the rock matrix, and what 
do these tell us about the causes of the "soft" shear 

zone rheology? These characteristics are: 1) Eztrerne 
grain size reductior,. In brittle faulting, this is caused 
by microfracturing and associated grain comminution. 
In deeper shear zones, recrystallization and the creation 
of new grains of new minerals cause grain size reduction. 
2) Other aspects of rock tezture, such as more extreme 
foliation development as defined by grain shape or 
mineral distribution, are also distinctive. 3) Preferred 
orientations of ductile minerals such as quartz are 
usually more strongly developed than in the host rock 
and bear clear orientation relationships to the plane 
of shear and displacement direction of the shear zone 
[for recently-published exalnples, see Evans and White, 
1984; Law et al., 1984, 1986; Burg, 1986; $chrnid 
and Case$t, 1986; Platt and Bekrmann, 1986]. 4) The 
mineraloq$t and mineral ½kemistr$t of shear zones is 
typically different than the host rock from which it 
was derived [Brodie, 1980; Beach, 1980; White et al., 
1980; Ruble, 1983; Knipe and Wintsch, 1985; Watts and 
Williams, 1983]. This reflects evidently greater access of 
aqueous solutions to the zone and/or enhanced kinetics 
of metamorphic reactions. 

How do shear zones nucleate? Three factors appear 
to be involved here. First, the generally non-linear 
stress-strain rate relations of rocks (as outlined in 
earlier sections) would tend to promote localization 
if a shear zone is only moderately softer than the 
host rock [see Kirb$t, 198/;, p. 16]. Moreover, non-linear 
materials exhibit more localized deformation even in 

the absence of shear zone softening [Melosh, 1980]. 
Second, pre-existing zones of weakness can facilitate 

Geological and geophysical observations in the last strain localization by providing stress concentrations as 
decade have provided compelling evidence that large these flaws are exploited and grow as shear faults. For 
deformations are accommodated by the continental example, higher-than-regional non-hydrostatic stress 
crust through faulting involving strain localization in (and related higher strain rates) can promote finer 
shear zones both in the shallow crust, involving "brittle • recrystallized grain size or aid the kinetics of 
faulting and crustal seismicity and in the mid-crust, metamorphic reactions, both of which can produce 
producing primarily aseismic macroscopically ductile a softer shear zone theology. Pre-existing fractures, 
deformation in shear zones [see reviews in •arreras in addition to their role as stress concentrators, can 
et al., 1980; $ibson, 1977, 1982, 1986; Kirb$t, 1985]. localize later shear deformation by providing access of 
These observations include the study of "ductile" hydrothermal solutions and making possible a variety 
shear zones in deep continental crust exhumed by of water-weakening processes in the zone adjacent 
uplift and erosion, comparison of crustal deformation to the fracture [$egall and Pollard, 1983; $egall 
rates (based on geologic and geodetic observations) and Simpson, 1986]. Distributed microcracking, fluid 
with seismicity and the developing concept that infiltration, and localized ductile deformation connected 
the loading of the seismogenic zone involves deeper with hydrothermal alteration may be processes that 
aseismic strain localization. It follows, then, that occur simultaneously or cyclically in shear zones [White 
understanding the earthquake source and the overall and White, 1983; Etheridge et al., 1984]. 
non-hydrostatic stresses supported by the crust depends Once a shear zone is established, what deformation 
on improvements in our knowledge of how shear zones processes and structural features cause the continued 
are created and what is their specialized rheology. strain localization? A host of localization factors are 
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now recognized [see reviews by White •t al., 1980; Kirby, 
1985; Sibson, 1986]. Most of these softening mechanisms 
come into play above some critical strain and this strain 
softening is an important part of the mechanics of strain 
localization [Poirier, 1980]. These strain mechanisms 
include: 

1) Softening caused by the direct effect of grain bound- 
ary migration associated with recrystallization or 
the growth of new phases. Grain boundary migra- 
tion can soften a crystalline aggregate by sweeping 
out dislocations created by earlier deformation, re- 
ducing the hardening effects of dislocation interac- 
tions in a manner analogous to the softening effects 
of annealing recovery. This softening mechanism is, 
in a sense, an extended primary creep. Examples in 
metals have been cited by White et al. [1980] and 
Urai et al. [1986], in ice by Duval [1979, 1981] and 
Kirby et al. [1987], and in silicates by Zeuch [1982, 
1983] and Tullis and Yund [1985]. 

2) Softening stemming from grain size reduction. The 
formation of a gouge zone due to microfracturing 
and grain comminution is a familiar feature 
of brittle faulting and it is apparently the 
micromechanics of fine granular material under 
shear that governs the softer "rheology" of gouge 
zones compared to that connected with distributed 
microfracturing in the host rock. Mylonitic zones 
formed by recrystallization processes may also be 
softer because deformation mechanisms that are 

favored by fine grain size may operate, such as 
grain boundary sliding or those involving stress- 
directed diffusion to and from grain boundaries. 
To date, no firm evidence has been put forward 
proving that these deformation mechanisms operate 
in mylonitic rocks and, to the contrary, the strong 
preferred orientations often developed in quartz- 
bearing mylonites favor intracrystalline slip as the 
dominant deformation process [see references cited 
earlier]. Kronenberg and Tullis [1984] have studied 
grain-size effects on the steady-state strength of 
quartz aggregates under hydrothermal conditions 
and advanced the hypothesis that diffusion from 
wetted grain boundaries into grain interiors is 
a factor controlling strengths in their samples. 
Obviously fine grain size should facilitate such a 
process and lead to shear-zone softening. It is 
unclear what processes maintain fine grain sizes 
that are acquired at peak stress or recrystallization 
and further deformation occurs at lower stress via 

these grain-size sensitive mechanisms [see White et 
al, 1985 for discussion of this issue]. 

3) Softening caused by mineral preferred orientation, 
often termed geometrical softening[White et al., 
1980; Poirier, 1980]. Grain orientations in a simple- 
shear setting progressively become more favorable 
for further intracrystalline slip as total shear 
strain increases because grains rotate to place 
the operating slip systems in orientations with 

higher resolved shear stress. This apparently is 
the major source of softening connected with 
reorientations associated with recrystallization and 
intracrystalline slip in shear experiments on ice 
[Duval, 1981], calcite [ Wenk and Takeshits, 1984] 
and metals [see reviews by White et al., 1980 and 
Poirier, 1980]. 

4) Reaction softening. Metamorphic reactions and 
polymorphic phase changes can aid strain softening 
and lead to shear-zone localization via a number 

of processes that attend phase changes. These 
include: (A) Changes in tezture, especially reduced 
grain size promoted by transformation under 
stress and consequent weakening by grain-size 
sensitive deformation mechanisms [White and 
Knipe, 1978; Ruble, 1983, 1984]. (B) Migration 
of grain boundaries driven by the growth of 
the more favored minerals and the elimination of 

defects that may have work hardened the pre- 
existing mineral assemblage. (C) Softening caused 
by latent heat released by a transformation. 
(D) Grain-scale arut rnegascopic stresses connected 
with the transformation volume changes can 
promote reaction rates and diffusional transport 
and lead to softening [Poirier, 1982; Kirby, 1985, 
1987]. (E) The transformation products may be 
softer than the reactants, especially in retrograde 
metamorphic reactions producing phyllosilicates 
[White and Knipe, 1978; Kirby, 1OSS]. (F) The 
difference in free energy of hydrous transformation 
products and their anhydrous reactants can help 
drive dissolution, solute transport and growth 
of the hydrous assemblage along faults filled 
with hydrothermal fluid. This can facilitate the 
accommodation of irreqularities along fault surfaces 
during shear displacement. 

In summary, we emphasize that several factors are 
important in determining whether shear-zones develop: 
The nature of the far-field loading conditions (the 
tractions and displacements and their variations with 
time), the thermal and elastic properties of the medium, 
the inelastic properties of the medium including strain- 
softening behavior, and the existence of pre-existing 
flaws and heterogeneities in properties. Only a thorough 
continuum-mechanics approach, incorporating all of 
these factors, can realistically predict whether shear 
zones will develop in a given geological context. 

5. SEISMIC ANISOTROPY AND 
FLow IN THE LITHOSPHERE 

During the quadrennial period, interest has been 
renewed in the anisotropy of seismic waves, particularly 
in the mantle. Progress has been spurred by the 
development of improved techniques for separating 
elastic anisotropy from regional velocity heterogeneities, 
by the study of fossil oceanic crust and mantle in 
ophiolite complexes and by developments in rock 
mechanics that have refined our knowledge of how 
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preferred crystallographic mineral orientations and 
resulting elastic anisotropy are acquired by rocks 
during inelastic deformation. Observations of seismic 
anisotropy in the earth are important because they 
are revealing of the internal deformation and because 
preferred orientations developed during flow can greatly 
influence the rheological behavior of rocks. 

Preferred Orientation Development and Deformation 
There are many mechanisms and processes by which 

physical-property anisotropy can be acquired by rocks 
[see review by Crarnpia, 1984], but the two most 
important are preferred orientation development of 
mineral grains and preferred orientations of flaws such 
as cracks, both connected with inelastic deformation. 

Vertical fluid-filled cracks with azimuths related to 

ridge orientations have been used to explain local 
azimuthal variations (;g 4-4%) in V'p and particle-motion 
anomalies in the oceanic crust [Stephen, 1981; White 
and Whirmarsh, 1984; Shearer and Orcutt• 1985, 1986]. 
This is in spite of the fact that regional a•imuthal 
variations in V v have not been detected in the oceanic 
crust where P,• anisotropy is apparent [Bibee and Shot, 
1976]. Such crustal anisotropy in V v caused by crack 
preferred orientations probably exists in the continental 
crust but is masked by larger heterogeneities in lithology 
and V v than occur in the oceanic crust [see papers in 
Crampin et al., 1984]. Opening-mode (tensile) cracks 
nucleate and grow with preferred orientations normal to 
the least principal stress direction in isotropic rocks [see 
review by Paterson, 1976] and the velocity anisotropy 
produced by aligned cracks can be predicted from theory 
[see review by Shearer and Orcutt, 1986]. 

Mineral preferred orientations and hence property an- 
isotropy generally develop under non-hydrostatic stress 
as a consequence of plastic deformation. The nature 
of the preferred orientation depends upon the plastic 
deformation mechanisms that operate [$chmid, 1982]. 

Intracrystalline slip leads to preferred grain 
orientations in mineral aggregates because slip is 
crystallographically oriented and because grain-grain 
continuity at grain boundaries requires progressive 
grain rotation when grains deform by shear on the 
slip plane. Much progress has been made in the last 
decade in our understanding of the relations between 
stress, strain and preferred orientation based on the 
Taylor-Bishop-Hill model for intracrystalline slip which 
assumes homogeneous grain deformation and minimum 
internal plastic work. This theory has been applied 
successfully to quartzite [Lister et al., 1978; Lister and 
Hobbs, 1980; Lister and Paterson, 1979], to calcite 
marble [Van Hourtel et al., 1984; Wagner et al., 1984; 
Wenk et al., 1985, 1986] and to olivine [Takeshita• 1986]. 
What is particularly powerful about this approach is 
that i• permits predictions of preferred orientation 
development for various states of stress and strain 
that are not easily achieved in the laboratory, and 
that anisotropies in the plastic rheolog•t connected with 

preferred orientations can also be predicted [see, for 
example, Wenk et al., 1986]. Some minerals, however, 
do not have sufficient slip systems to accommodate 
a general homogeneous strain on the grain scale and 
some degree of heterogeneity in grain strain is required. 
This has been successfully modeled by relaxing the 
homogeneous strain constraint in marble [Wenk et al., 
1986]. In any event, the ultimate preferred orientations 
expected from these models depend upon the operating 
slip systems, the type and magnitude of finite strain 
(uniaxial compression, extension, simple shear, etc.) and 
the strain path through which that finite strain was 
accomplished [Schmid, 1982]. 

Recr•tstallizatioa under non-hydrostatic stress can 
lead to crystallographic preferred orientations. Early 
work suggested that new grains were independently 
nucleated and had orientations that depended on 
the state of stress. Research in the last decade 

suggests, however, that preferred orientations developed 
under conditions that favor recrystallization are 
not fundamentally different than those produced by 
intracrystalline slip and that grains nucleate by grain- 
boundary migration and/or subgrain rotation of pre- 
existing grains [ Urai et al., 1986; Wilson, 1986; Schmid 
et al., 1987; Burg et al., 1987]. Definitive experiments 
have not been done to explore the comparative roles of 
stress and strain in preferred orientation development 
during recrystallization, but the foregoing observations 
suggest that finite strain is the primary determinant of 
preferred orientations produced during recrystallization. 

Grain boundat&t sliding, GBS, is a deformation process 
that depends upon accommodation mechanisms that 
allow necessary grain shape changes and is favored by 
small grain sizes. Experience in metals and in fine- 
grained rocks that are thought to deform by GBS shows 
that the process does not, of itself, lead to preferred 
orientations; on the contrary, GBS can randomize a pre- 
existing fabric [Boullier and Nicolas, 1975; Gueguen and 
Boullier, 1976; Schmid et al., 1977, 1981, 1987; Schmid, 
1982]. Weak preferred orientations can develop if GBS 
preferentially promotes another deformation process, 
such as slip [Schmid et al., 1987]. Other grain-size- 
sensitive deformation processes, ones involving stress- 
directed diffusion to and from grain boundaries, are also 
not expected to develop preferred orientations. 

Not only are rock fabrics dependent on the operating 
deformation mechanisms but they are also dependent 
on the relation between the state of stress and the 

finite strain state. Of particular interest is whether 
the stress and strain states are coazial or non-coazial 

(i.e., whether the principal stress and principal finite 
strain directions are parallel to each other). For example, 
intracrystalline slip under uniaxial colnpression or 
extension (coaxial) results in the progressive rotation 
of the operating slip plane(s) normal toward the 
compression direction and, for minerals deforming 
primarily by one slip system, creep rates should 
decrease with strain and should never reach steady 
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state in the absence of grain boundary migration and of southern California and Germany the direction of 
recrystallization. In contrast, the progressive rotation of maximum P,• approximately parallels the traces of 
slip planes toward the shear plane by intracrystalline plate-scale faults. 
slip in a simple shear environment can lead to a Although high values (4,9 4-0.1 km s -•) of the shear- 
steady-state preferred orientation and creep rate. Simple wave phase $,• have been measured in the western 
shear (biaxial or torsion) experiments and measurement Pacific [Shimsmuts et od., 1977; Shimsmuts and Asada, 
of resultant fabrics have been done in a number of 1/)83], suggesting $,, velocity anisotropy, the three other 
non-metallic materials liCE: Kamb, 1972; Byers, 1973; studies of $,• elsewhere show typical values of 4.6 4- 
œile, 1978; Duval, 1081; Bouchez and Duvd, 1082; 0.1 km s -•, independent of direction, even though P,• 
Burg et al., 1087; CALCITE: Kern and Wenk, 1083; varies significantly in the same regions [ Glowes and Au, 
$chmid et al., 1087; qUAR?Z•?E: Dell'Angelo and Tullis, 1982; Talandier and Bouchon, 1/)7/); Shearer and Orcutt, 
1/)87] and the results are generally consistent with 1986]. Other effects of elastic anisotropy on body waves 
the above predictions. The development of preferred include split shear waves with different polarizations and 
orientations causes materials to exhibit a transient velocities and particle motions of P-waves that are out 
rheological response to changes in the stress state of the vertical plane connecting the source and receiver 
[Griggs and Miller, 1951; Handin and Griggs, 1951; [Shearer and Orcutt, 1'985]. Shear-wave polarization 
Heard and Raleigh, 1972; Byers, 1973; Duval, 1981; anisotropy ha• been observed for steeply inclined S 
Duval and Le Gac, 1982; Gao and Jacks, 1987]. This and 8c8 phases from deep earthquakes beneath Japan 
may be important in the deformation of the oceanic [Ando et al., 1980, 1983; Fukao, 1984] and other areas 
lithosphere where preferred orientations caused by basal worldwide [Ando, 1984]. The depth over which the 
shear deformation connected with plate motion or by polarized S-wave splitting of $c$ phases are acquired 
deformation along transform faults could influence the is not known but is likely to be in the upper mantle 
rheological response of the lithosphere to changes in the because lower manfie minerals are not known to be 
stress state such as the bending deformation at trench- particularly anisotropic [Jeardoz and Thompson, 1983] 
rise systems or at island loads. and preferred orientations of some mantle analogue 

materials are not especially strong [Toriumi, 1984]. 
Seismic Observations of Velocity Anisotropy Also, since the splittings of direct S-waves are similar 

The basic seismological observations of velocity an- to those for $c8 waves this suggests that the delays 
isotropy in the uppermost mantle are reviewed by between the polarized phases occurs within the upper 
Crampin et al. [1984], Kawasald and Kon'no [1984], mantle [Ando, 1984]. Also, the polarization direction 
Christensen [1984], Nicolas [1986] and Kawasaki [1986]. of the fastest 8c8 wave is approximately parallel to 
Foremost among them is the azimuthal variation in the direction of maximum Pn velocity offshore east of 
Pn velocity in the oceanic mantle, first interpreted Japan [$himamura et al., 1983], again suggesting that 
in the eastern Pacific by Hess [1964], and confirmed time separations between the split 8c8 phases occur in 
by subsequent refraction surveys in the same region the upper mantle. 
[Raitt et al., 1969; Morris et al., 1969; Raitt et ed., Forsyth [1975] and Kawasaki and Kon'no [1984] 
1971; Keen and Barrett, 1971; Bibee and Shot, 1976; have detected a significant a•imuthal variation in 
Glowes and Au, 1982]. More recently, a prominent Rayleigh wave group velocities in overlapping areas 
Pn anisotropy was shown to apply to the western of the eastern Pacific, with those surface waves 
Pacific and Sea of Japan as well [Shimsmuts et ed., traveling approximately parallel to the prominent 
1983; Shimsmuts, 1984; Hirahara and Ishikawa, 1984; fracture zones (and approximately normal to the 
Okada et al., 1978; Shearer and Orcutt, 1985, 1986]. magnetic linearions)being about 2-3% faster than those 
The direction of maximum Pn with rare exception traveling perpendicular to those directions. Rayleigh 
[Whitmarsh, 1971; Talandier and Bauchon, 1979] is wave studies over oceanic paths of greatly variable 
approximately perpendicular to the magnetic linearions spreading directions not surprisingly have failed to 
between the source and receiver and peak-to-trough detect azimuthal anisotropy in Rayleigh wave velocity 
variations of 3-10% with azimuth are typically observed. [$chlue and Knopoff, 1976, 1977; Mitchell and Yu, 
Similar observations of Pn anisotropy have been made 1980; Anderson and Regan, 1983]. Love wave anisotropy 
in the continental lithosphere in southern Germany is always small (<1%) [Forsyth, 1975; Kawasah' and 
[Barnford, 1977; Fuchs, i983], the western U.S. [Bamford Kon'no, 1984; Tanimoto and Anderson, 1984, 1985] 
et al., 1979] including southern California [Vetter and apparently reflecting the effective isotropy of $H elastic 
Minster, 1981; Hearn, 1984] and indire½• evidence for wave motion in oceanic paths. 
P-wave anisotropy in northern Australia [Leven et al., The shear-wave velocities inferred from manfie Ray- 
1981]. Analysis of P-wave travel-time data worldwide leigh wave and Love wave dispersion data are different, 
by Dziewonski and Anderson [1983] suggest that P- with $H values consistently higher than $V in 
wave velocity anisotropy may be deep-seated in the oceanic paths (see review by Anderson and Dziewonsh' 
upper mantle and vary smoothly in relation to •ectonic [1982]). The spatial (especially depth) distribution 
provinces in the continental lithosphere. In the examples of this anisotropy inferred from surface wave da•a 
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is dependent on the specific inversion model; some 
suggest an isotropic seismic lithosphere and anisotropic 
upper asthenosphere [Schlue and Knopoff, 1977, 1978; 
Anderson and Regan, 1983; Regan and Anderson, 1984] 
and others infer lithosphere anisotropy [Yu and Mitchell, 
1979; Mitchell and Yu, 1980; Forsyth, 1975; Kawasaki, 
1986]. Many of these surface-wave studies have assumed 
that the oceanic mantle is transversely isotropic with 
velocities for propagation in the horizontal plane 
averaged and deemed isotropic and having a unique 
vertical direction with different velocities than in the 

horizontal. This probably captures the differences in 
the vertical and averaged horizontal velocities but 
de-emphasizes the important azimuthal variations in 
velocity, a point raised by Tanirnoto and Anderson 
[19841, Kawasaki and Kon'no [1984], Kawasaki [19861 
and Estey and ,Douglas [1986], as noted below. 

Field Measurements of Preferred Orientations and 
Anisotropy in Mantle Materials 

Paralleling remote measurements of velocity anisotropy 
in the oceanic lithosphere have been direct studies of 
structures and textures in ophiolite complexes, for which 
persuasive arguments have been put forward that they 
represent oceanic lithosphere emplaced in the crust by 
large displacement thrust faulting (see reviews by Chris- 
tensen [19s4] and Nicolas [19S0]). The basal peridotires 
representing oceanic mantle generally show well-devel- 
oped deformation textures and marked regional preferred 
orientations of olivine and less well-developed pyrox- 
ene fabrics [Christensen, 1984]. The olivine fabrics gen- 
erally show an m-axis maximum approximately paral- 
lel to •he crust-mantle boundary and perpendicular to 
the sheeted dikes in the crustal section (and presum- 
ably parallel to the palco-spreading direction). The •- 
and g-axes range from point maxima to partial girdles 
around the •,-axis maxima, indicating orthorhombic to 
uniaxial symmetry of the crystallographic orientations. 
Similar olivine preferred orientations are also observed 
in mantle peridotitc xenoliths from the continental and 
oceanic lithosphere [Mercier and Nicolas, 1975; Pesel- 
nick et al., 1977]. Olivine is extremely anisotropic in its 
elastic properties and the resulting anisotropy in the ve- 
locity of elastic wave propagation shows similar symme- 
tries. Shear-wave velocities depend on the polarization 
direction and, in general, two mutually-polarized shear 
waves travel at different velocities. Except for propaga- 
tion directions parallel to the crystallographic axes, par- 
ticle motion is not purely compressional or purely shear 
but mixed and the structure imposes the polarization di- 
rections on the two shear waves. Vp varies from 9.9 km 
s -• parallel to •, to 7.7 km s -• parallel to j•, while shear 
waves vary from 4.9 to 4.6 km s -• in the same propaga- 
tion directions, averaged over all polarization directions 
for those propagation directions. Quasi-shear wave ve- 
locities as high as 5.5 km s- t can occur for off-axis wave 
normals [Leven et al., 1981]. 

The relation between crystallographic preferred 

orientation in polycrystalline oilvine and the resultant 
anisotropy in elastic wave velocity is now well 
established in theory [Kumazawa, 1964; Crossin and 
Lin, 1971; Baker and Carter, 1972; Carter et al., 
1972; Peselnick and Nicolas, 1978; Crampin, 1981; 
Johnson and Wenk, 1985, 1986; Bunge, 1985; Kern and 
Wenk, 1985] and experiment [Christensen, 1966, 1971; 
Christensen and Ramananantoandro, 1971; Peselnick 
et al., 1974; Peselnick et al., 1977; Meissner and 
Fakhimi, 1977; Peselnick and Nicolas, 1978]. The 
effects of pyroxenes, spinel and garnet have been 
investigated and are known to dilute the anisotropy due 
to olivine preferred orientation; the degree of dilution 
depends on the mineral proportions and pyroxene 
preferred orientation [Leven et al., 1981; Christensen 
and Lundquist, 1982; Fuchs, 1983; Christensen, 1984; 
Estey and Douglas, 1986]. 

The orthorhombic to uniaxial symmetries of the 
preferred orientations of olivine in ophiolite peridotires 
correspond to the same symmetries in seismic velocities 
with direction. Based on the hypothesis that the 
preferred orientations and velocity anisotropies in 
ophiolite peridotires represent those of the oceanic 
lithosphere (•-axis maxinmm parallel to the spreading 
direction at the tinhe of lithosphere formation) and 
that the mafic-ultramafic contacts in ophiolites were 
originally horizontal, the anisotropic seismic-velocity 
behavior of the oceanic mantle lithosphere can be 
predicted with surprising fidelity. In particular the P,, 
anisotropy of 3-10% observed in refraction experiments 
in the oceans is consistent with an olivine •-axis 
maximum typical of ophiolite peridotires parallel to 
spreading direction and an isotropic distribution of • 
and ,• axes normal to the spreading direction, diluted 
by 0 to 40% pyroxene [Christensen, 1966; Christensen 
and Crossen, 1968; Crossen and Christensen, 1969; 
Christensen and Salisbury, 1979; Christensen and 
Lundquist, 1982; Kasahara and Kon•no, 1984; Kasahara, 
1986; Estey and Douglas, 1986; Shearer and Orcutt, 
1986]. The predicted azimuthal variation of $n body 
waves and Love surface waves is smaller than the 

resolution in measuring the velocities of those phases 
[Kawasaki and Kon•no, 1984; Kawasaki, 1986; Shearer 
and Orcutt, 1986], whereas the time delays of split $c$ 
would be detectable. Lastly, the polarization anisotropy 
of shear waves predicted for the uniaxial model is 
within a range consistent with observation (0-0.2 km 
s -•) [Kawasaki and Kon'no, 1984; Kawasaki, 1986]. 
Estey and Douglas [1986] have proposed an anisotropy 
model in which olivine and pyroxene have preferred 
orientations of orthorhombic symmetry with olivine • 
and pyroxene •, axes parallel to spreading direction and 
olivine •, and pyroxene • axes vertical and normal to 
the Moho, based on the expected easy slip systems in 
these minerals. This model i s , however, at variance with 
the experience in ophiolite complexes that olivine • and 
• axes show partial girdles about the •-axis maxinmm 
or point maxima with no particular relation of olivine 
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./• axes with respect to vertical [Christensen• 1984; 
Nicolas, 1986]. Moreover, the quasi S-wave velocities 
for an orthorhombic model vary from QSH = 4.86- 
5.51 km s -• for horizontally polarized waves traveling 
in the (010) plane and QSV = 4.42-4.89 km s -1 for 
vertially polarized waves [Leven et al., 1981], a nmch 
wider range than actually observed. In particular, the 
QSH anisotropy is inconsistent with the lack of evidence 
for Love wave anisotropy. 

o•ectonic Models for Velocity Anisotropy 
the Oceanic Lithosphere 

Given the success of the uniaxial preferred orientation 
model for olivine in predicting the primary features of 
elastic wave anisotropy of the oceanic lithosphere, what 
are its implications for the state of stress and strain 
in the oceanic mantle? Various models have been put 
forward to account for azimuthal P,• anisotropy of the 
oceanic lithosphere: 

1) Hess [1964] suggested that plastic flow associated 
with simple shear along oceanic fracture zones 
(with shear direction parallel to the fracture zone) 
causes P,• anisotropy, pointing out that fabrics of 
foliated oilvine-bearing rocks often show preferred 
orientations consistent with fast Vp parallel to the 
fracture zone. 

2) Francis [1969] noted that Hess' mechanism is 
unlikely to pervade the entire oceanic lithosphere 
and that basal shear strain connected with plate 
motion could produce m-axis maxima parallel to 
the direction of plate motion, consistent with the 
easy slip direction in olivine (and ophiolite studies), 
thereby producing fast Vp in the direction of plate 
motion. Ishikawa [1984] has followed up on this 
idea by including thickening of the lithosphere and 
freezing in of basal-shear deformation connected 
with plate motion as the lithosphere cools and 
the zone of active shear deformation deepens with 
age. Analysis of long-period surface wave dispersion 
data by Regan and Anderson [1984] and Tanimoto 
and Anderson [1984] suggests that the fast •.,- 
axis direction aligned parallel to the flow direction 
may also be deep seated in the upper mantle 
and consistent with modern numerical models for 

convection in the asthenosphere. 
3) Av• Lallemant and Carter [1970] and Carter et al. 

[1972] considered the expected preferred orientation 
of olivine due to recrystallization in relation to the 
stress state presumed to occur in the lithosphere 
connected with basal shear. As noted earlier, it 
is more likely that preferred orientations develop 
with reference to the finite strain (flow field) and 
strain path, and hence the preferred orientations 
predicted by the above authors are probably 
incorrect. 

4) Ida [1984] suggests that Pn anisotropy is caused 
by plate stretching parallel to the direction of plate 
motion. This is unlikely because large stretching 

strains would be required to develop significant 
preferred orientations and there is no evidence for 
such stretching deformations. 

To summarize, the basal-shear model of Francis 
[1969], as refined by Ishikawa [1084] and Anderson and 
his colleagues, is consistent with the seismic constraints 
and the preferred orientation model of Kawasaki [1986]. 
The latter appears to account for the first-order 
observations of body-wave and long-period seismology. 

6. Rocx MECHANICS: GUIDE TO 
THE LITERATURE 

Laboratory studies of the mechanical properties of 
rocks over the quadrennial period have been extensive, 
encompassing the fracture, frictional behavior, and 
flow of rocks and minerals. The emphasis of 
much of this work has been towards understanding 
deformation mechanisms and establishing physically- 
based constitutive relations. Major advances along these 
lines have been made in our understanding of hydrolyric 
weakening and the effects of chemical environment upon 
surface states and internal defects which affect the 

deformation processes. Steady-state rheologies relevant 
to the oceanic lithosphere and upper mantle are 
summarized in Tables 1 and 2, and rheologies of crustal 
rocks and minerals are summarized in Table 3. 

6.0 BOOKS, •EVIEWS AND SPECIAL JOURNAL ISSUES 
IN ROCK MECHANICS 

1. Geodynamics, A pplicalio• of Continuum Physics to 
Geological Problems, D. L. •rcotte and G. Schubert, 
John Wiley and Sons• Inc., New York, 450 pp.• 1982. 
2. The Inelastic Mechanical Properties of Rocks and 
Minerals: Strength and Rheolo•, S. H. Kirby and J. 
McCormick, in: Handbook of the Physical Prope•ies of 
•cks, vol. 3, R. Carmichael, editor, Chemical Rubber 
Company Press, Inc., Cleveland, Ohio, 1983. 
3. R•k Mechanics, Theory - Ezperiment - Practice, 
C. C. Mathewson, editor, Pr•eedings of the •gth 
U.S. Symposium on Rock Mechanics• Tex• A and M 
Unive•i•y, Texas, 1983. 
4. Microcracks in Rocks: A Review, R. L. Kranz, 
Tectonophysics, I00• 449-480, 1983. 
5. Hheolo• of the Lithosphere, S. H. Kirby, Reviews 
Geophys. Space Phys., •I, 1458-1487, 1983. 
6. The M•chanicd Behavior of Salt I• R. H. Hardy, 
Jr. and M. Langer, editors, Proceedings of the 
First Conference, i•81, •ans. Tech. Pubs., Clausehal 
Zelleffeld, FRG, 1984. 
7. Chemical Effects of Water on •he Strength and 
Deformation of Crustal Rocks, Special Issue in: Journ• 
of Geophysical Research, 89, S. H. Kirby and C. H. 
Scholz• editors, Amer. Geophys. Union, Washington, 
D.C., 3991-4358• 1984. 
8. Fault Behavior and the Earthquake Generations 
Process, Special Issue in: Journ• of Geophysical 
Research• 89, K. J. Coppersmith and D. P. Schwartz, 
editor, Amer. Geophys. Union, W•hington, D.C., 
5669-5927, 1984. 
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9. Large-scale Anisotropy in the Earth's Mantle, Y. Ida 
and I. Kawasaki, editors, Symposium Proceedings, Jour. 
Phys. Earth, vol. $œ, 173-297, 1984. 
10. Creep of Crystals, High-temperature Deformation 
Processes in Metals, Ceramics, and Minerals, J.-P. 
Poirier, Cambridge University Press, Cambridge, 260 
pp., 1985. 
11. Rock Mechanics Observations Pertinent to the 

Rheology of the Continental Lithosphere and the 
Localization of Strain along Shear Zones, S. H. Kirby, 
Tectonophysics• 119• 1-27, 1985. 
12. Point Defects in Minerals, R. N. Schock, editor, 
Geophys Monogr. Set., vol. 31, Amer. Geophys. Union• 
Washington, D.C., 1985. 
13. Metamorphism and Deformation• Advances in 
Physical Geochemistry, vol. 4, A. B. Thompson and D. 
C. Ruble, editors, Springer-Verlag, New York, 1985. 
14. Preferred Orientations in Deformed Metals and 
Rocks: An Introduction to Modern Texture Analysis, H. 
R. Wenk, editor, Academ. ic Press, New York, 1985. 
15. Mineral and Rock Deformation: Laboratory Studies, 
The Paterson Volume, B. E. Hobbs and H. C. Heard, 
editors, Geophys. Monogr. $er., vol. 36• Amer. Geophys. 
Union, Washington, D.C., 324 pp., 1986. 
16. Internal Structure of Fault Zones, Special Issue in: 
Pure and Applied Geophysics, 1œ•, C.-Y. Wang, editor, 
1986. 

17. Rheology of the Earth, Deformation and Flow 
Processes in Geophysics and Geodynamics, G. Ranalli, 
Allen and Unwin, Inc., Winchester, Mass., 388 pp., 1986. 
18. Flow Properties of Continental Lithosphere, N. L. 
Carter and M. C. Tsenn, Tectonophysics, in press, 1987. 

6.1 Rock FRACTURE 

FRACTURE STRENGTHS AND TOUGHNESS. Aim 

at. [1985], Biegel and Wong [1984], Bulau et at. 
[1985], Chatterjee and Knopoff [losa], Cox and $cnotz 
[•985a, b,½], lnada and Yokota [19841, Meredith and 
Atkinson [xossl, Pe• et d. [1985], Reches and Dieterich 
[1983], Sammis and Ashby [1084], Schmiatke and Lajtai 
[1985], Shi and Wang [1984], Shimads [1086], Stierman 
•a •,•ty [•ossl, s•,o• [lOSS], s•o• ,t •. [10841, 
Zhao and Wang [1985]. 
•rr•CTS or ros• rs•ssus•. Green et •. [1984], Guo 
et al. [1984], Zranz and Blacic [1984], Maddock and 

[1984], Morrow et •. [1984, 1986], Roelofts and Rudnic• 
[•083, 1085], Rutter and Br•ie [1086]. 
CRACK MICROSTRUCTURES AND FRACTOGRAPHY. 

and Macaudiere [1984], Brown and Scholz [1983, 1984, 

10ss], •o•Ui, •a •• [10841, •a• [108a], 
and Bintic [1•84], Kurta et •. [1083], Lespinasse and 

Nolen-Hoeksema and Gordon [1985], Oldbag and Zhang 
[1084], Sovtt• [1084], roberta et •. [1086], S,•otz 

Brown [19841, $½holz and Hickma,z [1983], Swanson 
[19851, Swanson etal. [19841, Wallace a,zd Morris [19861, 
Wong and Fredrich [1984]. 
fRACTURE ANALYSIS. Aydin and Johnson [1983], Costin 
[1983], Davies and Pollard [1986], $egall [1984], $egaH 
and Pollard [ 1983 a, b]. 
ACOUSTIC EMISSIONS. Boler and Spetzler [1984], 
Chiba etal. [1984], Granrydet al. [1983], Majer etal. 
[19831, Meredith and Ath'nson [losal, Oa,aka [19831, 
So,bier et •. [10851, Swatch and S•tzler [19831. 
X•gLXST•C•TY. Granryd et hi. [1983], Jackson [1983, 
1986], Jac•on et d. [1984, 1985], Minster and Anderson 
[1081], Murphy [10S41, Myer et al. [1085], Webbet •. 
[10S4]. 
svsx• sgLxxxv•o•. Engelder [1984], Engelder and 
Plumb [1984]. 
THERMO-ELASTICITY AND THERMAL CRACKING. Fredrich 

and Wong [lOS4], Heuze [1983], Matsui and Manghnani 
[lOS•]. 
SUBCRITICAL CRACK GROWTH AND TIME DEPENDENT 

rsxcvvsz. Ath'nson [1984], Dunning [1985], Dunning 

et d. [lOS4], Dunning and Miller [1985b], Etheridge 
[1can, lOS4], Gab•elov and Keilis-Borok [1osa], Julian 
and Sammis [1985], Meredith and At•nson [loan, lOSS], 
MiU• • D...i.• [10SS], Schmidtke and Lajtai [lOSS], 
Swanson [1985]. 
CRACK HEALING AND RECOVERY. Hickma• and Evans 

[1985], Smith and Evans [1984]. 

6.2 Rock FRICTION 

TIME- AND MOISTURE-DEPENDENT FRICTION. Beeman 

et hi. [1984], Blanpied et hi. [1084], Byeflee and Vaughan 
[1984], Chester [19851, Vescano etal. [1985], Dieterich 
and Conrad [1984], Dunning and Miller [1985a], Gu 
[19851, CUb et al. [19841, Hobbs and Brady [1985], 
LockHer and Byeflee [1985], Logan and Feucht [1985], 
Mase an• Sinira [10S•], O•ubo ana Dietesta [10S4a, b], 
o•o• [lOS4, lOSS], ri•to• •t •. libsol, ri• [lOSa], 

[lOS•], r•i• [lOSS], sai • •• [lOS•], sai••oto 
[1985, 1986], Shimamoto and •gan [1983, 1984], 

•. [lOSa], •• •a •ui• [lOS4, lOS•], •• •t •. 

•xvvsx• x• sv•vu•wc coyess. Biegel et al. [1985], 
Bird [X984], Byertee and Vaugha• [1984], •hester 
ca•t• • •o• libsol, r• •t a. [lOSS], 
•na ry• [lOS41, Maaao• • Sutt• libsol, M•o•e 

d. [lOS4, lOSO], Mo•ow ana Byetree [10S•], 
aria Brace [lOSa], O'Nea [lOS•], Rdeigh and Marone 
[1oso], r•a•i•' [lOSS], r•tt• •t •. libsol, S•m•i• 

M•CHANICAL BEHAVIOR ON CLAYS AT HIGH PRESSURE. 
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CHARACTERIZATION OF FAULTED SURFACES AND DE- 

FORMED GOUGES..BI'o•n and •½holz [1983, 1984, 1985], 
Chester and Logan [1986], DarieN a•d Pollard [1986], 
De•9 et al. [1986], Hua•9 et al. [1985], W•lace a•d 

• S•TU ST•ZSS •ZSSU•Z•ZSTS W•T• •Z•, •T- 

TL• L•THOSPH•R•. MeGapr [1980], Zobac• a•d A•der- 

C•T•CL•ST•C D•rOgU•T•ON. A•derso• et al. [1983], 
Bitgel et al. [1985], Ble•%sop a•d R•tter [1986], 

WAite a•d WAite [1983]. 

6.3 BRITTLE-DuCTILE TRANSITION 

et al. [1983], Hadizadeh and Rutter [1984], Hadizadeh 
and Tullis [1986], Koch and •reen [19851, Mitra [1984], 
Rutter [1986], $himamoto [1986], Sibson [1982, 1984b, c], 
Simpson [1984a, 19861, Smith and Bruhn [1984], Stel 
[1986], Tscnn and Caaer [1087]. 

6.4 DUCTILE DEFORMATION OF 
ROCKS AND MINERALS 

TRANSIENT CREEP. Gangi [1983], Handin et al. [1986], 
Kirby [•os3l, Peltier [1986], Ross et al. [•0S3l, $abadini 

STEADY-STATE CREEP OF OLIVINE AND RHEOLOGY 

OF THE UPPER MANTLE. A. Ez•;½•'iN'•½nto•l.•l defo•'f'Ncd 
oli•ae roc•B•sod and CAbstie [1983, 1984], Ckopra 
[•9s6]. C•o• • •o•• [•9s3]. C•o,• 
Paterson [1981, 1984], Cooper and Koklstedt [1984a, b, 

B. Nat•rallF deformed pe•dotite•A•g L•lemaat [1985], 

Har•i• • Bir• [•9ss]. K•r• et at. [•9ss]. Ross [•9s3]. 

w• [•ss]. 
STEADY-STATE CREEP OF CRUSTAL ROCKS. J. Mo•o•i•- 

er•i• r••Albi•e-Skeltoa a•d T•llis [1981], Anhydrite- 
M611er et •. [1981], Anor•hosite-Skel•oa and T•lis [1981] 
Clinopyroxenite-Bolaad [1986], Bolaad aad T•llis [1986], 
KirbF aad Kroaeaber9 [1984c, 1986], Skeltoa a•d T•llis 
[1981], Ice-D•eF et •. [1984], D•rham et al. [1983], D•- 

•. [1987], Limestone and Marble-Sckmid et al. [1977, 
•980], quartzit•Ha• a•d Carter [•982], Jao•l et •. 
[•984], Kro•e•er• a•d T•lis [1984], Mai•p•ce a•d 
t•so• [•9s4]. Ro•, • •. [•9s3]. s•t•o• • •m, [•9s•]. 
Rocksal•-Ca•er a•d Haasea [1983], Gaa9i [1983], Haa- 

- Ap•te- SAdiron and •lis [1981], B•al•-Wil•s et 
•. [1984], Diabase-Skeltoa and T•llis [1981], Granite- 
Ba•e• [•9s4]. c•r •t •. [•9s•], •a•e• • c•e, 
[1982], Ross et •. [1983], Quartz Diorite-Ha•ea aad 
•• [•s2], q,•rtz-•i•-•m, • ••o• [•s4], 
Ice-Mica-Analogue- Wilsoa [1983, 1984, 1985], Rock 

Analogues-Tharp [1983b], Interlayed Halite-Hansen and 
Callahan [1983]. 
MINERAL PLASTICITY- FLOW PROPERTIES, DEFECTS 

AND MECHANISMS. Phenomenology and mechanisms- 
Capufo [1983, 1985, 1986], Drury et al. [19851, Ferguson 
[1983], Freeman and Fer9uson [1986], Means et al. 
[1084], Peters [19851, Poirier [10831, Randti [10841, 

Tharp [•9Saa, b], •11is and Tullis [1986], Wa• et al. 
[l•S•]. w•.•,•t [i•ss]. •.•.•t •,• z,.& [•86]. 
Wet,man and Bintic [1983, 1984], White et •. [1985]. 
Oli•n•Chopra [1986], Chopra and Paterson [1981, 
1•84], D•ot • •. [l•SS], D,•i• •,• •oam•t [1•841, 
Ga•ria• [•86], Ga•oria• a• D•a•ot [1•84], 
and Botch [1986], Green and Hobbs [1984], Karato et 
•. [1982, 1986], Karato and Paterson [1984], Mackwell 
et •. [•9ssa,•], Mado• a•d roi•er [•98s], Poi•er 

Zeuch and Green [1984a, b]. Spinel•Chdstia•en [1986], 
Doukhan • •. [1984], Sch6f•r • •. [1981, 1983, 
1984]. Magnesium PerowMt• A•ogues- Doukhan 

and Guillou [1983], Ashwo•h and Schneider [1985], 

a•d •epied [•988], Heggie and NylOn [1984, 1985], 
Heggie et •. [1985], Jaoul et •. [1984], Kronen•rg and 

Mainprice and Paterson [1984], Ord and Christie [1984], 

and KoMstedt [1984, 1985, 1986], Scandale et •. [1983], 
Shelley [1986]. Mic•Ba•os et •. [1983], Baronnet and 
Oli,es [1983], Bell and Wilson [1986], Kronen•rg et •. 

[l•SS]. •y•o,•s - Bot• [1•86], Bom• •,• 
[1986], Kirby and Kronenberg [1984c, 1986], ,an Duysen 
and Doukhan [1984], ,an Buysen et •. [1985], Van 

Biermann and Van Roermund [1983]. Garnet•Smdh 
[•84], $miti a• Carpenter [•oss]. Coru•&m-Ca•oz 

•. [1983, 1984]. Diamond-Bursill and Glaisher [1985]. 
Carbonate•Bar•r et •. [1983], Olgaard and E•a• 

a,d Zeusgang [1985], Tharp [1984]. S•phide•eoz 
[•os•], Co• •.d •• [•os4], V•d•o• •t •. [•oss], 
Kubler [1985]. H•ite (NaCl) and other salt•Banerdt 
[lOS3], ••dt •d s•• [•oss], r•.• •.d •o• 
[1983], Cadet aad Haasen [1983], Da•s aad Engelder 
[lOSS], •'• •t •. [•os4], a•i [•os3], n•di. •t •. 
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Pfeifie ar, d Ser, serqt [1082], Preee, and Be•leV [19851, na•zer et al. [1985], Stenina et al. [1984]. Hald• 
Srai [1983, 1985], Urai and Boland [1985], Wawersik Heard and Ryerson [1986]. Oxide•Castaing e• al. [1984], 
[1985], Wawersik and Zeuch [1986], Williams [1986], Dominguez-R•riguez and C•taing [1983]. S•phide• 
Zeuch and Holcomb [1984]. •c•-D•ey et •. [1984], Davidson et •. [1985]. 
Durham et at. [1983], Duval [1981], Duv• and LeGac rs•r•ss•D om•a•m•s • csus•ah socks. Qua•z 
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