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We review recent results concerning the rheology of the lithosphere with special attention to
the following topics: 1) the flexure of the occanic lithosphere, 2) deformation of the continental
lithosphere resulting from vertical surface loads and forces applied at plate margins, 3) the
rheological stratification of the continents, 4) strain localization and shear zone development, and
5) strain-induced crystallographic preferred orientations and anisotropies in body-wave velocities.

We conclude with a section citing the 1983-1986 rock mechanics literature by category.

INTRODUCTION

Improved geophysical observations, continuum me-
chanical modeling, and application of laboratory
measurements of mechanical properties of rocks to
problems associated with plate dynamics have led
to advances during the period 1983-1986 in our
understanding of the rheology of the earth’s lithosphere.
Rheological models for the oceanic lithosphere, applied
to large-scale deformations at plate boundaries and
within plate interiors, have been further developed using
elastic, elastic-plastic, and viscoelastic formulations.
These models have been further refined by incorporating
nonlinear stress and temperature dependencies into the
viscous response of Maxwell-type viscoelastic rheological
models, consistent with experimental measurements
of the mechanical properties of rocks at elevated
temperatures. In addition to flexure at trench-rise
systems, deformation of the oceanic lithosphere has
been examined within plate interiors in response to
large horizontal compressional forces and thermally-
derived stresses, and constrained by measured ocean
floor topographic profiles, marine geoid anomalies, and
the distributions and focal mechanisms of earthquakes.

Rheological models for the continental lithosphere
have likewise emerged in this quadrennial period,
based upon a continuum approach to the large-scale
structures developed in diverse tectonic settings, and
upon experimentally-determined mechanical responses
of crustal and mantle lithologies. The mechanical
behavior of the continental lithosphere is complicated
by its compositional heterogeneity and complex thermal
history, and cannot, as yet, be as closely constrained as
that of the oceanic lithosphere. Nevertheless, favorable
comparisons of model results with observed structures
have led to insights into the tectonics and mechanical
response of the continents.
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Rather than attempt a discussion of the entire
literature pertinent to the rheologies of the oceanic and
continental lithospheres, we select several current lines
of research for discussion which we feel are particularly
important and noteworthy. We review recent results
concerning 1) the flexure of the oceanic lithosphere,
2) deformation of the continental lithosphere resulting
from vertical surface loads and forces applied at
plate margins, 3) the rheological stratification of
the continents, 4) strain localization and shear zone
development, and 5) strain-induced crystallographic
preferred orientations and anisotropy of elastic wave
velocities. We conclude with a section citing the 1983-
1986 rock mechanics literature by category.

1. FLEXURE OF THE OCEANIC LITHOSPHERE

The concept of rigid plates constituting a lithosphere
overlying a more fluid-like asthenosphere has been most
successful in describing the tectonics of the ocean basins,
owing in part to the relatively high strength of the
oceanic lithosphere. As shown by the bulges in sea
floor topography, geoid anomalies, and other flexural
features which extend into the oceanic lithosphere from
loads applied at deep ocean trenches and seamounts,
the oceanic lithosphere is capable of supporting
large differential stresses over extended geologic times.
Consistent with these observations, yield envelopes for
the oceanic lithosphere, based upon experimentally-
determined mechanical properties of rocks which
constitute the oceanic crust and upper mantle [e.g.,
Goetze and Evans, 1979; Brace and Koklstedt, 1980;
Kirby, 1983], require loads in excess of those generally
available for significant inelastic deformations within
plate interiors. Thus, with the exception of relatively
gentle flexural features, displacements and deformation
tend to localize at plate boundaries.

Analyses of flexure of the oceanic lithosphere have
been particularly rewarding due to the relatively
simple geometries involved and the wide range of
geophysical constraints which can be placed upon
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model results. Models of plate flexure have included
elastic, as well as elastic-plastic rheologies, based upon
experimentally measured mechanical properties, and
have been compared with observed vertical seafloor
surface displacements, gravity anomalies, distributions
of seismicity, and the inferred loading and environmental
conditions. Flexural models over the period 1983-
1986 have been extended to oceanic plates of widely
differing ages and within differing tectonic settings
based upon elastic, elastic-plastic, viscoelastic, and
layered rheological models. Among the most important
developments which have come from these studies has
been the definition of the lithosphere-asthenosphere
interface based upon time-dependent yield strength,
which coincides with the seismically defined lithosphere
and, for a given time of loading, corresponds
approximately to an isothermal contour within the
upper mantle.

Elastic plate models, although largely surpassed by
more realistic rheological models, have provided a
useful first order approximation to the behavior of the
lithosphere and have recently been applied to evaluate
the state of stress near ridge-transform intersections
[Morgan and Parmentier, 1984] and in determining
the thermoelastic bending stresses generated by lateral
variations in heat flow [Bills, 1983]. Within the context
of flexural features of the ocean floors, elastic plate
models have been used to characterize plate bending
resistance in terms of an effective flexural rigidity
and elastic plate thickness. Comparisons of calculated
flexural rigidities and effective plate thicknesses for
oceanic plates of differing ages at the time of
loading have revealed a particularly important trend of
increasing flexural strength with age [e.g., Waits, 1978,
1982; Bodine et al., 1981] which closely parallels models
of plate cooling. Recent contributions have been made
by matching gravitational anomalies calculated from an
elastic flexure model with SEASAT altimeter profiles
of globally distributed oceanic trench systems [McAdoo
and Martin, 1984; McAdoo et al., 1985) and determining
effective elastic thicknesses for plates ranging in age
between 22 and 160 m.y. Effective plate thicknesses
determined over this interval ranged from 27 to 63 km, in
agreement with the relationship between plate thickness
and the square root of lithospheric age as suggested by
Bodine et al. [1981]. The improved geographic coverage
provided by the SEASAT altimeter data has indicated
that regional compressional stresses normal to trench
trends are not needed to account for the observed geoid
profiles [McAdoo et al., 1985].

While the central core of lithospheric plates
may remain elastic during flexure, stresses within
the upper lithosphere are likely to be limited
by pressure-dependent brittle failure. Changes in
mechanical properties of the oceanic lithosphere with
age, comparable with trends of cooling, reveal the
importance of temperature-dependent ductile processes
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at the base of the lithosphere. Recent modeling
efforts of outer rise-trench systems have therefore been
focused on the development of more realistic, composite
layer models which are consistent with the results of
experimental rock mechanics [Goetze and Evans, 1979;
Kirby, 1980, 1983]. In addition to matching bathymetric
and gravity profiles [McAdoo et al., 1985], these layered
rheological models predict lithospheric plate thicknesses
more consistent with those derived from maximum
depths of intraplate seismicity [ Wiens and Stein, 1983,
1984, 1985]. Significantly, the base of this mechanically-
based lithosphere appears to correspond to an isotherm
of between 700 to 800°C, when compared with thermal
cooling models of the oceanic plates [Parsons and
Sclater, 1977], reflecting the exponential temperature
dependence of creep.

In addition to models of flexure near plate margins,
layered rheological models have been applied o a
unique example of intraplate flexural buckling within
the central Indian Ocean [McAdoo and Sandwell,
1985; Zuber, in press| apparently resulting from large
horizontal compressional siresses associated with the
Indian-Eurasian plate collision. McAdoo and Sandwell
[1985] examined the thinning of the elastic core of
an elastic-plastic plate as yield conditions associated
with brittle fracture and plastic low within the upper
and lower regions of the plate, respectively, were
reached. Using both plastic and lab-based nonlinear
viscous models for the lithosphere overlying a viscous
asthenosphere, Zuber [in press] examined both the
flexural buckling of a plate of uniform thickness and the
growth of instabilities in a hydrodynamic flow model
of the lithosphere. While differing in approach, these
models predict fold wavelengths of 200 km, consistent
with those of the seafloor topographic undulations and
geoid anomalies associated with buckling.

As the combined thicknesses of the basalts and
gabbros of the oceanic crust do not generally exceed
6-7 km, the mechanical properfies of the oceanic
lithosphere are likely to be controlled by the materials of
the upper mantle. Experimental determinations of the
fracture, frictional, and flow properties of peridotites
and of olivine, the predominant phase of the upper
mantle, have been extensive, spanning an enormous
range of environmental conditions and have had an
important influence upon modeling efforts. Given the
distribution of pressure and temperature with depth
in the oceanic lithosphere, stresses within the upper
regions of the lithosphere may be predicted by Coulomb
laws for fracture and laws for frictional sliding on
pre-existing fractures, whereas ductile flow within the
lower regions of the lithosphere may be constrained by
laboratory-based ductile creep relations. The principal
uncertainties of these applications stem from conjectures
regarding fluid pressure and chemistry, hydrothermal
alteration, and olivine grain size within the lithosphere.

Lower bounds to inelastic yielding within the upper
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oceanic lithosphere have been based upon the frictional
response of rocks with pre-existing fractures. Frictional
behavior of rocks and minerals are relatively insensitive
to rate of deformation at room temperature and
exploratory experiments suggest that temperature also
has a small effect up to 400°C. With the exception
of hydrous minerals, these data may be described by
two relatively simple, linear friction laws, depending
on the range of normal stresses [Byerlee, 1968; Brace
and Kohlstedt, 1980; Kirby, 1983]. Written in terms of
principal stresses and assuming fracture surfaces of all
orientations

(61 —03) =39 03
(0’1 - 0‘3) =210+ 2.1 O3

for o3 < 120 MPa (1a)
for o3 > 120 MPa (1b)

Although o3 in these relations may be well constrained
by the lithostatic load under dry conditions, pore
fluid pressures Py may reduce the effective minimum
principal stress o3 = 03 — Py, leading to reductions in
differentjal stresses. Recent results for dunite [Pinkston
and Kirby, 1982; Pinkston et al., 1986] have roughly
confirmed these relations for olivine under anhydrous
conditions at pressures of up to 700 MPa and
temperatures to 600°C but with somewhat lower
o3 coefficients. Large departures from this relation
were observed, however, for samples with only frace
quantities of water and hydrous alteration products on
grain boundaries. Whether a result of pore pressures
decreasing the effective pressure, the markedly lower
frictional strengths of the hydrous minerals, or the
result of alteration reactions, the presence of fluids at
shallow depths within the oceanic lithosphere may lead
to significant reductions in its strength within the brittle
field.

The base of the mechanical lithosphere in ocean
basins may be defined physically by the exponential
temperature dependence of creep for olivine. While
experimental work is still needed to characterize
its transient creep properties, steady state flow
laws for olivine are now well established under
anhydrous conditions and in the presence of water
for both oriented single crystals and coarse-grained
polycrystalline aggregates (Table 1) and work is well on
its way to determining the effects of grain size, water,
oxidation states within the mantle, defect chemistry,
and presence of partial melts. Creep laws for olivine
under conditions which favor dislocation processes may
be represented by a thermally activated power law

é, = Ao™ exp(—H* /RT) (2)

where ¢, is the steady-state creep rate, 0 = (07 — 03)
is the differential stress, T is absolute temperature, A
is a material constant, n a dimensionless constant of
the order 3.4 to 4.5, and H* = E* + PV* is the

activation enthalpy (E* is the activation energy, V* is
the activation volume, and P is the hydrostatic pressure
or mean normal stress). Of greatest impact to flexural
models of the lithosphere are the combined effects of
geothermal gradients and the strong dependence of
creep upon temperature, the non-Newtonian power-
law dependence upon stress, and the time-dependent
nature of strength within the lowermost regions of the
lithosphere. While creep rates may be presumed to
vary smoothly with increasing temperature at depth,
a critical temperature can be defined operationally
within a given time frame, corresponding to an effective
mechanical discontinuity between the lithosphere and
asthenosphere. The non-linear dependence of strain
rate, characteristic of dislocation creep, also has an
important geophysical impact, affecting the distribution
and pattern of strains resulting from various loading
sources. Although eqn. (2) is non-Newtonian by
definition, it can be expressed in terms of a simple
viscous relation

. 1
& = 50 (3)

by defining an effective viscosity

o'~" exp(H* /RT)
oA (4)

which may vary locally as a function of stress. The
final feature we emphasize in the relation (2) is its time
dependence. If we invert eqn. (2), the steady-state stress
at fixed strain rate is

n (effective) =

.\ 1/n
0, = (i) exp(H" /nRT) (5)
is time dependent for a given strain increment. o, is the
strain-independent counterpart of é, in constant stress
tests. In addition, this form of the flow law exhibits
a powerful exponential effect of inverse temperature
on the steady state strength, an effect that leads to
plate-like behavior. Over the time of flexural loading,
viscous relaxation within the lower lithosphere may
lead to reductions in lower lithosphere stresses and the
amplification of stresses within the upper lithosphere
[Kusznir, 1982; Bott and Kusznir, 1984].

The experimental data for the flow of olivine are
among the most extensive of earth materials; however,
applications to the rheology of the lower lithosphere
involves uncertainties associated with the important
effects of water [Chopra and Paterson, 1981; Mackwell
et al, 1985] and possible contributions of grain-
size sensitive diffusional creep at fine grain sizes
[Karato, 1984; Karato et al., 1986; Chopra, 1986]. As
fluid inclusions within mantle xenoliths are composed
primarily of CO, [e.g., Green and Gueguen, 1983;
Bergman and Dubessy, 1984; Rovetia et al., 1986; Tingle
et al., 1986], H3O is not expected to be the dominant
fluid within the upper mantle. Nevertheless, only
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TABLE 1. Steady-State Flow Law Parameters for Olivine: Dislocation Creep

é, = Ao™ exp(—H* /RT)

H* =E*+PV*

log, 4

(MPa—" s—1)

n H*
(kJ mol—1)

V‘
(m3 mol—!)

Dry

Karato et al. [1982]
GS = 0.02 to 0.2 mm
P =0.1 MPa
Kirby [1983]
interpretation of single-crystal
rheology and diffusion data
P =0.1 MPa
Chopra and Paterson [1984]
GS = 0.1 and 0.9 mm
P = 300 MPa
Green and Hobbs [1984],
Green and Borch [1986]
P = 1000-3000 MPa
Zeuch [1084]
GS = 0.3 mm
P = 1000-1500 MPa
(exponential stress dependence
at differential stresses of
370-1290 MPa)
Karato et al. [1986]
GS = 0.03 to 0.06 mm
P = 300 MPa

Wet

Chopra and Paterson [1981]
Anita Bay dunite
GS = 0.1 mm
P = 300 MPa
Aheim dunite
GS = 0.9 mm
P = 300 MPa
Chopra [1986]
GS = 0.01 mm
P = 300 MPa
(at T = 1100°C)
Karato et al. [1986]
GS = 0.03 t0 0.06 mm
P = 300 MPa

3.9

4.8+1.2

4.4610.18

4.040.2

2.6+0.2

3.5+0.6 528163

3.5+0.6 533+60 (17+4) x 10~°

3.6+0.2

535433

(28 to 36) x10~°

594

3-3.5

3.44+0.2 444124

4.510.2 498138

3.3

3-3.5

GS = Grain Size.

trace quantities of intracrystalline H3O are required
[Mackwell et al., 1985] for hydrolytic weakening, well
within the range of concentrations measured in mantle-
derived olivines [Miller and Rossman, 1985] and garnets
[Aines and Rossman, 1984]. Recent experimental efforts
have also been aimed at the mechanical behavior
of polyphase peridotites, olivine-basalt partial melts,
and very fine-grained olivine aggregates (Table 2).
Of particular importance has been the discovery of
nearly linear rheologies for partial melts and fine-
grained olivine aggregates associated with diffusional
transfer creep mechanisms {Cooper and Kohlstedt, 1984;
Chopra, 1986; Karato et al., 1986]. These rheologies
similarly are expressed in terms of eqn. (2), but

incorporating a grain size dependence in the pre-
exponential term A, and with values of n ranging
between 0.9 to 1.5. Application of these recent results
to the mantle will require models of olivine grain size
[Ross, 1983; Karato, 1984] and extrapolations of the
competing dislocation and diffusional creep rheologies,
in addition to those of its thermal structure. While linear
viscous flow in the mantle requires serious consideration
[Ranalli, 1984; Ranalli and Fischer, 1984; Karato et
al.,, 1986, the predominance of microstructural and
textural evidence from naturally deformed ultramafic
xenoliths and massifs [e.g., Gueguen and Nicolas, 1980;
Ross, 1983] suggest that dislocation creep processes
are important in the upper mantle, In addition, while
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TABLE 2. Flow Law Parameters of Mantle Materials: Effects of Grain Size, Melt, and Mineralogy
é, = Ao™ exp(—H* /RT)

Material log,o A n H* Comments Ref.t
(MPa—® s~!1) (kJ mol™!)
Syntheti;: olivine
aggregate (Mg, Fe);S5i0, — 3.3 — at 1100°C 1
GS = 0.01 mm o =350-672 MPa
P = 300 MPa — 1.5 — at 1200°-1300°C 1
o =28-150 MPa
Synthetic dinite
aggregaté (Mg; Fe)38i0, — 3-3.5 — at 1300°C 2
GS = 0.007 to 0.06 mm GS = 0.03-0.06 mm
P = 300 MPa — 14 —_ at 1300°C 2
GS = 0.007-0.03 mm
Olivine + basalt liquid
partial melt ) - 0.91+0.2 385 at 1300°-1400°C 3
GS = 0.003-0.013 mm
P = 0.1 MPa
Spinel lherzolite
partial melt -11.6 2.95 36-117 at 900°-1100°C 4,5
P = 1000 MPa
Fe,Si0, single crystals 22.2 61 032+220 6

{References: 1. Chopra [1986], 2. Karato et al. [1986], 3. Cooper and Kohlstedt [1984], 4. Bussod and
Christie [1983], 5. Bussod and Christie [1984], 6. Ricoult and Kohlstedt [1984].

the success of flexural models incorporating nonlinear
olivine rheologies in predicting seafloor bathymetric and
gravitational profiles are not necessarily diagnostic of
the underlying creep laws, plate thicknesses derived
from dislocation creep laws are in excellent agreement
with the depth distribution of intraplate earthquakes
[Wiens and Stein, 1983, 1984, 1985].

Due to the relatively similar times of loading involved
in flexure of the oceanic lithosphere within various outer
rise-trench systems, modeling efforts have not required
the incorporation of the time dependence of creep
explicitly. However the strength of the lower lithosphere
may differ under other loading conditions and time
duration. In order to capture the time dependence of
the mechanical lithosphere, DeRito et al. [1986] have
developed a viscoelastic plate model for flexure in which
elastic stresses within the lower lithosphere decay by
time-dependent nonlinear creep. Using a Maxwell-type
model, a characteristic time 7
2n
twer  E (©)
can be defined [Melosh, 1980] as the time required for the
inelastic creep strain under a constant load to equal the
elastic strain due to the same load (and can be expressed
equivalently in terms of viscosity # and Young’s modulus
E). Using the effective viscosity (eqn. 4) for power law
creep

€elast
M="T7"7+=

exp(H* /RT)

7 (effective) = EAgn1

™

depends upon temperature as well as stress.

Turcotte and Schubert [1982] similarly have defined a
characteristic relaxation time 7, as the time required
for an elastic strain to relax by non-linear viscous
flow to half its initial value in a spring and non-
linear dashpot model subject to a constant total
strain constraint (as opposed to constant stress). This
rheological parameter 7, exhibits identical temperature
and stress dependencies as the Maxwell time.

During flexure, three subhorizontal rheological layers
develop as functions of plate loading and geothermal
gradients. Within the cold upper regions of the plate,
characteristic times 7as are much greater than the time
of loading ¢(ras > t) corresponding to elastic behavior,
whereas at intermediate levels, 7as = ¢ corresponding to
transitional viscoelastic behavior, and at deeper levels,
s < t corresponding to a predominantly viscous
rheology. Under flexural loads, stresses and 7as within
the plate vary with depth. A strength parameter L is
defined as

c (generally bounded

by 0<E<1)

™

L +t

= ™

(®

Oelast

(differential stress is normalized with respect to the
elastic stress that would be present at the same strain
at ¢t 0). ¥ varies with depth just as 7as varies
with temperature and flexural stress. Using this model,
DeRito et al. [1986] determined contours of equal X and
showed an approximate correspondence of the base of
the lithosphere, as defined by the X = 0.3 contour, to the
700°C isotherm based on a plate cooling model. Thus
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the lithosphere and asthenosphere are defined by the
Maxwell time in relation o the time scale of loading.

2. DEFORMATION OF THE CONTINENTAL LITHOSPHERE

Despite the far more complex thermal and mechanical
structure of the continents, significant developments
in our understanding of the continental lithosphere
have resulted from simple, yet elegant, continuum
mechanical plate models employing elastic, viscous,
viscoelastic, and plastic rheologies. Among these,
flexural models have been developed for the subsidence
of continental plate margins during rifting and crustal
thinning associated with thermal heating and extension
[Park and Westbrook, 1983; Alvarez et al., 1984],
the development of large-scale intracontinental basins
[Bills, 1983; Lambeck, 1983; Garner and Turcolle,
1984; Nunn and Sleep, 1984], and the response of
the continental crust to vertical loads associated with
surface topography, erosion [Stephenson, 1984] and
plate scale faulting {Owens, 1983]. Constrained by
sedimentation and erosional histories, these models
have produced estimates of elastic flexural rigidities,
time-dependent viscoelastic responses, and effective
mechanical plate thicknesses. In addition, models of
rifting and graben formation [Bott and Mithen, 1983;
Keen, 1985] have been developed using an upper
brittle layer to represent the shallow crust overlying
temperature-dependent viscous and viscoelastic layers
representing the lower crust and mantle. On an entirely
different time scale, models have been developed for the
elastic strain accumulation, coseismic, and postseismic
viscoelastic response associated with great earthquakes
using models of a plate-scale crack within an elastic
lithosphere overlying a viscoelastic asthenosphere [L¢
and Rice, 1983a,b; Melosh and Raefsky, 1983; Bonafede
et al., 1984, 1985; Cohen and Kramer, 1984; Thatcher
and Rundle, 1984; Li and Kisslinger, 1985; Reilinger,
1986]. Models of stress diffusion and associated surface
displacements, combined with active monitoring of
seismically active faults should provide close constraints
on the rheological properties of the continental
lithosphere on this time scale.

Perhaps the most provocative results concerning the
large-scale structures and tectonics of the continents
have come from model studies of continental deforma-
tions associated with convergent, divergent, and tran-
scurrent plate motions. Compared with deformations
within the oceanic lithosphere, deformation of continen-
tal plates is far more penetrative and complex. How-
ever, neglecting heterogeneities in crustal lithologies and
in environmental conditions, continental deformations
have been modeled to first order by examining the me-
chanical response of continental plates with relatively
simple, uniform rheologies to applied displacements at
their boundaries. Applying displacement boundary con-
ditions to the continental Eurasian plate associated with
its collision with India, Tapponnier and Molnar [1976]
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were able to match many of the tectonic features of the
Himalayan arc and, on the basis of plastic slip-line anal-
ysis, predicted the patterns of strike-slip faulting and
seismic activity [Khattrs and Tyags, 1983].

More recently, the continental lithosphere has been
modeled as a thin viscous plate, with either Newtonian
or power-law stress dependencies, overlying an invis-
cid asthenosphere [Bird and Piper, 1980; England and
McKenzie, 1982; England et al., 1985; England and House-
man, 1986; Houseman and England, 19865]. Assuming
that vertical gradients of horizontal velocities within the
thin plate are small, vertical averages of strain rates and
stresses were related by a depth-averaged rheology, inte-
grating the plate’s temperature-dependent viscosity over
its vertical temperature gradient. Comparisons of lateral
deformation fields within this thickness-averaged plate
resulting from boundary conditions associated with con-
tinental collisions, extension, and strike-slip plate mo-
tions [England et al., 1985] have yielded striking rela-
tionships between the length scales of penetrative conti-
nental deformation, the directions of relative plate mo-
tions, and lithosphere rheology. Deformation fields asso-
ciated with compressional and extensional plate inter-
actions may be four times wider than those associated
with transcurrent plate motions. Widths of intraplate
deformation were also affected by the stress exponent,
decreasing approximately as n—1/2,

Crustal thickening in compressional regimes associ-
ated with continental collisions have been modeled us-
ing this same thickness-averaged model [Houseman end
England, 1986b; England and Houseman, 1986], as well
as a thin visco-plastic plate model | Viloite et al., 1984,
1986]. Although the rheological relations of continental
crust lithologies are not known with great confidence
(see next section), application of these models to the
continental Indian-Eurasian collision have provided cal-
culated distributions of crustal thickness which closely
resemble the topographic patterns of the Himalayan arc
and Tibetan plateau. These models have furthermore
shown that once a thickened crustal plateau has formed,
further increases in crustal thickness are inhibited by
buoyancy forces and strain rates within the plateau are
significantly reduced.

Crustal thinning and mnecking associated with
extensional deformations of continental plates have
been examined in simple layer models [Fletcher and
Hallet, 1983; Ricard and Froidevauz, 1986] with plastic
and power-law flow behavior. Modeling the brittle,
upper lithosphere as a plastic plate and the underlying
lithosphere as a power law material whose effective
viscosity decreases with depth, Fletcher and Hallet
[1983] evaluated the development and spacing of
extensional flow instabilities. Choosing a plastic plate
thickness of 10-15 km, consistent with the seismically-
determined brittle/ductile transition within the Basin-
and-Range Province of the western United States, they
predicted necking instabilities with a spacing of 35-
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60 km, in excellent agreement with the observed horst
and graben spacings of 20-50 km.

Although simple, thickness-averaged plate models
have provided extremely valuable insights into the
large-scale structures and dynamics of continental
deformations, more elaborate rheological models will be
required fo evaluate these complex tectonic regimes.

3. RHEOLOGICAL STRATIFICATION OF THE
CONTINENTAL LITHOSPHERE

Even the oceanic lithosphere with its thin crust
and its simple mineralogy dominated by olivine and
pyroxenes is not likely to be rheologically monolithic.
Systematic variations in environmental parameters
such as lithostatic pressure (vertical normal stress
Oss), the state of stress oy;, fluid pressure Py,
temperature T and the chemical effects of reactive
fluids can give rise to spatial variations in the
relative activities of inelastic processes, processes
that place limits on the siresses that can be
supported by the lithosphere. These processes include
jointing, hydraulic fracturing, brittle shear fauliing,
“ductile faulting,” semi-brittle deformation (distributed
microfracturing and intracrystalline plasticity), low
temperature intracrystalline plasticity, high-tempera-
ture recovery creep, high-temperature transient creep
and grain-size-sensitive high-temperature creep. In
view of the fact that many of the rheological laws
that characterize these processes are not known with
confidence for olivine-bearing rocks and that even the
distribution of environmental parameters that influence
rock strength are not firmly established, it would not
be surprising that current rheological models for the
oceanic lithosphere are oversimplified [see Chapple and
Forsyth, 1979; Goetze and Evans, 1979; Ashby and
Verall, 1978; Kirby, 1977, 1980, 1983, 1985; Brace and
Kohlstedt, 1980; McNuit and Menard, 1982; Carter and
Tsenn, 1987; Tsenn and Carter, 1987).

Consider now the added complexities of the
continental lithosphere. First, the thicker continental
crust is mineralogically more complex, with at least
ten minerals needed to describe it at the 2% level
in abundance. Second, the crust has segregated
radiogenic elements that are important heat sources, the
distribution of which is crucial in predicting the spatial
variation of temperature and hence, ductile strength.
Third, the crust also tends to segregate fluids such as
melts, hydrothermal fluids and CO; because partial
melting in the mantle very effectively segregates the
volatile species into melts and because lower density
mafic and more acidic melts are gravitationally unstable
in the mantle and rise in the crust to the point of
neutral buoyancy. Also the movement of hot fluids
affects the thermal structure. Fourth, a whole host
of petrological and geochemical processes attend the
presence and movement of hot, chemically aggressive
fluids, processes that include melt wetting of grain
boundaries, hydrothermal alteration, metasomatism,

1225

hydrothermal dissolution and crystal growth and
intracrystalline diffusion of hydrogen, water and related
species. These petrological and geochemical processes
give rise to a spectrum of weakening processes, such as
hydrolytic weakening, chemically assisted crack growth,
solution fransfer creep, melt transfer creep, and solute
effects on creep processes [see reviews by Sibson, 1984
and Kirby, 1083, 1984, 1985].

A simplified view of the rheology of the continental
lithosphere is to consider only the effects of gross crustal
mineralogy, neglecting the physical and chemical effects
of fluids. Olivine retains high strength to temperatures
as high as 1000-1200°C at typical laboratory strain
rates and high confining pressures. This is in contrast
with the thermal weokening of crustal rocks and
minerals (Table 3) at temperatures as much as 500°C
below the corresponding weakening temperature T, of
olivine [Bird, 1978; Brace and Kohlstedt, 1980; Chen and
Molnar, 1983; Kirby, 1985; Carter and Tsenn, 1987].
These interpretations of the rock-mechanics literature
have brought rock-mechanics support to the concepts
of a crustal asthenosphere and the interpretation of
the crust-mantle boundary as a possible rheological
discontinusty. If the temperature at the crust mantle
boundary is below T, for olivine but above T, for the
rocks appropriate to the lower crust, then the lower crust
will be weak and the mantle below the crust-mantle
boundary will be comparatively strong.

The above interpretations of the rock-mechanics
data have been motivated by independent geological
and geophysical observations that suggest locally weak
lower continental crust and, at the same time, strong
uppermost mantle. These observations include:

1) Evidence for decoupling of upper crust from
the upper mantle during large-scale thrusting
connected with continental collisions and evidence
for large-scale intraplate thrust faults soling into
the lower crust [Bird, 1978].

2) Stress relaxation in the middle to lower crust
implied by the vertical deflections in response to
rapid changes in small surface loads on continental
interiors, loads such as glacial lakes [McAdoo, 1985,
1987].

3) On a larger scale and over longer load duration,
the evidence for isostatic compensation in the lower
crust suggested by the relatively uniformly high
topography in the northern Himalayas and Tibetan
plateau [Bird, 1978].

4) Small wavelength scales of basin-and-range topog-
raphy in the extensional tectonic regime, implying
flow within the lower continental crust in connec-
tion with “pinch and swell” extensional deformation
[Zuber et al., 1986], with large wavelength features
corresponding to flow in the mantle asthenosphere
below.

5) The general lack of seismicity in the lower
crust [Stbson, 1982, 1983, 1984a,b; Meissner and
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TABLE 3. Steady-State Flow Law Parameters for Crustal Rocks and Minerals
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& = Ao™ exp(—H* /RT)

Material® Tog, A n J/ i Comments Ref.f
(MPa—™ g~1) (kJ mol™!)
Albite rock 18 3.9 234 1
Anorthosite 16 3.2 238 1
Quartzite 9.0 2.0 167 a-quartz field 1
11 2.9 149 a-quartz field 2
6.9 1.9 123 a-quartz field 3
10.4 2.8 184 a-quartz field 4
— 4 300 B-quartz, vacuum dried 5
at 800°C
— — 195 a-quartz field, transient 6
strains to 0.8%
— — 51 p-quartz, transient sirains 6
to 0.8%
Quartzite (wet®) 10.4 24 160 a-quartz, water from falc 2
10.8 2.6 134 a-quartz, 0.4 wt. % water 5
added
9.1 1.8 167 a-quartz, 0.4 wt. % water 3
added
Aplite 12 3.1 163 1
Westerly granite 8.5 2.9 106 a-quartz field 7
6.4 34 139 a-quartz field 3
— — 165 a-quartz field, 6
transient strains to
0.8%
— — 44 f-quartz, transient 6
strains to 0.8%
Westerly granite 7.7 1.9 137 a-quartz field 3,8
(wetP)
Quartz diorite 11.5 24 219 a-quartz field 3
Biotite single -19 10 30 compression direction 9
crystals at 45°to (001)
Clinopyroxenite 17 2.6 335 1
-260 83 220 at 230°-900°C 10
-5 5.3 380 at 800°-1100°C 10
Clinopyroxenite 5.17 3.3 490 11
(wetb)
Diabase 17 34 260 1
Carrara marble 48.6 7.6 418 drying procedure not described 12
33.2 4.2 427 drying procedure not described 12
Natural rocksalt -7.24 4.10 33.6 Avery Igsland 13, 14, 15
-6.82 1.39 28.8 Paradox Formation 13, 14, 15
-2.33 4.50 72.0 Permian Basin 13, 14, 15
-1.59 5.01 82.3 Richton Dome 13, 14, 15
-5.41 4.90 50.2 Salado Formation 13, 14, 15
-2.06 2.22 62.9 Vacherie Dome 13, 14, 15
Synthetic rocksalt — — 37, 74 for n = 6, 3, respectively 16
-0.7 5.8 96 pure NaCl 17
-14 6.5 126 NaCl (+0.3% K*) 17
0.8 46 115 NaCl (+0.3% Mg?+) 17
-3.9 5.7 72 NaCl (+0.3% Ca?*) 17
Anhydrite — 1.5-20  114-152 18
Bischofite — 44 59 at 0 < 3.0 MPa 19
— 1.5 67 at 0 > 1.5 MPa 20
Carnallite — 4.5 — 20
Ice I, -2.8 4.7 36 at T < 195 K 21
5.10 4.0 61 at 195-240 K 21
11.8 4.0 91 at 240-258 K 21

{References: 1. Shelton and Tullis [1981], 2. Koch [1983, manuscript], 3. Hansen and Carter [1982], 4. Jaoul
et al. [1984], 5. Kronenberg and Tullis [1984], 6. Ross et al. [1983], 7. Carter et al. [1981], 8. Hansen and Carter
[1982], 9. Kronenberg et al. [1985], 10. Kirby and Kronenberg [1984], 11. Boland and Tullis [1986], 12. Schmid
et al. [1980], 13. Pfeifle and Senseny [1982], 14. Handin et al. [1986], 15. Wawersik and Zeuch [1986], 16. Gangi

1983
1987
& All samples oven dried at 100°-200

°C before testing unless noted otherwise.
b «“Wet” samples: water added in sealed capsule, unless noted otherwise.

, 17. Heard and Ryerson [1986], 18. Miiller et al. [1981], 19. Urai [1983], 20. Urai [1985], 21. Kirby et al.
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Strehlau, 1982; Chen and Molnar, 1983] and the
occurrence of mantle earthquakes in the Tibetan
plateau and other localities around the world [Chen
and Molnar, 1983), suggesting locally a weak lower
crust and strong uppermost mantle.

6) The large theoretical effect of yielding in the lower
continental crust on reducing the resistance to
bending of the continental lithosphere [DeRito et
al., 1986] indicates that internal yielding must be
considered in flexural models of the continental
lithosphere with relatively thick crust.

7) Reconciliation of the average deviatoric stress
levels due to geodynamic forces and topographic
loads and the yield stresses of crustal materials
based on experimental rock mechanics suggests
that stress relaxation can take place in the lower
crust, amplifying the deviatoric stress by reducing
the thickness of the load-bearing section of the
continental lithosphere [Kusznir and Park, 1984].

8) The relatively narrow zone of accumulation of
strain and its release along the San Andreas fault
suggests a viscoelastic response of the middle to
lower crust to plate-scale loading [Turcotte et al.,
1984].

9) The preferential rifting of continental crust and
lithosphere compared to the oceanic lithosphere,
leading to ridge jumps, the formation of new ocean
basins, and the development of micro-continents
and displaced terranes [Vink et al., 1984]. Despite
the steeper average geothermal gradients of the
oceanic regions, the extensional loads required to
rift continents, consisting of crustal lithologies of
substantial thicknesses overlying mantle lithologies,
appear to be lower than those required to rift
oceanic plates made up primarily of olivine and
pyroxenes.

4. STRAIN SOFTENING AND STRAIN
LOCALIZATION IN SHEAR-ZONES

Geological and geophysical observations in the last
decade have provided compelling evidence that large
deformations are accommodated by the continental
crust through faulting involving strain localization in
shear zones both in the shallow crust, involving “brittle”
faulting and crustal seismicity and in the mid-crust,
producing primarily aseismic macroscopically ductile
deformation in shear gones [see reviews in Carreras
et al., 1980; Sibson, 1977, 1982, 19086; Kirby, 1985].
These observations include the study of “ductile”
ghear zones in deep continental crust exhumed by
uplift and erosion, comparison of crustal deformation
rates (based on geologic and geodetic observations)
with seismicity and the developing concept that
the loading of the seismogenic zone involves deeper
aseismic strain localization. It follows, then, that
understanding the earthquake source and the overall
non-hydrostatic stresses supported by the crust depends
on improvements in our knowledge of how shear zones
are created and what is their specialized rheology.

Extreme strain localization in shear zomes is
demonstrated by offsets and “drag” in pre-existing
strain markers that cross these zones as well as the
exclusive presence of shear-zone deformation features
that are known only to develop in the laboratory at very
high strain. What are the characteristics of the shear-
zone materials compared to the rock matrix, and what
do these tell us about the causes of the “soft” shear
zone rheology? These characteristics are: 1) Eztreme
grasn size reduction. In brittle faulting, this is caused
by microfracturing and associated grain comminution.
In deeper shear zones, recrystallization and the creation
of new grains of new minerals cause grain size reduction.
2) Other aspects of rock texture, such as more extreme
foliation development as defined by grain shape or
mineral distribution, are also distinctive. 3) Preferred
ortentations of duclile minerals such as quartz are
usually more strongly developed than in the host rock
and bear clear orientation relationships to the plane
of shear and displacement direction of the shear zone
[for recently-published examples, see Evans and While,
1984; Law et al.,, 1984, 1986; Burg, 1986; Schmid
and Casey, 1986; Platt and Behrmann, 1986|. 4) The
mineralogy and mineral chemistry of shear zones is
typically different than the host rock from which it
was derived [Brodie, 1980; Beach, 1980; White et al.,
1980; Rubte, 1983; Knipe and Wintsch, 1985; Waits and
Williams, 1983]. This reflects evidently greater access of
aqueous solutions to the zone and/or enhanced kinetics
of metamorphic reactions.

How do shear zones nucleate? Three factors appear
to be involved here. First, the generally non-linear
stress-strain rate relations of rocks (as outlined in
earlier sections) would tend to promote localization
if a shear zone is only moderately softer than the
host rock [see Kirby, 1985, p. 16]. Moreover, non-linear
materials exhibit more localized deformation even in
the absence of shear zone softening [Melosh, 1980].
Second, pre-existing zones of weakness can facilitate
strain localization by providing stress concentrations as
these flaws are exploited and grow as shear faulis. For
example, higher-than-regional non-hydrostatic stress
(and related higher strain rates) can promote finer
recrystallized grain size or aid the kinetics of
metamorphic reactions, both of which can produce
a softer shear gone rheology. Pre-existing fractures,
in addition to their role as stress concentrators, can
localize later shear deformation by providing access of
hydrothermal solutions and making possible a variety
of water-weakening processes in the zone adjacent
to the fracture [Segall and Pollard, 1983; Segall
and Simpson, 1986]. Distributed microcracking, fluid
infiltration, and localized ductile deformation connected
with hydrothermal alteration may be processes that
occur simultaneously or cyclically in shear zones | White
and White, 1983; Etheridge et al., 1984].

Once a shear zone is established, what deformation
processes and structural features cause the continued
strain localization? A host of localization factors are
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now recognized [see reviews by White ¢t al., 1980; Kirby,
1985; Sibson, 1986]. Most of these softening mechanisms
come into play above some critical strain and this strain
softening is an important part of the mechanics of strain
localization [Potrier, 1980]. These sirain mechanisms
include:

1) Softening caused by the direct effect of grain bound-
ary migration associated with recrystallization or
the growth of new phases. Grain boundary migra-
tion can soften a crystalline aggregate by sweeping
out dislocations created by earlier deformation, re-
ducing the hardening effects of dislocation interac-
tions in a manner analogous to the softening effects
of annealing recovery. This softening mechanism is,
in a sense, an extended primary creep. Examples in
metals have been cited by White et al. [1980] and
Uras et al. [1986], in ice by Duval [1979, 1981] and
Kirby et al. [1987], and in silicates by Zeuch [1982,
1983] and Tullis and Yund [1985).

2) Softening stemming from grain size reduction. The
formation of a gouge zone due to microfracturing
and grain comminution is a familiar feature
of brittle faulting and it is apparently the
micromechanics of fine granular material under
shear that governs the softer “rheology” of gouge
gones compared to that connected with distributed
microfracturing in the host rock. Mylonitic zones
formed by recrystallization processes may also be
softer because deformation mechanisms that are
favored by fine grain size may operate, such as
grain boundary sliding or those involving stress-
directed diffusion to and from grain boundaries.
To date, no firm evidence has been put forward
proving that these deformation mechanisms operate
in mylonitic rocks and, to the contrary, the strong
preferred orientations often developed in quartz-
bearing mylonites favor intracrystalline slip as the
dominant deformation process [see references cited
earlier]. Kronenberg and Tullis [1984] have studied
grain-size effects on the steady-state strength of
quartz aggregates under hydrothermal conditions
and advanced the hypothesis that diffusion from
wetted grain boundaries into grain interiors is
a factor controlling strengths in their samples.
Obviously fine grain size should facilitate such a
process and lead to shear-zone softening. It is
unclear what processes maintain fine grain sizes
that are acquired at peak stress or recrystallization
and further deformation occurs at lower stress via
these grain-size sensitive mechanisms [see White et
al., 1985 for discussion of this issue].

3) Softentng caused by mineral preferred ortentation,
often termed geometrical softening | White et al.,
1980; Posrier, 1980]. Grain orientations in a simple-
shear setting progressively become more favorable
for further intracrystalline slip as total shear
strain increases because grains rotate to place
the operating slip systems in orientations with

higher resolved shear stress. This apparently is
the major source of softening connected with
reorientations associated with recrystallization and
intracrystalline slip in shear experiments on ice
[Duval, 1981], calcite [ Wenk and Takeshita, 1984]
and metals [see reviews by White et al., 1980 and
Poirier, 1980].

4) Reaction softening. Metamorphic reactions and
polymorphic phase changes can aid strain softening
and lead to shear-zone localization via a number
of processes that attend phase changes. These
include: (A) Changes in texzture, especially reduced
grain size promoted by transformation under
stress and consequent weakening by grain-size
sensitive deformation mechanisms [White and
Knipe, 1978; Rubie, 1083, 1984]. (B) Migration
of grain boundaries driven by the growth of
the more favored minerals and the elimination of
defects that may have work hardened the pre-
existing mineral assemblage. (C) Softening caused
by latent heat released by a transformation.
(D) Grasn-scale and megascopsc siresses connected
with the transformation volume changes can
promote reaction rates and diffusional transport
and lead to softening [Posrier, 1982; Kirby, 1985,
1987]. (E)} The transformation products may be
softer than the reactants, especially in retrograde
metamorphic reactions producing phyllosilicates
[White and Knipe, 1978; Kirby, 1985]. (F) The
difference in free energy of hydrous transformation
products and their anhydrous reactants can help
drive dissolution, solute transport and growth
of the hydrous assemblage along faults filled
with hydrothermal fluid. This can facilitate the
accommodation of irreqularsties along fault surfaces
during shear displacement.

In summary, we emphasize that several factors are
important in determining whether shear-zones develop:
The nature of the far-field loading conditions (the
tractions and displacements and their variations with
time), the thermal and elastic properties of the medium,
the inelastic properties of the medium including strain-
softening behavior, and the existence of pre-existing
flaws and heterogeneities in properties. Only a thorough
continuum-mechanics approach, incorporating all of
these factors, can realistically predict whether shear
zones will develop in a given geological context.

5. SEISMIC ANISOTROPY AND

FLow IN THE LITHOSPHERE
During the quadrennial period, interest has been
renewed in the anisotropy of seismic waves, particularly
in the mantle. Progress has been spurred by the
development of improved techniques for separating
elastic anisotropy from regional velocity heterogeneities,
by the study of fossil oceanic crust and mantle in
ophiolite complexes and by developments in rock
mechanics that have refined our knowledge of how
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preferred crystallographic mineral orientations and
resulting elastic anisotropy are acquired by rocks
during inelastic deformation. Observations of seismic
anisotropy 'in the earth are important because they
are revealing of the internal deformation and because
preferred orientations developed during flow can greatly
influence the rheological behavior of rocks.

Preferred Orientation Development and Deformation

There are many mechanisms and processes by which
physical-property anisotropy can be acquired by rocks
[see review by Crampin, 1984], but the two mosi
important are preferred orientation development of
mineral grains and preferred orientations of flaws such
as cracks, both connected with inelastic deformation.

Vertical fluid-filled cracks with azimuths related to
ridge orientations have been used to explain local
azimuthal variations (g +4%) in V}, and particle-motion
anomalies in the oceanic crust [Stephen, 1981; White
and Whitmarsh, 1984; Shearer and Orcutt, 1985, 1986].
This is in spite of the fact that regional agimuthal
variations in V;, have not been detected in the oceanic
crust where P, anisotropy is apparent [Bibee and Shor,
1976]. Such crustal anisotropy in V, caused by crack
preferred orientations probably exists in the continental
crust but is masked by larger heterogeneities in lithology
and V, than occur in the oceanic crust [see papers in
Crampin et al., 1984]. Opening-mode (tensile) cracks
nucleate and grow with preferred orientations normal to
the least principal stress direction in isotropic rocks [see
review by Paterson, 1976] and the velocily anisotropy
produced by aligned cracks can be predicted from theory
[see review by Shearer and Orcutt, 1986].

Mineral preferred orientations and hence property an-
isotropy generally develop under non-hydrostatic stress
as a consequence of plastic deformation. The nature
of the preferred orientation depends upon the plastic
deformation mechanisms that operate [Schmid, 1982].

Intracrystalline slip leads to preferred grain
orientations in mineral aggregates because slip is
crystallographically oriented and because grain-grain
continuity at grain boundaries requires progressive
grain rotation when grains deform by shear on the
slip plane. Much progress has been made in the last
decade in our understanding of the relations between
stress, strain and preferred orientation based on the
Taylor-Bishop-Hill model for intracrystalline slip which
assumes homogeneous grain deformation and minimum
internal plastic work. This theory has been applied
successfully to quartzite [Léster et al., 1978; Lister and
Hobbs, 1980; Lister and Paterson, 1979], to calcite
marble [Van Houttel et al., 1984; Wagner et al., 1984;
Wenk et al., 1985, 1986] and to olivine | Takeshsta, 1986].
What is particularly powerful about this approach is
that it permits predictions of preferred orientation
development for various states of stress and strain
that are not easily achieved in the laboratory, and
that anisotropies in the plastic rheology connected with

1229

preferred orientations can also be predicted [see, for
example, Wenk et al., 1986]. Some minerals, however,
do not have sufficient slip systems to accommodate
a general homogeneous strain on the grain scale and
some degree of heterogeneity in grain strain is required.
This has been successfully modeled by relaxing the
homogeneous strain constraint in marble [Wenk et al.,
1986]. In any event, the ultimate preferred orientations
expected from these models depend upon the operating
slip systems, the type and magnitude of finite strain
(uniaxial compression, extension, simple shear, etc.} and
the strain path through which that finite strain was
accomplished [Schmid, 1982].

Recrystallization under non-hydrostatic stress can
lead to crystallographic preferred orientations. Early
work suggested that new grains were independently
nucleated and had orientations that depended on
the state of stress. Research in the last decade
suggests, however, that preferred orientations developed
under conditions that favor recrystallization are
not fundamentally different than those produced by
intracrystalline slip and that grains nucleate by grain-
boundary migration and/or subgrain rotation of pre-
existing grains [Urai et al., 1986; Wilson, 1986; Schmid
et al., 1987; Burg et al.,, 1987]. Definitive experiments
have not been done to explore the comparative roles of
stress and strain in preferred orientation development
during recrystallization, but the foregoing observations
suggest that finite strain is the primary determinant of
preferred orientations produced during recrystallization.

Grain boundary sliding, GBS, is a deformation process
that depends upon accommodation mechanisms that
allow necessary grain shape changes and is favored by
small grain sizes. Experience in metals and in fine-
grained rocks that are thought to deform by GBS shows
that the process does mot, of itself, lead to preferred
orientations; on the contrary, GBS can randomize a pre-
existing fabric [Boullier and Nicolas, 1975; Gueguen and
Boullier, 1976; Schmid et al., 1977, 1981, 1987; Schmid,
1982]. Weak preferred orientations can develop if GBS
preferentially promotes another deformation process,
such as slip [Schmid et al., 1987]. Other grain-size-
sensitive deformation processes, ones involving stress-
directed diffusion to and from grain boundaries, are also
not expected to develop preferred orientations.

Not only are rock fabrics dependent on the operating
deformation mechanisms but they are also dependent
on the relation between the state of stress and the
finite strain state. Of particular interest is whether
the stress and strain states are coaztal or non-coazial
(s.e., whether the principal stress and principal finite
strain directions are parallel to each other). For example,
intracrystalline slip under uniaxial compression or
extension (coaxial) results in the progressive rotation
of the operating slip plane(s) normal toward the
compression direction and, for minerals deforming
primarily by one slip system, creep rates should
decrease with strain and should never reach steady
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state in the absence of grain boundary migration and
recrystallization. In contrast, the progressive rotation of
slip planes toward the shear plane by intracrystalline
slip in a simple shear environment can lead to a
steady-state preferred orientation and creep rate. Simple
shear (biaxial or torsion) experiments and measurement
of resultant fabrics have been done in a number of
non-metallic materials [1IcE: Kamb, 1972; Byers, 1973;
Lile, 1978; Duval, 1981; Bouchez and Duval, 1982;
Burg et al.,, 1987; caLCITE: Kern and Wenk, 1083;
Schmid et al., 1987; QUARTZITE: Dell’Angelo and Tullss,
1987] and the results are generally consistent with
the above predictions. The development of preferred
orientations causes materials to exhibit a iransient
rheological response to changes in the stress state
[Griggs and Miller, 1951; Handin and Griggs, 1951;
Heard and Raleigh, 1972; Byers, 1973; Duval, 1981;
Duval and Le Gac, 1982; Gao and Jacka, 1987]. This
may be important in the deformation of the oceanic
lithosphere where preferred orientations caused by basal
shear deformation connected with plate motion or by
deformation along transform faults could influence the
rheological response of the lithosphere to changes in the
stress state such as the bending deformation at trench-
rise systems or at island loads.

Seismic Observations of Velocity Anssotropy

The basic seismological observations of velocity an-
isotropy in the uppermost mantle are reviewed by
Crampin et al. [1984], Kawasaki and Kon’no [1984],
Christensen [1984], Nicolas [1986] and Kawasaki [1986).
Foremost among them is the azimuthal variation in
P, velocity in the oceanic mantle, first interpreted
in the eastern Pacific by Hess [1964], and confirmed
by subsequent refraction surveys in the same region
[Raitt et al., 1969; Morrss et al., 1969; Railt et al.,
1971; Keen and Barretl, 1971; Bibee and Shor, 1976;
Clowes and Au, 1982]. More recently, a prominent
P, anisotropy was shown to apply to the western
Pacific and Sea of Japan as well [Shimamura et al.,
1983; Shimamura, 1984; Hirahara and Ishikawa, 1984;
Okada et al., 1978; Shearer and Orcuit, 1985, 1986].
The direction of maximum P, with rare exception
[ Whitmarsh, 1971; Talandier and Bauchon, 1979} is
approximately perpendicular to the magnetic lineations
between the source and receiver and peak-to-trough
variations of 3-10% with azimuth are typically observed.
Similar observations of Pn anisotropy have been made
in the continental lithosphere in southern Germany
[Bamford, 1977; Fuchs, 1983], the western U.S. [Bamford
et al.,, 1979] including southern California [Vetter end
Minster, 1981; Hearn, 1984] and indirect evidence for
P-wave anisotropy in northern Australia [Leven et al.,
1981]. Analysis of P-wave travel-time data worldwide
by Dziewonski and Anderson [1983] suggest that P-
wave velocity anisotropy may be deep-seated in the
upper mantle and vary smoothly in relation to tectonic
provinces in the continental lithosphere. In the examples
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of southern California and Germany the direction of
maximum P, approximately parallels the fraces of
plate-scale faults.

Although high values (4.9 +0.1 km s™!) of the shear-
wave phase S, have been measured in the western
Pacific [Shimamura et al., 1977; Shimamura and Asada,
1983], suggesting S, velocity anisotropy, the three other
studies of S, elsewhere show typical values of 4.6 £+
0.1 km s™!, independent of direction, even though P,
varies significantly in the same regions [Clowes and Au,
1982; Talandser and Bouchon, 1979; Shearer and Orcutt,
1986]. Other effects of elastic anisotropy on body waves
include split shear waves with different polarizations and
velocities and particle motions of P-waves that are out
of the vertical plane connecting the source and receiver
[Shearer and Orcutt, 1985]. Shear-wave polarization
anisotropy has been observed for steeply inclined §
and S¢S phases from deep earthquakes beneath Japan
[Ando et al., 1980, 1983; Fukao, 1984] and other areas
worldwide [Ando, 1984]. The depth over which the
polariged S-wave splitting of ScS phases are acquired
is not known but is likely to be in the upper mantle
because lower mantle minerals are not known to be
particularly anisotropic [Jeanloz and Thompson, 1983]
and preferred orientations of some mantle analogue
materials are not especially strong [Toriumi, 1984].
Also, since the splittings of direct S-waves are similar
to those for ScS waves this suggests that the delays
between the polarized phases occurs within the upper
mantle [Ando, 1984]. Also, the polarisation direction
of the fastest ScS wave is approximately parallel to
the direction of maximum P, velocity offshore east of
Japan [Shimamura et al., 1983], again suggesting that
time separations between the split ScS phases occur in
the upper mantle.

Forsyth [1975] and Kawasaki and Kon'no [1984]
have detected a significant azimuthal variation in
Rayleigh wave group velocities in overlapping areas
of the eastern Pacific, with those surface waves
traveling approximately parallel to the prominent
fracture zones (and approximately normal to the
magnetic lineations) being about 2-3% faster than those
traveling perpendicular to those directions. Rayleigh
wave studies over oceanic paths of greatly variable
spreading directions not surprisingly have failed to
detect azimuthal anisotropy in Rayleigh wave velocity
[Schlue and Knopoff, 1976, 1977; Mitchell and Yu,
1980; Anderson and Regan, 1983|. Love wave anisotropy
is always small (<1%) [Forsyth, 1975; Kawasaki and
Kon’no, 1984; Tanimoto and Anderson, 1984, 1985]
apparently reflecting the effective isotropy of SH elastic
wave motion in oceanic paths.

The shear-wave velocities inferred from mantle Ray-
leigh wave and Love wave dispersion data are different,
with SH values consistently higher than SV in
oceanic paths (see review by Anderson end Dziewonski
[1982]). The spatial (especially depth) distribution
of this anisotropy inferred from surface wave data
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is dependent on the specific inversion model; some
suggest an isotropic seismic lithosphere and anisotropic
upper asthenosphere [Schlue and Knopoff, 1977, 1978;
Anderson and Regan, 1983; Regan and Anderson, 1984)
and others infer lithosphere anisotropy [ Yu and Mitchell,
1979; Miichell and Yu, 1980; Forsyth, 1975; Kawasaki,
1986]. Many of these surface-wave studies have assumed
that the oceanic mantle is transversely isotropic with
velocities for propagation in the horizontal plane
averaged and deemed isotropic and having a unique
vertical direction with different velocities than in the
horizontal. This probably captures the differences in
the vertical and averaged horizontal velocities but
de-emphasizes the important azimuthal variations in
velocity, a point raised by Tanimoto and Anderson
[1984], Kawasaki and Kon’no [1984], Kawasaks [1986)
and Estey and Douglas [1986], as noted below.

Field Measurements of Preferred Orientations and
Anssotropy in Mantle Materials

Paralleling remote measurements of velocity anisotropy
in the oceanic lithosphere have been direct studies of
structures and textures in ophiolite complexes, for which
persuasive arguments have been put forward that they
represent oceanic lithosphere emiplaced in the crust by
large displacement thrust faulting (see reviews by Chris-
tensen [1984] and Nicolas [1986]). The basal peridotites
representing oceanic mantle generally show well-devel-
oped deformation textures and marked regional preferred
orientations of olivine and less well-developed pyrox-
ene fabrics [Christensen, 1984]. The olivine fabrics gen-
erally show an g-axis maximum approximately paral-
lel to the crust-mantle boundary and perpendicular to
the sheeted dikes in the crustal section (and presum-
ably parallel to the paleo-spreading direction). The j-
and ¢-axes range from point maxima to partial girdles
around the g-axis maxima, indicating orthorhombic to
uniaxial symmetry of the crystallographic orientations.
Similar olivine preferred orientations are also observed
in mantle peridotite xenoliths from the continental and
oceanic lithosphere [Mercier and Nicolas, 1975; Pesel-
nick et al., 1977]. Olivine is extremely anisotropic in its
elastic properties and the resulting anisotropy in the ve-
locity of elastic wave propagation shows similar symme-
tries. Shear-wave velocities depend on the polarization
direction and, in general, two mutually-polarized shear
waves travel at different velocities. Except for propaga-
tion directions parallel to the crystallographic axes, par-
ticle motion is not purely compressional or purely shear
but mixed and the structure imposes the polarization di-
rections on the two shear waves. V, varies from 9.9 km
s~! parallel to & to 7.7 km s~! parallel to b, while shear
waves vary from 4.9 to 4.6 km s~ in the same propaga-
tion directions, averaged over all polarization directions
for those propagation directions. Quasi-shear wave ve-
locities as high as 5.5 km s~! can occur for off-axis wave
normals [Leven et al., 1981).

The relation between crystallographic preferred
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orientation in polycrystalline olivine and the resultant
anisotropy in elastic wave velocity is now well
established in theory [Kumazawa, 1964; Crossin and
Lin, 1971; Baker and Carter, 1972; Carter et al.,
1972; Peselnick and Nicolas, 1978; Crampin, 1981;
Johnson and Wenk, 1985, 1986; Bunge, 1985; Kern and
Wenk, 1985] and experiment [Christensen, 1966, 1971;
Christensen and Ramananantoandro, 1971; Peselnick
et al.,, 1974; Peselnick et al.,, 1977, Meissner and
Fakhims, 1977; Peselnick and Nicolas, 1978]. The
effects of pyroxenes, spinel and garnet have been
investigated and are known to dilute the anisotropy due
to olivine preferred orientation; the degree of dilution
depends on the mineral proportions and pyroxene
preferred orientation [Leven et al., 1981; Christensen
and Lundquist, 1982; Fuchs, 1983; Christensen, 1984;
Estey and Douglas, 1986).

The orthorhombic to uniaxial symmetries of the
preferred orientations of olivine in ophiolite peridotites
correspond o the same symmetries in seismic velocities
with direction. Based on the hypothesis that the
preferred orientations and velocity anisotropies in
ophiolite peridotites represent those of the oceanic
lithosphere (g-axis maximum parallel to the spreading
direction at the time of lithosphere formation) and
that the mafic-ultramafic contacts in ophiolites were
originally horizontal, the anisotropic seismic-velocity
behavior of the oceanic mantle lithosphere can be
predicted with surprising fidelity. In particular the P,
anisotropy of 3-10% observed in refraction experiments
in the oceans is consistent with an olivine g-axis
maximum typical of ophiolite peridotites parallel to
spreading direction and an isotropic distribution of b
and ¢ axes normal to the spreading direction, diluted
by 0 to 40% pyroxene [Christensen, 1966; Christensen
and Crossen, 1968; Crossen and Christensen, 19G9;
Christensen and Salisbury, 1979; Christensen and
Lundquist, 1982; Kasahara and Kon’no, 1984; Kasahara,
1986; Estey and Douglas, 1986; Shearer and Orcuit,
1986]. The predicted azimuthal variation of S, body
waves and Love surface waves is smaller than the
resolution in measuring the velocities of those phases
[Kawasaks and Kon’no, 1984; Kawasaki, 1986; Shearer
and Orcutt, 1986], whereas the time delays of split S¢S
would be detectable. Lastly, the polarization anisotropy
of shear waves predicted for the uniaxial model is
within a range consistent with observation (0-0.2 km
s~1) [Kawasaki and Kon’no, 1984; Kawasaki, 1986|.
Estey and Douglas [1986] have proposed an anisotropy
model in which olivine and pyroxene have preferred
orientations of orthorhombic symmetry with olivine g
and pyroxene ¢ axes parallel to spreading direction and
olivine b, and pyroxene g axes vertical and normal to
the Moho, based on the expected easy slip systems in
these minerals. This model is, however, at variance with
the experience in ophiolite complexes that olivine b, and
£ axes show partial girdles about the g-axis maximum
or point maxima with no particular relation of olivine
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b axes with respect to vertical [Christensen, 1984;
Nicolas, 1986]. Moreover, the quasi S-wave velocities
for an orthorhombic model vary from QSH = 4.86-
5.51 km s=?! for horizontally polarized waves traveling
in the (010) plane and QSV = 4.42-4.89 km s~! for
vertially polarized waves [Leven et al., 1981], a much
wider range than actually observed. In particular, the
QS H anisotropy is inconsistent with the lack of evidence
for Love wave anisotropy.

Tectonsic Models for Velocity Anisotropy
of the Oceanic Lithosphere

Given the success of the uniaxial preferred orientation
model for olivine in predicting the primary features of
elastic wave anisotropy of the oceanic lithosphere, what
are its implications for the state of stress and strain
in the oceanic mantle? Various models have been put
forward to account for azimuthal P, anisofropy of the
oceanic lithosphere:

1) Hess [1964] suggested that plastic flow associated
with simple shear along oceanic fracture zones
(with shear direction parallel to the fracture zone)
causes P, anisotropy, pointing out that fabrics of
foliated olivine-bearing rocks often show preferred
orientations consistent with fast V,, parallel {o the
fracture zone.

2) Francis [1969] noted that Hess’ mechanism is
unlikely to pervade the entire oceanic lithosphere
and that basal shear strain conneclted with plate
motion could produce g-axis maxima paralle] to
the direction of plate motion, consistent with the
easy slip direction in olivine (and ophiolite studies),
thereby producing fast ¥}, in the direction of plate
motion. Ishikawa [1984] has followed up on this
idea by including thickening of the lithosphere and
freezing in of basal-shear deformation connected
with plate motion as the lithosphere cools and
the zone of active shear deformation deepens with
age. Analysis of long-period surface wave dispersion
data by Regan and Anderson [1984] and Tanimoto
and Anderson [1984] suggests that the fast g-
axis direction aligned parallel to the flow direction
may also be deep seated in the upper mantle
and consistent with modern numerical models for
convection in the asthenosphere.

3) Avé Lallemant and Carter [1970] and Carter et al.
[1972] considered the expected preferred orientation
of olivine due to recrystallization in relation to the
stress state presumed to occur in the lithosphere
connected with basal shear. As noted earlier, it
is more likely that preferred orientations develop
with reference to the finite strain (flow field) and
gtrain path, and hence the preferred orientations
predicted by the above authors are probably
incorrect.

4) Ida [1984] suggests that P, anisotropy is caused
by plate stretching parallel to the direction of plate
motion. This is unlikely because large stretching
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strains would be required to develop significant
preferred orientations and there is no evidence for
such stretching deformations.

To summarize, the basal-shear model of Francis
[1969], as refined by Ishikawa [1984] and Anderson and
his colleagues, is consistent with the seismic constraints
and the preferred orientation model of Kawasaki [1986).
The latter appears to account for the first-order
observations of body-wave and long-period seismology.

6. Rock MEecaANICS: GUIDE TO
THE LITERATURE

Laboratory studies of the mechanical properties of
rocks over the quadrennial period have been extensive,
encompassing the fracture, frictional behavior, and
flow of rocks and minerals. The emphasis of
much of this work has been towards understanding
deformation mechanisms and establishing physically-
based constitutive relations. Major advances along these
lines have been made in our understanding of hydrolytic
weakening and the effects of chemical environment upon
surface states and internal defects which affect the
deformation processes. Steady-state rheologies relevant
to the oceanic lithosphere and upper mantle are
summarized in Tables 1 and 2, and rheologies of crustal
rocks and minerals are summarized in Table 3.

6.0 Books, REViEws AND SPECIAL JOURNAL ISsuEs
In Rock MEcHANICS

1. Geodynamsics, Applications of Continuum Physics to
Geological Problems, D. L. Turcotte and G. Schubert,
John Wiley and Sons, Inc., New York, 450 pp., 1982.
2. The Inelastic Mechanical Properties of Rocks and
Minerals: Strength and Rheology, S. H. Kirby and J.
McCormick, in: Handbook of the Physical Properties of
Rocks, vol. 8, R. Carmichael, editor, Chemical Rubber
Company Press, Inc., Cleveland, Ohio, 1983.

3. Rock Mechanics, Theory — Ezperiment — Practice,
C. C. Mathewson, editor, Proceedings of the 24th
U.S. Sympostum on Rock Mechanics, Texas A and M
University, Texas, 1983.

4. Microcracks in Rocks: A Review, R. L. Krang,
Tectonophysics, 100, 449-480, 1983.

5. Rheology of the Lithosphere, S. H. Kirby, Reviews
Geophys. Space Phys., 21, 1458-1487, 1983.

6. The Mechanical Behavior of Salt I, R. H. Hardy,
Jr. and M. Langer, editors, Proceedings of the
First Conference, 1981, Trans. Tech. Pubs., Clausthal
Zellerfeld, FRG, 1984.

7. Chemical Effects of Water on the Strength and
Deformation of Crustal Rocks, Special Issue in: Journal
of Geophysical Research, 89, S. H. Kirby and C. H.
Scholz, editors, Amer. Geophys. Union, Washington,
D.C., 3991-4358, 1984.

8. Fault Behavior and the FEarthquake Generations
Process, Special Issue in: Journal of Geophysical
Research, 89, K. J. Coppersmith and D. P. Schwarts,
editors, Amer. Geophys. Union, Washington, D.C.,
5669-5927, 1984.
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9. Large-scale Anisotropy in the Earth’s Mantle, Y. Ida
and 1. Kawasaki, editors, Symposium Proceedings, Jour.
Phys. Earth, vol. 88, 173-297, 1984.

10. Creep of Crystals, High-temperature Deformation
Processes tn Metals, Ceramics, and Minerals, J.-P.
Poirier, Cambridge University Press, Cambridge, 260
pp., 1985.

11. Rock Mechanics Observations Pertinent to the
Rheology of the Continental Lithosphere and the
Localization of Strain along Shear Zones, S. H. Kirby,
Tectonophysics, 119, 1-27, 1985.

12. Point Defects tn Minerals, R. N. Schock, editor,
Geophys Monogr. Ser., vol. 81, Amer. Geophys. Union,
Washington, D.C., 1985.

13. Metamorphism and Deformation, Advances in
Physical Geochemistry, vol. 4, A. B. Thompson and D.
C. Rubie, editors, Springer-Verlag, New York, 1985.

14. Preferred Orientations in Deformed Metals and
Rocks: An Introduction to Modern Tezture Analysis, H.
R. Wenk, editor, Academic Press, New York, 1985.

15. Mineral and Rock Deformation: Laboratory Studies,
The Paterson Volume, B. E. Hobbs and H. C. Heard,
editors, Geophys. Monogr. Ser., vol. 86, Amer. Geophys.
Union, Washington, D.C., 324 pp., 1986.

16. Internal Structure of Fault Zones, Special Issue in:
Pure and Applied Geophysics, 124, C.-Y. Wang, editor,
1986.

17. Rheology of the FEarth, Deformation and Flow
Processes tn Geophysics and Geodynamics, G. Ranalli,
Allen and Unwin, Inc., Winchester, Mass., 388 pp., 1986.
18. Flow Properties of Continental Lithosphere, N. L.
Carter and M. C. Tsenn, Tectonophysics, in press, 1987.

6.1 Rock FRACTURE

FRACTURE STRENGTHS AND TOUGHNESS. Alm el
al. [1985], Biegel and Wong [1984], Bulau et al.
[1985], Chatterjee and Knopoff (1983, Coz and Scholz
[1985a,b,¢], Inada and Yokota [1984]), Meredith and
Atkinson [1985], Peck et al. [1985], Reches and Dseterich
[1983], Sammis and Ashby [1984), Schmidtke and Lajtas
[1985], Shi and Wang [1984], Shimada [1986), Stierman
and Healy [1985], Swanson [1985], Swanson et al. [1984],
Zhao and Wang [1985].

EFFECTS OF PORE PRESSURE. Green et al. [1984], Guo
et al. [1984], Kranz and Blacic [1984], Maddock and
Carutter [1986], Mase and Smith [1985], Moore et al.
[1984], Morrow et al. [1984, 1986], Roeloffs and Rudnicki
{1983, 1985], Rutter and Brodie [1086].

CRACK MICROSTRUCTURES AND FRACTOGRAPHY. Ab-
del-Gaward et al. [1985], Alm et al. [1985], Andrews
[1984], Bahat [1986], Brodsky and Spetzler [1984], Brown
and Macaudiere [1984], Brown and Scholz [1983, 1984,
1985], D’Onfro et al. [1984], Fischer and Paterson [1984,
1985], Kowallis and Wang [1984], Kranz [1983], Kranz
and Blacic [1984], Kurita et al. [1983], Lespinasse and
Pecher [1986], Ls and Leary [1985], Majer et al. [1985],
Nolen-Hoeksema and Gordon [1985], Oidong and Zhang
[1984], Rovetta [1984], Rovetta et al. [1986], Scholz and
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Brown [1984], Scholz and Hickman [1983], Swanson
[1985], Swanson et al. [1984], Wallace and Morris [1986],
Wong and Fredrich [1984].

FRACTURE ANALYSIS. Aydin and Johnson [1983], Costin
[1983], Davies and Pollard [1986], Segall [1984], Segall
and Pollard [1983a,b].

ACOUSTIC EMISSIONS. Boler and Spetzler [1984],
Chiba et al. [1984], Granrydet al. [1983]), Majer et al.
[1983], Meredith and Atkinson [1983], Ohnaka [1983],
Sobolev et al. [1985], Swanson and Spetzler [1983].
ANELASTICITY. Granryd et al. [1983], Jackson [1983,
1986}, Jackson et al. [1984, 1985], Minster and Anderson
(1981], Murphy [1984], Myer et al. [1985], Webb et al.
[1984].

STRAIN RELAXATION. Engelder [1984], Engelder and
Plumb [1984].

THERMO-ELASTICITY AND THERMAL CRACKING. Fredrich
and Wong [1984], Heuze [1983], Matsus and Manghnans
[1085).

SUBCRITICAL CRACK GROWTH AND TIME DEPENDENT
FRACTURE. Atkinson [1984], Dunning [1985], Dunning
and Huf [1983], Dunning and Parks [1984], Dunning
et al. [1984], Dunning and Miller [1985b], Etheridge
[1983, 1984], Gabrielov and Keilis-Borok [1983], Julian
and Sammis [1985], Meredith and Atkinson [1983, 1985],
Miller and Dunning [1985], Schmidtke and Lajtas [1985],
Swanson [1985].

CRACK HEALING AND RECOVERY. Hickman and Evans
[1985], Smith and Evans [1984].

6.2 Rock FricTION

TIME- AND MOISTURE-DEPENDENT FRICTION. Beeman
et al. [1984], Blanpied et al. [1984], Byerlee and Vaughan
[1984], Chester [1985], Descano et al. [1985], Dieterich
and Conrad [1984], Dunning and Miller [1985a], Gu
[1985], Guo et al. [1984], Hobbs and Brady [1985],
Lockner and Byerlee [1985], Logan and Feucht [1985],
Mase and Smith [1985], Okubo and Dieterich [1984a,b],
Olsson 1984, 1985], Pinkston et al. [1986], Rice [1983],
Rice and Gu [1983], Rice and Tse [1986], Rudnicks
[1985], Ruina [1983], Ski and Wang [1985], Shimamoto
[1985, 1986], Shimamoto and Logan [1983, 1984],
Summers et al. [1985], Tse and Rice [1986], Tullis et
al. [1983], Weeks and Tullis [1984, 1985]), Weeks et al.
[1983].

FRICTIONAL BEHAVIOR AND PHYSICAL PROPERTIES OF
NATURAL AND SYNTHETIC GOUGES. Biegel et al. [1985],
Bird [1984], Byerlee and Vaughan [1984], Chester [1985],
Chester and Logan [1986], Dula et al. [1983], Lockner
and Byerlee [1984], Maddock and Rutter [1986], Marone
and Raleigh [1985]), Moore and Byerlee [1986], Moore et
al. [1984, 1986], Morrow and Byerlee [1985], Olgaard
and Brace [1983], O’Nesl [1985], Raleigh and Marone
[1986], Rudnscks [1985)], Rutter et al. [1986], Sammis et
al. [1986], Shimamoto [1986], Stierman and Williams
[1985], Wesiss and Wenk [1983].

MECHANICAL BEHAVIOR OF CLAYS AT HIGH PRESSURE.
Bird [1984], Rutter et al. [1986].
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CHARACTERIZATION OF FAULTED SURFACES AND DE-
FORMED GOUGES. Brown and Scholz [1983, 1984, 1985],
Chester and Logan [1986], Davies and Pollard [1986],
Deng et al. [1986), Huang et al. [1985]), Wallace and
Morris [1986], Watterson [1986].

IN SITU STRESS MEASUREMENTS WITHIN UPPER, BRIT-
TLE LITHOSPHERE. McGarr [1980], Zoback and Ander-
son [1984], Zoback and Healy [1984)], Zoback et al. [1985].
CATACLASTIC DEFORMATION. Anderson et al. [1983],
Biegel et al. [1985], Blenkinsop and Rutter [1986),
Chester et al. [1985], Sammis et al. [1986], Stel [1986],
White and White [1983].

6.3 BRITTLE-DUCTILE TRANSITION

Darot et al. [1985], Gans et al. [1985], Hadizadeh
et al. [1983], Hadizadeh and Rutter [1984], Hadizadeh
and Tullis [1986], Koch and Green [1985], Mitra [1984],
Rutter [1986], Shimamoto [1986], Sibson [1982, 1984b,c],
Stmpson [1984a, 1986], Smith and Bruhn [1984], Stel
[1986], Tsenn and Carter [1987].

6.4 DucTiLE DEFORMATION OF
Rocks aAND MINERALS

TRANSIENT CREEP. Gangi [1983], Handin et al. [1986],
Kirby [1983], Peltier [1986], Ross et al. [1983], Sabadins
et al. [1985], Yuen et al. [1986).

STEADY-STATE CREEP OF OLIVINE AND RHEOLOGY
OF THE UPPER MANTLE. A. Ezperimentally deformed
oltvine rocks-Bussod and Christie [1983, 1984], Chopra
[1986], Chopra and Kohistedt [1983], Chopra and
Paterson [1981, 1984], Cooper and Kohlstedt [1984a,b,
19865, Karato [1984], Karato and Paterson [1984],
Karato et al. [1082, 1986]), Zeuch and Green [1984).
B. Naturally deformed peridotites-Avé Lallemant [1985],
Christensen [1984a,b], Green and Gueguen [1983),
Harding and Bird [1985], Kirby et al. [1985], Ross [1983],
Rovetta [1984], Toriums [1984], Tubia and Cuevas [1986),
Wright [1985).

STEADY-STATE CREEP OF CRUSTAL ROCKS. A. Monomin-
eralic rocks-Albite-Shelton and Tullis [1981], Anhydrite-
Miller et al. [1981], Anorthosite-Shelton and Tullis [1981)
Clinopyroxenite-Boland [1986], Boland and Tullis [1986],
Kirby and Kronenberg [1984c¢, 1986], Shelton and Tullis
[1981], Ice~Daley et al. [1984], Durham et al. [1983], Du-
val et al. [1983], Kirby and Durham [1983], Kirby et
al. [1987], Limestone and Marble-Schmid et al. [1977,
1980], Quartzite-Hansen and Carter [1982], Jaoul et al.
[1984], Kronenberg and Tullis [1984], Masnprice and Pa-
terson [1984], Ross et al. [1983], Shelton and Tullis [1981),
Rocksali—Carter and Hansen [1983], Gangs [1983], Han-
din et al. [1986], Heard and Ryerson [1986], Pfeifle and
Senseny [1982], Wawersik [1985]), Wawersik and Zeuch
[1986], Zeuch and Holcomb [1984]. B. Polymsneralic rocks
- Aplite — Shelton and Tullis [1981], Basalt- Wilks et
al. [1984], Diabase—Shelton and Tullis [1981], Granite-
Bauer [1984], Carter et al. [1981], Hansen and Carter
[1982], Ross et al. [1983], Quartz Diorite-Hansen and
Carter [1982], Quartz-Mica-Tullis and Mardon [1984],
Ice-Mica-Analogue - Wilson [1983, 1984, 1985], Rock
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Analogues—Tharp [19838], Interlayed Halite—Hansen and
Callahan [1983].

MINERAL PLASTICITY - FLOW PROPERTIES, DEFECTS
AND MECHANISMS. Phenomenology and mechanisms—
Caputo 1983, 1985, 1986], Drury et al. [1985], Ferguson
[1983], Freeman and Ferguson [1986], Means et al.
[1984], Peters [1985], Poirier [1983], Ranalli [1984],
Ranalli and Fischer [1984], Rundle and Passman [1982),
Tharp [1983a,b]), Tullis and Tullis [1986], Wan et al.
[1986], Wawersik [1985], Wawerssk and Zeuch [1986),
Weertman and Blacic [1983, 1984], White et al. [1985).
Olivine~Chopra [1986], Chopra and Paterson [1981,
1984|, Darot et al. [1985], Durham and Kohlstedt [1984],
Gaboriaud [1986], Gaboriaud and Denanot [1984], Green
and Borch [1986], Green and Hobbs [1984], Karato et
al. [1982, 1986], Karato and Paterson [1984], Mackwell
et al. [1985a,b), Madon and Poirier [1983], Poirier
[1983], Ricoult and Kohlstedt [1983], Takeshita [1986),
Zeuch and Green [1984a,b]. Spinels-Christiansen [1986),
Doukhan et al. [1984], Schifer et al. [1981, 1083,
1984]. Magnesium Perovskite Analogues — Doukhan
and Doukhan [1986], Karato [1984], Poirier et al.
[1983], Posrier and Lieberman [1984]. Quariz-Arnold
and Guillou [1983], Ashworth and Schneider [1985],
Belurman [1985), Blumenfeld et al. [1986], Burg [1986],
Carter et al. [1986], Darot et al. [1985], Doukhan
and Trepied [1985], Heggie and Nylén [1984, 19835),
Heggse et al. [1985], Jaoul et al. [1984], Kronenberg and
Tullis [1984], Kronenberg et al. [1986], Linker et al.
[1984], Mackgraaf [1986], Mackwell and Paterson [1985],
Mainprice and Paterson [1984], Ord and Christie [1984),
Ord and Hobbs [1986], Paterson [1986], Schnesider et
al. [1984], Takeshita and Wenk [1985], Walnink and
Morris [1985]), Wegner and Christie [1983]. Feldspars-
Huang et al. [1985], Okuno and Willasme [1985], Olsen
and Kohlstedt [1984, 1985, 1986], Scandale et al. [1983),
Shelley [1986]. Micas—Bafios et al. [1983], Baronnet and
Olives [1983], Bell and Wilson [1986], Kronenberg et al.
[19854,b], Tullis and Mardon [1984). Aluminosslicates—
Doukhan and Christie [1982], Doukhan et al. [1985],
Kerrick [1986], Lefebure [1982a,b], Lefebure and Pacquet
[1983]. Pyrozenes — Boland [1986], Boland and Tullis
[1986], Kirby and Kronenberg [1984c¢, 1986], van Duysen
and Doukhan [1984], van Duysen et al. [1985], Van
Roermund [1983], Yasuda et al. [1983]. Amphiboles-
Biermann and Van Roermund [1983]. Garnets—Smith
[1984], Smith and Carpenter [1985]. Corundum—Cadoz
et al. [1984], Heuer and Castaing [1985], Lagerlof et
al. (1983, 1984]. Diamond-Bursill and Glaisher [1985].
Carbonates—Barber et al. [1983], Olgaard and Evans
[1984, 1986], Schmid et al. [1977, 1980, 1987], Shaocheng
and Zeuggang [1985], Tharp [1984]. Sulphides—Coz
[1986], Coz and Etheridge [1984], Davidson et al. [1985],
Kubler [1985]). Halste (NaCl) and other salis—Banerdt
[1983], Banerdt and Sammis [1985], Bauer and Ross
[1983], Carter and Hansen [1983], Davis and Engelder
[1985], Fries et al. [1984], Gangt [1983], Handin et al.
[1986], Heard and Ryerson [1986], Muller et al. [1981],
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Pfeifle and Senseny [1982], Preece and Beasley [1985],
Urai [1983, 1985], Urai and Boland [1985], Wawersik
[1985], Wawersik and Zeuch [1986], Williams [1986],
Zeuch and Holcomb [1984]. 1cE-Daley et al. [1984],
Durham et al. [1983], Duvel [1981], Duval and LeGac
[1982], Duval et al. [1983}, Gao and Jacka [1987], Kamb
[1984], Kirby and Durham [1983], Kirby et al. [1987], Lee
and Schulson [1985], MacAyeal et al. [1986].
DEFORMATION AND PARTIAL MELTING. A. Olivine +
Melt — Bussod and Christie [1983, 1984], Chopra
and Kohlstedt [1983], Cooper and Kohlstedt [1984a,b,
19864a,b|, Fujis et al. [1986], Kushkiro [1986], Toramaru
and Fujii [1986], Vaughan and Kohlstedt [1982].
B. Granitic and other partial melts-Dell’Angelo and
Tullis [1985], Luth and Boettcher [1985], Maddock [1983],
Masch et al. [1985], Pharr and Ashby [1983], Ribe
[19854,B].

SOLUTION TRANSPORT CREEP. Beeler and Smith [1985],
Beniner and Charles [1985], Brantley et al. [1984],
Gratier [1983], Gratier and Jenatton [1984)], Heidug and
Lehner [1984, 1985], Lehner [1984], Lehner and Bataille
[1985], Mardon [1985], Mardon and Fletcher [1986],
Meske [1984], Merino et al. [1983], Miira et al. [1984],
Pharr and Ashby [1983], Rutter [1983), Selkman [1983],
Tada and Siever [1986], Tapp and Cook [1985], Urai
[1985], Wintsch and Dunning [1983, 1985].
HYDROLYTIC WEAKENING. QuartzAines and Rossman
(1984, 1085|, Aines et al. [1983, 1084], Cheilletz
et al. [1984], Doukhan and Paierson [1986], Fyfe
[1985], Kerrich {1986], Kirby and Kronenberg [1984b],
Kronenberg and Kirby [1985]), Kronenberg and Tullis
[1984], Kronenberg et al. [1983, 1984, 1986], Linker et
al. [1984], Mackwell and Paterson [1985], Masnprice
and Paterson [1984], McLaren et al. [1983], Ord and
Hobbs [1983, 1985a,b, 1986], Passchier [1984b], Paterson
[1985, 1086], Paterson and Mackwell [1984], Pecher
and Boullier [1984], Ralser et al. [1985], Rovetia
[1985], Rovetta et al. [1986]), Spear and Selverstone
[1983], Tullis and Yund [1985¢|. Feldspara—Beran [1986],
Goldsmith [1986]). Olivine~Beran and Putnis [1983],
Chopra and Paterson [1984], Freund and Oberheuser
[1986], Mackwell and Kohlstedt [1983, 1985), Mackwell et
al. [1985a,b], Miller and Rossman [1985], Rovetta [1985].
Garnets — Aines and Rossman [1984]. Bischofite—Uras
[1983].

DEFORMATION AND EFFECTS OF DEFECT CHEMISTRY.
Olivine-Arculus [1985], Arculus et al. [1984], Basi et
al. [1985, 1986], Bergman and Dubessy [1984], Boland
and Duba [1986], Eggler [1983], Freund et al. [1983),
Green and Gueguen [1983], Hermeling and Schmalzried
[1984], Hirsch and Wang [1986], Hobbs [1983], Jaoul
et al. [1984], Kohlstedt and Hornack [1981], Kohlstedt
and Mackwell [1985, 1987, Liu [1986], Mackwell and
Kohlstedt [1986], Mathez et al. [1984], Nakamura
and Schmalzried [1983], Ricoult and Kohlstedt [1984],
Rovetta [1984], Rovetta et al. [1986], Sato [1986],
Tarits [1986], Tingle et al. [1985, 1987], Varskal et al.
[1985]. Quartz-Ord and Hobbs [1983, 1985a,b, 1986],
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Ralser et al. [1985], Stenina et al. [1984]. Halite-
Heard and Ryerson [1986]. Ozides—Castaing et al. [1984],
Dominguez-Rodriguez and Castaing [1983]. Sulphides—
Davidson et al. [1985].

PREFERRED ORIENTATIONS IN CRUSTAL ROCKS. Quartz
~ Bouchez et al. [1983, 1984], Culshaw and Fyson
[1984], Dell’Angelo and Tullis [1986, 1987], Gapais
and Barbarin [1986], Jensen [1084], Law [1986], Law
et al. [1984, 1086]), Passchier [1983|, Rathore et al.
[1983], Schmid and Casey [1986)]. Feldspars-Olsen and
Kohlstedt [1985, 1986], Shelley [1986], Vernamini and
Wenk [1984], Wenk [1983]. Calcite—Dietrich [1986],
Dietrich and Song [1984], Johknson and Wenk [1985],
Kern and Wenk [1983], Schmid et al. [1981, 1987], Wenk
et al. [1984, 1985, 19864,b]. Micas-Lipshie [1985], Means
et al. [1984], Oertel [1983], Wilson [1983, 1984]. Halite—
Hansen [1983]. Ice-Bouchez and Duval [1982], Burg et al.
[1987], Duval [1981], Gao and Jacka [1987], Lile [1978].
Preferred orientation models — Fletcher [1986], Lister
et al. [1978], Takeshita [1986]. Other-Evans [1984),
Fujimura et al. [1983], Schmid [1982], Singh [1986],
Skrotzki and Welch [1983].

DYNAMIC RECRYSTALLIZA TION: EXPERIMENTS, MECHAN-
ISMS, AND PALEOSTRESS ESTIMATES. Olivine — Avé Lalle-
mant [1985], Douglas et al. [1985], Karato [1984], Karato
et al. [1982], Ricoult and Kohlstedi [1983], Ross [1983],
Zeuch [1983], Zeuch and Green [1984a]. Quartz — Dell’-
Angelo et al. [1984], Dunning et al. [1982], Freeman [1984],
Koch and Christie [1984], Ord and Christie [1984], Schedl
et al. [1986). Feldspars—Olsen and Kohlstedt [1985], Yund
and Tullis [1984). Halite-Carter et al. [1984]. Ice—Burg
et al. [1987], Wilson [1986]. General-Etheridge [1983,
1984], Mawer and Williams [1985)], Ranalli [1984], Tharp
[1984], Tullis and Yund [1985a,b], Turner and Gough
[1983], Twiss [1984, 1986], T'senn and Carter [1987], Urai
[1983, 1985], Urasi et al. [1986], Vernon et al. [1983].
STATIC RECRYSTALLIZATION AND RECOVERY. Evans
et al. [1986], Karato [1984], Kirby and Kronenberg
[19844a], McLaren [1986], Olgaard and Evans [1984,
1986], Olgaard et al. [1983|, Ricoult and Kohlstedt [1983],
Tullis and Yund [1982], Watson [1985].

DUCTILE FAULTS. Anderson [1983], Burg [1986], Dell’-
Angelo et al. [1984], Gilotti and Kumpulainen [1986],
Hobbs et al. [1986], Hudleston [1983], Ingles [1983, 1985],
Jensen [1984], Kern and Wenk [1983], Kirby et al. [1985],
Knipe and Wintsch [1985], Kronenberg et al. [1984],
Lister and Snoke [1984], Lister and Williams [1983],
Maddock [1983], Mawer [1983], Ord and Christie [1984),
Passchier [1984a,b], Platt and Behrmann [1986)], Ranalls
[1984], Rathore et al. [1983], Schedl [1983], Schmid et
al. [1987], Segall and Simpson [1986], Sibson [1982,
1984a,b, 1986a,b,c], Simpson [1983, 19844,b], Simpson
and Schmid [1983], Takagi [1986], Takeshita and Wenk
[1985], Tullis and Yund [1985a|, Watts and Williams
[1983], Wenk and Takeshita [1984], Wenk et al. [1985,
1986b], White and Mawer [1986], White and White

[1983], Wojtal and Mitra [1986], Xu et al. [1986], Zeuch
[1982, 1983].
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al. [1984], Coz and Etheridge [1983, 1984], Craddock

[1985], Culshaw and Fyson [1984), Davies and Pollard
[1986), Davis [1983], Davis et al. [1986], Evans and
White [1984], Facer [1983], Foster and Hudleston [1986],
Gairola and Kern [1984a,b], Gamond [1983], Groshong
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