Lecture 14: Mantle convection and driving forces of global tectonics

Read chapter 12 in KK&V

Simulation of mantle convection; JPL-NASA
Cooling of the earth through time by conduction from an initial state T_1 to a later state T_2. The rate of heat flowing across the earth’s surface decreases exponentially with time.
Loss of heat through conduction. For example, the surface temperature of a potato suggests the time since it was removed from an oven. Assuming no new heat generation or convective heat loss, the temperature at about 1 km depth indicates the earth’s age (60–70 million years).
Global tectonic theories pre-dating plate tectonics:

• Contracting Earth
 – Contraction by cooling is not sufficient to explain the crustal shortening observed in mountain belts
 – Fails to explain extensional tectonics

• Expanding Earth
 – A decrease in the gravitational constant G is not sufficient to double the Earth’s radius
 – The moment of inertia hasn’t changed over the last 400 My
 – Paleomagnetic data do not indicate that the Earth’s radius changed significantly over geologic time
Mechanisms for heat to escape from the interior of the Earth

- **Conduction (inefficient)**
- **Convection (much more efficient)**
Driving Forces

Thermal convection: primary process responsible for plate motions

Heat at bottom causes a temperature gradient
Hot material rises, cold material sinks at edges

Earth: additional sources of heat in mantle
Variable viscosity between lithosphere, asthenosphere, mantle

Figure 10-1.
Single convection cell: The kitchen stove experiment.

Figure 10-2.
Multiple convection cells over distributed heat source.

Cox and Hart (1986)

Kearey and Vine (1996)

Issue: Form of mantle convection:
Whole mantle convection?
- Transition zone is a phase boundary which can be traversed
 Plumes come from deep mantle
 Favoring recent seismic tomography

Or: Two layer convection?
- Transition zone represents a chemical boundary
 Plumes come from upper mantle
Some conceptual models ...

Three different conditions of the thermal boundary layers in a convecting fluid

a) Cold top, heated bottom, no internal heating

b) Cold top, insulated bottom (no heat), internal heating

c) Cold top, heated bottom, internal heating

In a) convection is driven equally by more dense downwelling from top and less dense upwelling from bottom

In b) cold, dense fluid from top drives convection; upwelling is passive

In c), some upwelling from bottom but weaker than in a)

The temperature drop at the base of the top boundary layer is the greatest in c, thereby strengthening the top boundary layer

Mantle is like c)

The temperature profiles (right) show that when there is internal heating (cases b and c) there is a greater temperature drop across the upper boundary layer. This will strengthen the upper boundary layer

Problem: assumes uniform viscosity throughout mantle

KK&V Fig 12.5
Some actual calculations …

In case where heated from below but no internal heat (left) see downwellings and upwellings (like case a)

In case where heated internally and no heat from below (right, like case b) see strong downwellings and only weak upwellings.

The later is thought to be more like the Earth’s mantle, although neither example is like case c.

Still missing in models: Variable viscosity with depth Phase changes

Numerical convection simulations

Left: heated from below
Right: heated internally, no heat from below
Fundamental concepts to consider:

upper thermal boundary layer
MAKES PLATE TECTONICS

convecting mantle

core

lower thermal boundary layer
MAKES PLUMES
Plumes interacting with plates

- No plume
- c.1 km up
- Broad swell (1000 + km across)

Asymmetric swell
- Dead
- Volcanic trend: active

Plate moves across the plume

Plume head entrained by plate
This leads to the idea that it is not the upwelling beneath the mid-ocean ridge axis, but the upwelling in mantle plumes that is important in the thermal cycle. Mid-ocean ridges and sea-floor spreading may in fact be entirely **passive** phenomena.
1) Passive plates (old idea):

Convection cells are prime movers

Ridges form at upwellings

Trenches at downwellings

Subduction occurs because a slab is pulled down by a dense sinking limb of a convection cell

Distance between ridges and trenches is determined by characteristic length scale of convection cell

2) Active plates (plate tectonics; edge forces)

Plate is an intrinsic part of a convection cell

Subduction occurs because the slab is the dense, sinking limb of the cell

Ridges are simple cracks between diverging plates filled from local sources (spreading ridges are passive)

Analogy: Diverging ices sheets on a pond

Sea ice in the Arctic

Also called: Orowan-Elsasser type convection

A little confusing:

active plates = passive spreading
Another analogy: lava lake (note recycling of solid crust on top)
Three tests of passive versus active plates

Test 1:
Large ridge jumps:

Passive plate model (old) requires that a large ridge jump corresponds to a major reorganization of the mantle convection pattern

Active plates: Plate can simply break into pieces like a large ice floe

Example: Early Cenozoic plate reorganization in Southeast Pacific: large piece of Pacific plate (X) is captured by Antarctic plate

Cox and Hart
Passive plate model:
Ascending and descending ends of convection system meet. Convection system ends

Active plate model:
Ridge slips beneath trench. Trailing plate starts subducting

Test 2: What happens when a ridge collides with a trench?

Example of active plate subduction:
Southern Chile:

South America is overriding Chile (Nazca-Antarctic) ridge

Antarctic plate continues to subduct south of the triple junction
After the ridge “collides” with the trench along the southern Chile margin, the “trailing” plate (Antarctica) starts subducting and the location of a “slab gap” can be followed down the subduction zone.

There is a gap in volcanism (VG) south of the triple junction corresponding to the segments where the “gap” between the leading and trailing plates passes beneath the volcanic arc.
Test 3:

Two models predict very different states of stress within the lithosphere.

Stress conditions in the oceans (based mostly on focal mechanisms) are more like the bottom panel (active plates).

KK&V Fig. 12.9

World stress map – 2004

Blue = thrust faulting = compression

Red = normal faulting = tension

Heidbach et al. (2010)
Blue = thrust faulting
= compression

Red = normal faulting
= tension
Forces acting on plates

- Slab Pull (Slab drag)
- Ridge push
- Mantle Drag
- Continental Drag (deep root)
- Trench suction
- Transform fault resistance

Figure 10-6.
Forces acting on plates.

Cox & Hart
But countered by slab drag

Slab Pull \(- F_{sp}\)

Force generated because cold subducting slabs are denser than the asthenosphere and therefore sink through it. However, “pull” is a misleading word. Plate is too weak to be “pulled.” Plate is not under tension in an absolute sense; rather, there is a reduction in the pressure that would exist at a given depth. Think of the descending limb of cold water in a convection cell, which “pulls” the water behind it (rather than the misleading analogy to a wet tablecloth). Should be independent of the rate of convergence.

Figure 10-6.
Forces acting on plates.
Ridge Push - F_{RP}

Force due to the gravitational potential energy resulting from the relative height of ridges over areas of older crust. Think of a large glacier which flows slowly down hill. Force is generated over entire area of rise, but is greatest at the axis, goes to zero at the abyssal plains.

The principal way to explain motion of large plates with no slabs such as North and South America.

Figure 10-6.
Forces acting on plates.
Mantle Drag Force - F_{DF}

Force acting on the bottom of the plate due to viscous coupling between the plate and asthenosphere. Will be proportional to area of plate and its velocity relative to the asthenosphere. If a plate is passive, then the plate moves in the same direction as the asthenosphere beneath it, but at a slower rate. If plates are active, the drag force is resistive and in the opposite direction to the plate motion.

Continental Drag Force - F_{CD}

Additional drag force if there is greater drag under continents. May arise if the asthenosphere is more viscous under continents or if a root extends beneath a continent into the asthenosphere.
Suction Force - F_{SU}

Continents appear to be pulled toward the trench by a suction force. Perhaps because subducting slab produces an eddy-like flow in the asthenosphere or because the roll back motion of the slab creates a mass deficiency on the landward side of the slab, which sucks the continent towards it.
Transform Fault Resistance - F_{TF}
Friction along transform faults produce a resistive force as shown by presence of earthquakes. Function of stress in plate across transform. Independent of plate velocity.

Colliding Resistance - F_{CR}
Friction between plates tends to resist convergence as shown by presence of earthquakes. Faulting occurs when a critical yield stress is reached. Should be independent of velocity of convergence.
Classic study of Forsyth and Uyeda (1975) which evaluated possible driving forces

Plotted absolute velocities of 11 plates versus several parameters:

1) Area of plate
2) Area of continent
3) Percentage transform faults
4) Percentage ridges
5) Percentage trenches

1) Total area of plate versus absolute velocity:

No correlation – implies mantle drag force is small
2) Transform boundaries:

No correlation between absolute velocities and percentage length of transform faults

Implies resistive force across transform faults is small
3) Continental area of plates:

Moderate correlation

Note that India and Antarctic have same area but very different velocities

Implies:

Mantle drag is stronger beneath continents

Or – no slab attached to slow continents

(Fast motion of India is still a mystery)
4) Percentage of boundary attached to a downgoing slab

Strong correlation

Plates with high percentage of slabs move @ 60 – 90 mm.yr

Implies:

Slab pull is primary force!
5) Length of ridges as percentage of boundary

How strong is Ridge push?

Need to look at “effective” ridge length. That is, part not cancelled by ridges on opposite side of plate – like around Antarctica and Africa

Weak correlation with effective ridge length

(note: most fast plates have lots of ridge but Philippine plate does not)

Mixed message

but clearly need ridge push to explain motion of plates with no slabs attached

Ridge push is about 1/10th of slab pull
Summary of driving forces

1) Mantle Drag is small.

2) Slab Pull is the largest force and is 10x greater than Ridge Push.

However,

3) Slab Pull is balanced by Slab Drag.

Consequently,

4) Ridge Push remains an important force in the overall scheme of things and may explain why North America moves.
Tomography gives an image of the earth’s interior by measuring the slowing or speeding of seismic waves.
First evidence for whole mantle flow

Pacific Ocean

west coast of North America

descending slab of oceanic lithosphere
seismic tomography permits a view of the earth’s deep interior

blue = faster = colder = stronger

red = slower = hotter = weaker

60km

fast continental shield and old oceans

290km

the continental plates have fast "keels" at depths at which the oceanic areas are already underlain by the slow asthenosphere
blue = faster = colder = stronger
red = slower = hotter = weaker
to the base of upper mantle

The "cold" subducting slabs show up as seismically fast areas. They pass the 670km discontinuity between upper and lower mantle and penetrate well into the lower mantle.

and even way down in the lower mantle

Some of the "cold" subducting slabs can be traced well into the lower mantle. E.g. old Farallon and Tethian subducting slabs.
Seismic tomography at the base of the mantle reveals continent-size structures and variations un-paralleled in magnitude except at the earth’s surface.

High-velocities (blue) are cold rock
Low velocities (orange) are hot rock
Middle ground?

Not all hotspots come from deep mantle plumes

Some may come from the top of domes near the transition zone

Still others may have a shallow origin due to cracks in lithosphere

Next: look at base of mantle

D”

Courtillot et al. 2003
graveyard of cold lithosphere slabs at the base of the mantle?

The big picture. In a seismic image covering Earth from surface (top curve) to core, seismologists can see a presumed slab (blue, showing fast seismic waves) sinking beneath the Caribbean Sea into the mantle (yellow) and falling into other slabs near the core.
One EQ wave we haven’t discussed yet are diffracted arrivals. Represents energy that has been refocused after hitting point or line barriers. Not usually used in seismology. However, these waves spend a lot of time grazing the core-mantle boundary and recently have been used to probe the structure of layer D”.

Wysessions (1996)
Diffraction allows waves to bend around corners and point obstacles. This is the reason we can hear people talking around the corner in another room.

Lowrie (1997)
D” is a thermal-chemical boundary layer at the base of the mantle

Recent seismic tomography reveals great complexity and vertical and lateral variability

KK&V Fig 12.11

Three examples:

a) See a velocity increase beneath regions where we have subducting slabs

b) Beneath hotspots seismic velocities are decreased (an ultra low velocity zone or ULVZ) implying 15% partial melt Probably chemical as well as thermal variations

c) See ULVZ’s beneath South African superswell
Can think of two complementary modes of convection

Plate mode cools the mantle; plume mode releases heat from the core

Driven by downwelling of cold plates and upwelling of hot plumes

Two major areas of upwelling (from base-of-mantle tomography): one beneath southern Africa and the other beneath the south central Pacific

These two zones of upwelling do not correspond directly to mid-ocean ridges; instead they are at the center of rings of subducting slabs

Primary plumes (like Hawaii) come from core-mantle boundary

Secondary plumes from top of superswells

Courtillot et al. (2003)
So, the early, simple picture of mantle convection in large bi-symmetric cells is not supported by observations and modeling.
Instead we see convection in the form of rising, hot plumes and sinking, cold slabs. The plates are not passengers, but are actual limbs of the convecting cell.
Bottom line

- Throw out the old (Holmes, Hess, etc.) concepts of mantle convection as cells rising beneath mid-ocean ridges and sinking at margins.

- Though phase changes produce abrupt density discontinuities in the mantle, lithospheric slabs are able to penetrate through these barriers.

- The base of the mantle collects old lithosphere and this lithosphere might re-cycle after it is warmed by the hot core.

- Hence plates are not passengers, but the cold part of the engine.
Geodynamic models:
230 Ma worth of convection …
The tomography and computer simulation provide extraordinary view of mantle convection and how it is linked to the core-mantle boundary.
Cold mantle rock (blue) accumulates at the 660 km deep boundary, and occasionally penetrates into the lower mantle to rest on the top of the core.

Warm mantle rock (red) rises as plumes from the core-mantle boundary to return to the surface and complete the round trip. This is the principle escape route of the earth’s internal heat.
Cross sections through the mantle from seismic tomography reveal subducted slabs penetrating into lower mantle but only a few go straight down. Many “stall” at the 660 km transition zone. This leads to all types of variations on the basic model of “slab pull”.

Dziewonski et al. (2010)
Slab Avalanche?

A near hiatus in convergence between Africa and Eurasia in the early Cenozoic leads some geodynamic modelers to propose that the downgoing slab stalls at the upper mantle/lower mantle boundary, accumulates there and then suddenly, rapidly penetrates into the lower mantle …

1.3 s means 1.3 slab lengths, etc.
Note: slabs stall at transition zone; Slab avalanche?