The Hawaiian SWELL Pilot Experiment -
Evidence for Lithosphere Rejuvenation from Ocean Bottom Surface Wave Data

G. Laske1 and J. A. Orcutt2

\textit{Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0225, USA.}

1 ABSTRACT

During the roughly year-long SWELL pilot experiment in 1997/1998, eight ocean bottom instruments deployed to the southwest of the Hawaiian Islands recorded teleseismic Rayleigh waves between 15 and 70s. Such data are capable of resolving structural variations within the oceanic lithosphere and upper asthenosphere and therefore help understand the mechanism that supports the Hawaiian Swell relief. The pilot experiment was a technical as well as a scientific feasibility study and consisted of a hexagonal array of Scripps "L-CHEAPO" instruments using differential pressure sensors. The analysis of 84 earthquakes provided numerous high-precision phase velocity curves in an unprecedented wide period range. We find a rather uniform (unaltered) lid at the top of the lithosphere that is underlain by a strongly heterogeneous lower lithosphere and upper asthenosphere. Strong slow anomalies appear within roughly 300 km of the island chain and indicate that the lithosphere has been altered most likely by the same process that causes the Hawaiian volcanism. The anomalies increase with depth and reach well into the asthenosphere suggesting a deep dynamic source for the swell relief. The imaged velocity variations are consistent with a thermal cause which suggests that our array did not cover the melt generating region of the Hawaiian hotspot.
Fig. 1. Location map of the SWELL pilot experiment which continuously collected data from April 97 through May 1998. The array covered the southwestern margin of the Hawaiian Swell which is characterized by its shallow bathymetry. Also marked are the ocean seismic network pilot borehole OSN1 (February through June 1998) and permanent broad-band station KIP (Kipapa) of the global seismic network (GSN) and GEOSCOPE. Dashed lines mark the age of the ocean floor (Müller et al., 1997).

2 INTRODUCTION

The Hawaiian hotspot and its island chain are thought to be the textbook example of a hotspot located over a deep-rooted mantle plume (Wilson, 1963; Morgan, 1971). Since the plume material ascends in a much more viscous surrounding mantle, it is expected to stagnate near the top and exhibit a sizable plume head that eventually leads to the uplift of the overlying seafloor (e.g. Olson, 1990). A hotspot on a stationary
plate may then develop a dome-shaped swell (e.g. Cape Verde) while a plate moving above a plume would shear it and drag some of its material downstream, creating an elongated swell (Olson, 1990; Sleep, 1990). Hawaii’s isolated location within a plate, away from plate boundaries should give scientists the opportunity to test most basic hypotheses on plume–plate interaction and related volcanism. Yet, the lack of many crucial geophysical data has recently revived the discussions on whether even the Hawaiian hotspot volcanism is related to a deep-seated mantle plume or is rather an expression of propagating cracks in the lithosphere. Similarly, the dominant cause of the Hawaiian Swell relief has not yet been conclusively determined. At least three mechanisms have been proposed (see e.g. Phipps Morgan et al., 1995) – a) thermal rejuvenation; b) dynamic support; c) compositional buoyancy – but none of them is universally accepted as a single dominant mechanism. All these mechanisms create a buoyant lithosphere, and so can explain the bathymetric anomalies, but they have distinct geophysical responses and each model currently appears to be inconsistent with at least one observable.

2.1 The Three Possible Causes for Swell Relief

In the thermal rejuvenation model the lithosphere reheats and thins when a plate moves over a hotspot. It explains the uplift of the seafloor and the age-dependent subsidence of seamounts along the Hawaiian island chain (Crough, 1978; Detrick and Crough, 1978). This model was reported to be consistent with gravity and geoid anomalies and observations suggest a compensation depth of only 40–90 km (instead of the 120 km for 90 Myr old lithosphere). Initially, rapid heating within 5 Myrs of the lower lithosphere (40–50 km) and subsequent cooling appeared broadly consistent with heat flow data along the swell (von Herzen et al., 1982) though Detrick and Crough (1978) had recognized that the reheating model does not offer a mechanism for the rapid heating. The heatflow argument was later revised when no significant anomaly was found across the swell southeast of Midway (von Herzen et al., 1989) though the interpretation of those data is still subject of debate (McNutt, personal communication). The thermal rejuvenation model has received extensive criticism from geodynamicists as it is unable to explain the rapid initial heat loss by conduction alone and modeling attempts fail to erode the lithosphere significantly if heating were the only mechanism involved (e.g. Ribe and Christensen, 1994; Moore et al., 1998). The dynamic support model is a result of early efforts to reconcile gravity and bathymetry observations of the Hawaiian Swell (Watts, 1976). Ponding, or pancaking, of ascending hot asthenosphere causes an unaltered lithosphere to rise. A moving Pacific plate shears the ponding mantle material and drags it along the island chain, thereby causing the elongated Hawaiian Swell (Olson, 1990; Sleep, 1990). The compensation depth for this model remains at 120 km depth. An unaltered lithosphere is, however, inconsistent with the heatflow data along the swell (von Herzen et al., 1989) and the
geoid. A recent hybrid model – dynamic thinning – in which secondary convection in the ponding asthenosphere erodes the lithosphere downstream (Ribe, 2004) appears to find support by a recent seismic study (Li et al., 2004). The third model, compositional buoyancy, was suggested by Jordan (1979) and is based on the idea that the extraction of melt by basaltic volcanism leaves behind a buoyant, low-density mantle residue (see also Robinson, 1988).

2.2 Plumes and Seismic Tomography

Seismology, of course, provides useful tools to identify and image a mantle plume and its related features. Assuming thermal derivatives, $\partial v / \partial T$, near 1×10^{-4}K$^{-1}$ (Karato, 1993), thermal plumes with excess temperatures of a few 100 K give rise to changes of upper mantle seismic velocities by a few per cent, which should be resolvable by modern seismic tomography. Nevertheless, progress has been slow, especially in the imaging of the Hawaiian plume. Global body wave tomographic models often display a low-velocity anomaly near Hawaii in the upper mantle (e.g. Grand et al., 1997) and a recent study cataloged the seismic signature of plumes (Montelli et al., 2006) to reassess heat and mass fluxes through plumes (Nolet et al., 2006). However, such models typically have poor depth resolution in the upper few 100 km unless the dataset contains shallow–turning phases or surface waves (which both cited studies do not have). Further complicating imaging capabilities with global data is the fact that the width of the plume conduit is expected to be of the order of only a few 100 km. Such a small structure is near the limits of data coverage, the model parameterization and the wavelength of the probing seismic waves and proper imaging may require the use of a finite–frequency approach (Montelli et al., 2006). Surface waves should be capable to sense the shallow wide plume head but global dispersion maps at 60s, with signal wavelengths of 250 km, largely disagree on even the location of a possible low–velocity anomaly near Hawaii (e.g. Laske and Masters, 1996; Trampert and Woodhouse, 1996; Ekström et al., 1997; Ritzwoller et al., 2004; Maggi et al. 2006). The reason for this is that the lateral resolution of structure for the area around Hawaii is rather poor, due to the lack of permanent broadband seismic stations.

Regional body wave tomographic studies using temporary deployments of broadband arrays have come a long way to image plume–like features on land (e.g. Wolfe et al, 1997; Keyser et al., 2002; Schutt and Humphreys, 2004) but similar studies at Hawaii are extremely limited, due to the nearly linear alignment of the islands (e.g. Wolfe et al, 2002). Such studies usually also do not have the resolution within the lithosphere and shallow asthenosphere to distinguish between the three models proposed for the swell uplift, but surface waves studies do. The reheating model causes low seismic velocities in the lower lithosphere, while normal velocities would be found for the dynamical support model. The compositional buoyancy model predicts
The Hawaiian SWELL Pilot Experiment

high velocities which are claimed to have been found by Katzman et al. (1998) near the end of a corridor between Fiji/Tonga and Hawaii. Surface wave studies along the Hawaiian Islands have found no evidence for lithospheric thinning (Woods et al., 1991; Woods and Okal, 1996; Priestley and Tilmann, 1999) though shear velocities in the lithosphere appear to be at least 2.5% lower between Oahu and Hawaii than downstream between Oahu and Midway. These studies used the two-station dispersion measurement technique between only one pair of locations. It has been argued that the resulting dispersion curves in this case may be biased high because laterally trapped waves along the swell may not have been accounted for properly (Maupin, 1992). What is obviously needed are constraints from crossing ray paths that can be obtained only from broadband observations on ocean bottom instruments deployed around the Hawaiian Swell.

Prior to the MELT (Mantle Electromagnetic and Tomography) experiment (Forsyth et al., 1998) across the relatively shallow East Pacific Rise, extensive long-term deployments have not been possible due to the prohibitively high power demand of broadband seismic equipment. In 1997, we received NSF funding to conduct a year-long proof-of-concept deployment for our proposed SWELL Experiment (Seismic Wave Exploration in the Lower Lithosphere) near Hawaii (Figure 1). Eight of our L-CHEAPO (Low-Cost Hardware for Earth Applications and Physical Oceanography) instruments (Willoughby et al., 1993) were placed in a hexagonal array across the southwestern margin of the Hawaiian Swell to record Rayleigh waves at periods beyond the microseism band (15 s and longer). The most important issues to be resolved were whether our instrumentation was adequate for both a long-term deployment in the deep ocean as well as for recording long-period surface waves (> 50s) in the given ocean environment. Would a 12-month timeframe allow us to collect enough data to assess azimuthal variations, given the higher noise levels expected in the oceans? How accurately can we measure dispersion with such data? Unlike in the MELT experiment that used a combination of three-component seismometers and pressure sensors, the sole sensor used in our deployment was a broadband Cox–Webb pressure variometer that is commonly known as a differential pressure gauge (DPG) (Cox et al., 1984). Though relatively cost-effective, this choice appeared somewhat disappointing to some colleagues as a pressure sensor would not allow us to observe shear wave splitting and converted phases from discontinuities or record Love waves. The observation of the latter on the ocean floor has so far been extremely rare due to prohibitive noise levels on horizontal seismometer components. There has also been some concern that the effects of ocean noise from infragravity waves are much larger in pressure, recorded by the DPG, than in ground motion, recorded by a seismometer (Webb, 1998). And finally, the Pacific Ocean is found to be much noisier than the Atlantic Ocean though this may affect only signals at periods shorter than considered here. On the other hand, infragravity noise levels may depend on water depth and the deep ocean environment around Hawaii could allow us to collect data at more favorable signal levels than elsewhere. The proximity to the OSN borehole seismometer test site at ODP borehole 843B south of Oahu allowed us to
Laske & Orcutt

Fig. 2. Backus–Gilbert kernels for Rayleigh waves, for three frequency ranges and a given model error of 1%. The 8 kernels represent the recovery of a delta function at 8 given target depth (numbers on the right hand side. Low–frequency Rayleigh waves are required to resolve structure at greater depth.

compare our data with observatory quality broadband seismometer data collected by much more expensive seafloor equipment (Vernon et al., 1998). Since the bandwidth of the Rayleigh wave analysis is crucial to reach into the asthenosphere we briefly discuss resolution requirements and response aspects of seismic sensors. We then describe the field program, present data examples, dispersion curves along two–station legs and a model across the margin of the Hawaiian Swell. The model is non–unique and we discuss possible aspects that can influence the retrieval of a model. Finally, we discuss the consistency of our model with several other geophysical observables.

3 DEMANDS ON SEISMIC BANDWIDTH

To explore the lithosphere–asthenosphere system and the causes for the Hawaiian Swell uplift, we need to image structure to depths beyond 150 km, preferably down to at least 200 km. A Backus–Gilbert analysis
Fig. 3. a) Measured impulse response of one of the L-CHEAPO packages (site #6 in deployment 1 and site #7 in deployment 2). The calibration amplitude was arbitrary but the frequency–dependence was determined reliably and scales to Volts/PSI. b) Nominal instrument response of an STS-2/Reftek 24-bit package as is deployed at the Anza array (http://eqinfo.ucsd.edu/deployments/anza.html). The instrument response was obtained from the DATALESS SEED volume distributed by the IRIS DMC (Incorporated Research Institutions for Seismology Data Management Center). The -3dB points of the two responses are quite compatible.

(Backus and Gilbert, 1968) gives us insight into what bandwidth the observed Rayleigh waves need to have in order to resolve as best as possible a delta–shaped anomaly at a given target depth. The trade-off between the desired error in the model and the width of the recovered delta function (spread) does not allow us to resolve arbitrarily fine details. Figure 2 shows for several given bandwidths over which depth range an input delta function is smeared out in a recovered model. While shallow structure is spread over a relatively narrow range, structure below 100 km can be spread out over 100 km or more. Structure is considered not resolved when the input delta function is recovered around a depth other than the target depth. We find that
when measuring dispersion between 10 and 70 mHz (100–14 s period), we start to lose recovery of structure beyond about 270 km depth. While it is straightforward to attain this level of resolution with observations on land, ocean noise probably prohibits the observation of surface waves near 10 mHz. The second panel shows the recovery for Rayleigh waves between 20 and 70 mHz (50–14 s) which was near the limit of what has been achieved in the MELT experiment. The resolution at depth deteriorates but recovery of structure just beyond 150 km is possible. Imaging capabilities are dramatically hampered when the signal bandwidth is reduced to frequencies above 30 mHz (30 s). In this case, structure much beyond 100 km is not recovered. To support or refute the dynamic support model for Hawaiian Swell structure has to be recovered reliably down to at least 130 km and it is therefore essential to measure dispersion successfully down to at least 20 mHz.

Traditional OBS equipment typically uses seismometers with resonance frequencies around 1s, for example the Mark L4-3D that has been used extensively in active seismic source experiments on land and in the oceans. On land, such sensors often exhibit prohibitively large spikes after lowpass filtering the time series. It has been speculated that these are caused by temperature–dependent mechanical failures in the spring material in which case such spikes should be less abundant on the ocean floor. Post-amplification can potentially improve the long–period signal level (Spahr Webb, personal communication), but we prefer to use a sensor with greater bandwidth. At the time of the SWELL pilot deployment, the Cox–Webb DPG appeared to be a cost–effective alternative. Figure 3 compares the pressure response of the DPG package as determined during a lab calibration test prior to the deployment, after the instrumentation was fine–tuned to extend the bandwidth at low frequencies. For comparison, we also show the ground velocity response of a broadband Wielandt–Strecker Sten STS-2 seismometer package that is often used during temporary and long–term deployments on land. The DPG compares quite favorably though its roll–off at long periods is somewhat faster than for the STS-2. The absolute sensitivities of the instruments were not determined during the calibration test. We could probably determine these a posteriori by comparing a variety of seismic and noise signals but this is irrelevant and beyond the scope of this project. Not shown is the phase response that was tested to be within ±0.5% between all instruments, except for a linear phase shift that was induced in the test due to uncertainties in the onset times of the input signal. The dispersion measurement errors are typically of the same order. Since the calibration tests are subject to some error, and the effects of ground coupling of the instruments on the ocean floor are unknown we saw no benefit in correcting the raw seismograms for instrumental effects.

4 DESCRIPTION OF THE FIELD PROGRAM
The field program began in April 1997 with the deployment of 8 L-CHEAPO instruments in a hexagonal array (Figure 1) during a 7–day cruise on the 210-foot University of Hawaii R/V Moana Wave. The instruments
were deployed on the ocean floor, at water depths ranging from 4400 m to 5600 m. Two instruments were placed at the center of the hexagon, at a distance of about 25 km, in order to attain full lateral resolution in case one instrument should fail. This first deployment also included 8 magnetotelluric (MT) ocean bottom instruments and a land (Constable and Heinson, 2004). After a recording time of 7.5 months, we recovered all 16 instruments in December 1997 during a 8–day cruise and re–deployed the 8 seismic instruments. The cruise was necessary to replace the lithium batteries in the L-CHEAPOs. The re–deployment allowed the SWELL pilot array to be contemporaneous with the planned but postponed OSN1 borehole test (Dziewonski et al., 1991). The final recovery cruise, which marked the end of the field campaign, was in early May 1998 on a 5.5–day cruise. From a technical point of view, a primary question was whether the instrumentation was adequate for both a long–term deployment in the deep ocean as well as for recording long-period surface waves (> 50s) in the given ocean environment. We recovered all of the 16 drops and all but 3 of the 16 drops resulted in continuous 25 Hz data streams for the whole period of deployment. In both deployments, the failing instrument was at one of the central sites where we prudently had a backup instrument. The instrument at site 2 failed initially after recording for roughly two weeks. During the re–deployment cruise in December 1997, we were able to repair it, and it then performed flawlessly after the second drop.

As used in the SWELL pilot experiment, the L-CHEAPO instruments used a 16–bit data logging system that was controlled by a Onset Tattletale 8 (Motorola 68332) microcomputer. The 162 dB dynamic gain ranging operated flawlessly, except for the failing instrument at site number 5. The data were stored on 9-Gbyte SCSI disk drives in the logger. Due to the relatively small data volume of roughly 1 Gbyte per 6 months we used no data compression. Three McLean glass balls provided floatation while a roughly 1-ft tall piece of scrap metal served a ballast to added weight for the deployment and keep the instrument on the ocean floor. Communication between the crew on deck and the instrument was established through a Edgetech acoustic system with coded signals for disabling, enabling the instrument and for releasing the instrument from the ballast through a burn wire system. A flag and a strobelight helped locate the surface instrument during day and night recoveries. The datalogger was timed by a custom low–power Seascan oscillator built for SIO with a nominal timing accuracy of about 5×10^{-8} correctable for drift to 0.1 s/yr. The datalogger clocks were synchronized with GPS time before deployment and compared with it after recovery. The average total clock drifts were 700 ms during the first deployment and 250 ms during the second, resulting in an average drift of 75 ms/month (or 0.9 s/yr). We applied linear clock drift corrections to the data though timing errors of this magnitude are irrelevant for our study.

One of the basic scientific objectives of our study was to test whether the data allow us to identify the seismic signature of the Pacific Plate beneath the array and place it in the context of aging lithosphere as classified by the global–scale dataset of Nishimura and Forsyth (1989). It turns out that the collected dataset
has been of an unexpected richness and quality. The assessment of the average seismic structure beneath the pilot array and its relationship to oceanic lithosphere of a certain age can be found in Laske et al., (1999). On average, we find no significant deviation from the signature of a mature 100 Myr old lithosphere but we find significant lateral variations which are described in the following sections.

5 DATA EXAMPLES

We recorded numerous events at very good signal-to-noise levels and our surface wave database includes high-quality waveforms from at least 84 teleseismic shallow events. The azimuthal data coverage is as good as any 1-year long deployment can achieve (Laske et al., 1999). For many of these events, we are able to measure the dispersion at periods between 17 and 60 s, sometimes even beyond 70 s. Figure 4 shows an example of ambient noise and earthquake spectra. On the high–frequency end the SWELL stations exhibit pronounced microseism peaks centered at about 0.2 Hz. Equally large is the noise at infragravity frequencies below 0.015 Hz (see also Webb, 1998) which limits our ability to measure dispersion at very long periods. Nevertheless, the earthquake signal stands out clearly above the noise floor at frequencies below 0.15 Hz. Signal can be observed down to at least 0.015 Hz (at site #3) which may not have been achieved on previous OBS deployments. For comparison, we also show the spectra recorded on the very–broadband Wielandt–
Fig. 5. Noise and signal amplitude spectra calculated for an earthquake off the coast of Southern Chile, at sites #1 and #8. Also shown are spectra at land-station KIP, from the very–broadband bolehole sensor (KS54000) at OSN1, and from OSN1 broadband buried and surface instruments. BBOBS stands for ”broadband ocean bottom seismometer”. For details see Figure 4.
Streckeisen STS-1 vault seismometer at the permanent joint GEOSCOPE/ GSN (global seismic network) station KIP. Quite clearly, the earthquake generated observable signal at frequencies below 0.01 Hz but the noisy environment on the ocean floor did not allow us to observe this. It is somewhat curious but not well understood that the long–period noise floor at KIP is one of the lowest if not the lowest of all GSN stations, for vertical components. Figure 5 allows us to compare our spectra with others collected during the OSN1 pilot deployment. As for the Rat Island event, the spectra at KIP show that the event generated observable signal far below 0.01 Hz. The signal–to–noise ratio is not as good as that of the Rat Island event which was closer to the stations and whose surface wave magnitude was larger. Nevertheless, we are able to observe signal on the SWELL instruments to frequencies below 0.02 Hz. Also shown are the spectra at the very–broadband Teledyne–Geotech KS54000 borehole seismometer at OSN1. The KS54000 is often used at GSN stations as alternative to the STS-1. At this instrument, the noise floor grows above the signal level at about 0.006Hz and one could be misled to believe that this is infragravity noise. A broadband Guralp CMG–3T seismometer that was buried just below the seafloor (Collins et al., 1991) appears much quieter. The KS54000 was deployed at 242m depth below the seafloor in a borehole that reached through 243m of sediments and 70m into the crystalline basement (Dziewonski et al., 1991; Collins et al., 1991). During a test–deployment of this sensor at our test facility at Piñon Flat (PFO), the seismometer had problems with long–period noise and it was conjectured that water circulating in the borehole caused the noise (Frank Vernon, personal communication).

It is obviously possible to achieve an impressive signal–to–noise ratio with buried OBS equipment but such deployment methods are probably prohibitively costly for large–scale experiments. A CMG-3T deployed on the seafloor exhibits high noise levels in the infragravity band and probably does not allow us to analyze long–period signal beyond of what is achieved on the DPG. Note that the pressure signal from the earthquake is quite different from the ground motion signal but the crossover of noise and earthquake signals occur at similar frequencies though the overall signal–to–noise ratio appears to be slightly better in ground motion. Also shown are the spectra of the buried DPG which are virtually identical to the unburied ones. Burying a pressure sensor therefore does not appear to have any benefits. Regarding the seismic bandwidth, our data are favorably compatible with that of the MELT experiment (Forsyth et al., 1998).

For a dispersion analysis, we bandpass filter the data using a 5–step, zero–phase shift Butterworth filter, where the filter coefficients vary. For large or close events, we use cut-off frequencies of 0.01mHz (100s) and 0.07mHz (14s). The smaller, or more distant, events are filtered between 0.012mHz (83s) and 0.05mHz (20s). The choice of the filter parameters is made during interactive data quality control. Figure 6 shows the record sections for two earthquakes off the Coast of Chile that were about 1000km apart. Except for the record at site #5 for the April 98 event of Figure 5, The SWELL records compare well with those at stations KIP and OSN1. We notice that some of the energy at periods shorter than 25s appears to be diminished at stations KIP,
Fig. 6. Record sections of two earthquakes off the coast of Chile. Records are shown for our SWELL sites as well as of the observatory quality stations KIP and OSN1. The records are aligned relative to PREM 50s Rayleigh wave arrival times (Dziewonski and Anderson, 1981). They are band–pass filtered in the frequency band indicated above the section. Records are not corrected for instrumental effects, i.e. phase shifts between KIP and DPGs may not be due to structure. Differences in the waveforms at sites #1, #8 and KIP are most likely due to structural variations near Hawaii. The record of OSN1 for the April 98 event is shifted upward for better comparison.

#1 and #8, implying a local increase in attenuation or diffraction though some of this may also be explained by source radiation.

Figure 7 shows examples for three events in Guatemala. Great waveform coherency is apparent, even for smaller events. The overall good signal-to-noise conditions in our deployment allows us to analyze events with surface wave magnitudes down to $M_S = 5.5$. We notice some noise contamination, e.g. at station #5 for the December 97 Guatemala and April 98 Chile events, and #3 for the March 98 event. The noise is extremely intermittent, typically lasting for a few hours, and is confined to a narrow band at about 30s (though this varies with time) and has one or two higher harmonics. The noise does not compromise data collection severely but some individual phase measurements have to be discarded as we do not attempt to correct for the noise. This problem has not been noticed before as we were the first group to use this equipment for observing long-
period signals. After carefully analyzing the nature of the noise we conclude that its origin is most likely not environmental but instrumental and due to two beating clocks on the datalogger and the sensor driver boards.

Figure 7 suggests that subtle relative waveform delays are repeatable. The traces of stations #1, 2 and #8 are delayed, though the delay at #2 is small, and those of #4 and #7 are clearly advanced. The delay between #1/ #8 and #4/#7 amounts to 5.7s. In principle, the delay can have been accumulated anywhere between Guatemala and the array but if the slow structure was far from Hawaii, the record at #3 should also be delayed. A similar delay can be found for events from Venezuela, Colombia and other events in the northern quadrant. We do not observe this delay for earthquakes whose rays do not cross the islands before arriving at the array (i.e. the events in Chile, Tonga, Fiji and along the Western Pacific Ocean). Taking into account the reduced amplitudes at #1 and #8 for the Chile events, we infer a strong anomaly near the islands, with a maximum extent possibly beyond sites #1 and #8, but likely diminished. Since #4 and #7 are not affected, the
delay may obviously be associated with a thickened crust beneath the Hawaiian ridge (see Appendix). The dominant period in the seismograms is about 22s. At a phase velocity of roughly 4km/s, the observed delay amounts to a phase velocity anomaly of at least 6.5%. A thickened crust can explain only about 2% but not much more. Rayleigh waves at these periods are sensitive to upper mantle structure down to at least 60km and we gather first evidence that a low–velocity body in the mantle causes our observations.

6 PHASE MEASUREMENTS ACROSS THE PILOT ARRAY

Our phase velocity analysis involves 3 steps: a) measure frequency–dependent phase, b) determine phase velocity curves, c) invert phase velocity curves for structure at depth. For each event, we measure the frequency-dependent phase at one station with respect to those of all the others, using the transfer function technique of Laske and Masters (1996). A multi–taper approach improves bias conditions in the presence of noise and provides statistical measurement errors. The final phase for each station and event is the weighted average of these relative measurements. This procedure dramatically decreases the measurement errors when compared to our global studies where we measure phase relative to surface wave synthetics. From the individual phase measurements, we then determine phase velocities. We seek to apply methods that do not require the knowledge of structure between earthquake sources and our array. This can be done in several approaches, e.g. to find average velocities over the entire array or within station triangles or along two–station legs. The most basic approach is the first one where incoming wavefronts are fit to all phases measured across the array to obtain average frequency–dependent phase velocities (e.g. Stange and Friederich, 1993; Laske et al., 1999). A multi–parameter fit allows the wavefronts to have simple or complex shapes and oblique arrival angles (Alsina and Snieder, 1993). The latter accounts for the fact that lateral heterogeneity between source and the array refract wave packets from the source-receiver great circles. This approach requires a minimum of three stations and was first introduced as tripartite method by Knopoff et al., 1967. We find that fitting spherical instead of plane waves significantly improves the fit to our data and provides more consistent off–great circle arrival angles. More complicated wavefronts are not required to fit data from circum–Pacific events. Events occurring in the North Atlantic, Indian Ocean or Eurasia exhibit highly complex waveforms that are sometimes not coherent across the array. Such events are associated with waves traveling across large continental areas and most likely require the fitting of complex wavefronts, a process which is highly non-unique (e.g. Friederich et al., 1994). We therefore discard such events. We are left with 58 mainly circum–Pacific events for which stable phase velocity estimates are possible. The average structure beneath the SWELL pilot array resulting from wavefront fitting using the entire array is discussed in Laske et al., (1999). The average lithosphere and asthenosphere beneath the array follows that of mature 100 Myr old lithosphere given by
Fig. 8. Path–averaged phase velocity along the 2 parallel station legs 1–8 and 3–4, together with the curves calculated for the best–fitting models obtained in our inversions (Figures 12 and 13). The error bars reflect 1σ variations of several dispersion curves obtained for the same 2–station leg. Also shown are the age–dependent phase velocities by Nishimura and Forsyth (1989) and observed phase velocities by Priestley and Tilmann (1999) between the islands of Oahu and Hawaii.

Nishimura and Forsyth (1989) though our data appear to require a slightly faster lid ($V_S = 4.70$ km/s down to 30 km depth) and a slower lower lithosphere at 60 km depth.

Here, we use the two–station approach to assess lateral variations across the array. We estimate phase velocities for earthquakes that share the same great circle as a chosen two–station leg. Since this is almost never achieved, we have to choose a maximum off–great circle tolerance which is done individually for each station leg. Station #2 was operating only during the second deployment so the maximum allowed angle of 20° is relatively high. The tolerance for other legs can be as low as 8° and still provide as many as 8 earthquakes. An off–great circle approach of 20° effectively shortens the actual travel path by 6%. We correct for this to avoid phase velocity estimates to be biased high. We also have to take into account off–great circle propagation due to lateral refraction. With the spherical wave fitting technique, we rarely find approaches away from the great–circle direction by more than 5°. The average is 2.6° which accounts for a -0.1% bias. This is within our measurement uncertainties and we therefore do not apply additional corrections. Events with larger arrival angles, such as the great March 25, 1998 Balleny Island event are typically associated with complicated waveforms due either to the source process, relative position of the array to the radiation pattern or propagation effects. We therefore exclude such events (a total of 8) from the analysis.
7 LATERAL VARIATIONS ACROSS THE SWELL PILOT ARRAY

Figure 8 shows path–average dispersion curves for two 2–station legs that are nearly parallel. Both legs are roughly aligned with the Hawaiian Ridge but while leg 1–8 is on the swell, leg 3–4 is in the deep ocean and is thought to traverse unaltered ca. 110 Myr old lithosphere. The dispersion curve for leg 1–8 is based on data from 8 events (Aleutian Islands, Kamchatka, Kuril Islands and Chile), while that for 3–4 is based on 6 events. The two curves are significantly different, with the leg 1–8 curve being nearly aligned with the Nishimura and Forsyth (1989) prediction for extremely young lithosphere, while the leg 3–4 curve is slightly above the Nishimura and Forsyth curve for lithosphere older than 110 Myrs. Also shown is the dispersion curve obtained by Priestley and Tilmann (1999) between the islands of Oahu and Hawaii along the Hawaiian Ridge. Their curve is slightly lower than our 1–8 curve and lies just outside our measurement errors. The fact that the Priestley and Tilmann curve is lower than the 1–8 curve is expected since the largest mantle anomalies associated with plume–lithosphere interaction should be found along the Hawaiian Ridge. With about 5% at 40s, the difference in dispersion between legs 3–4 and 1–8 is remarkable considering that the associated structural changes occur over only 350 km, but it is not unrealistic. We are somewhat cautious to interpret isolated two–station dispersion curves since lateral heterogeneity away from the two–station path and azimuthal anisotropy along the path have an impact on path–averaged two–station dispersion. The analysis of crossing paths in Figure 9 helps diminish this deficiency. Perhaps an indication that the bias cannot be severe is the fact that other parallel two–station legs that have entirely different azimuths exhibit similar heterogeneity (e.g. legs 2–1 and 4–7). Results from crossing two–station legs scatter somewhat but are marginally consistent. The most obvious and dominant feature is a pronounced velocities gradient from the deep ocean toward the islands. This gradient can be observed at all periods but is strongest at longer periods.

In principle, the observation of lower velocities near the islands would be consistent with changes in crustal structure but a thickened oceanic crust could account for no more than 1.5%. There is no evidence that the crust changes dramatically across the array (see Appendix). A change in water depth across the array has some impact, but only at periods shorter than 30 s. The influence of water depth can be ruled out here because the effect has the opposite sign, i.e. a decreasing water depth increases velocities. Since longer periods are affected more than short periods, anomalies at depth must be distributed either throughout the lithosphere or a pronounced anomaly is located in the lower lithosphere or deeper. Rayleigh waves at 50s are most sensitive to shear velocity near 80 km depth (Figure 10) but the anomaly could reach as deep as 150 km, or deeper. A marked increase in measurement errors beyond about 67 s/ 15 mHz is associated with the fact that dispersion measurements become uncertain when the signal wavelength approaches the station spacing. We therefore expect a degradation of resolution at depths below 150 km (see Figure 2).
Fig. 9. Path–averaged phase velocities across the SWELL pilot array, as function of period. The most prominent feature is a strong velocity gradient across the SWELL margin, with lower velocities found near the islands.

8 INVERSION FOR STRUCTURE AT DEPTH

In order to retrieve structure at depth, we perform two–step inversions. First we determine path–averaged depth–profiles along each two–station leg. All profiles are then combined in an inversion for 3D structure. In principle, we can also invert path–averaged phase velocities for phase velocity maps, at fixed period, and then invert for 3D structure. This approach is more straight–forward in areas with complicated crustal corrections. Here, we prefer the first approach, which uses the same strategy as numerous tomographic studies by Nolet and his co–workers (e.g. Lebedev and Nolet, 2003).

Surface wave phase velocity is sensitive to shear and compressional velocity, \(V_S \) (or \(\beta \)) and \(V_P \) (or \(\alpha \)), as well as density, \(\rho \):

\[
\frac{\delta c}{c} = \int_0^a r^2 dr (\tilde{A} \cdot \delta \alpha + \tilde{B} \cdot \delta \beta + \tilde{R} \cdot \delta \rho).
\]

(1)

For periods relevant to this study, Rayleigh waves are most sensitive to \(V_S \) between 30 and 140km though a low level of sensitivity extends beyond 200km, if reliable measurements are available at 90s (Figure 10). Rayleigh waves are also quite sensitive to \(V_P \) from the crust downward to about 60km. The great similarity in sensitivity kernels does not allow us to obtain many independent constraints to resolve \(V_P \) very well. The
Fig. 10. Rayleigh wave sensitivity to structure at depth, shown at four periods. At a given period, sensitivity is greatest for deep shear velocity, V_S, but sensitivity for shallow compressional velocity, V_P is also significant. Sensitivity to density, ρ is less but needs to be accounted for properly in an inversion.

Sensitivity of Rayleigh waves to density extends down to about the same depth as for V_S though the sensitivity is significantly lower. The most dominant and best parameter to resolve is V_S. In order to limit the number of model parameters for a well conditioned inverse problem, tomographers often ignore sensitivity to V_P and ρ. Such a strategy could lead to biased models where shallow V_P structure can be mapped into deeper V_S structure. We prefer to scale the kernels for V_P and ρ and include them in a single kernel for V_S, using the following scaling:

$$\tilde{A} \cdot \delta \alpha = (1/1.7) \tilde{B} \cdot \delta \beta$$
$$\tilde{R} \cdot \delta \rho = (1/2.5) \tilde{B} \cdot \delta \beta$$

The scaling factors have been determined in both theoretical and experimental studies (e.g. Anderson et al., 1968; Anderson and Isaak, 1995), for high temperatures and low pressures such as we find in the upper mantle. They are applicable as long as strong compositional changes or large amounts of melt (i.e. $> 10\%$) do not play a significant role. We modify the Nishimura and Forsyth (1989) model for 52–110 Myr old
Fig. 11. Trade-off curve for station leg 1–8. Displayed is the data prediction error and model smoothness as function of the regularization parameter, μ. The location of the final model (24th iteration) is marked as well as the range of acceptable models that lie within the "model error range" of Figure 12. The chosen models have misfits, χ^2/N, between 1.0 and 1.9.

The crust is adjusted using the model described in the Appendix. We also adjust for two–station path–averaged water depths. We then seek smooth variations to the starting model that fit our data to within an acceptable misfit, χ^2/N, where $\chi = x_d - x_t$, x_d is the datum, x_t the prediction and N the number of data. Formally, we seek to minimize the weighted sum of data prediction error, χ^2, and model smoothness, ∂m

$$\chi^2 + \mu |m^T \partial^T \partial m|$$

(3)

where m is the model vector and μ the smoothing or regularization parameter. The trade-off between the two terms is shown in (Figure 11). The shape of the trade-off curve depends on the data errors as well as the composition of the dataset. The error bars shown in Figure 8 reflect the 1σ–variation between different dispersion curves obtained for the same leg. Another possible error bar is the weighted sum of errors for
these curves. These tend to be larger at longer periods so that these data carry less weight in an inversion. In addition, we measure dispersion at 0.5 mHz increments. There are therefore many more linearly dependent data at high frequencies than at low frequencies. Both slows convergence compared to an inversion for which many of the high frequency data are winnowed. The trade-off curves have slightly different shapes but the resulting optimal model is actually similar to the one shown here. In practice, models that are very close to the minimum of equation 3 are highly oscillatory and we choose smoother models. Model errors can be obtained from the data errors through a formal singular value decomposition or by bootstrap forward modeling. Here we show the range of acceptable models along the tradeoff curve. The final model has a misfit, χ^2/N, of 1.3 so is slightly inconsistent with the data.

The final model in Figure 12 is significantly slower than the N&F model for 52-110Myr old lithosphere below about 30 km. Our model follows that of the N&F model for 20-52Myr old lithosphere down to about 120 km below which depth it remains somewhat slower than the N&F model. While the velocities are relatively poorly constrained at depths below 170 km, the difference to the N&F model at shallower depths is significant and indicates that the cooling lithosphere has been altered at its base through secondary processes.

Models derived from surface waves are non–unique. If we had chosen less layers, such as the two–layer parameterization of Priestley and Tilmann (1999), the resulting velocity above 80 km may be similar to their velocity which is close to the velocity of PREM (Dziewonski and Anderson, 1981). Below 80 km, our model is significantly faster than the Priestley and Tilmann model which is in agreement with the fact that our dispersion curve is systematically faster than theirs. Inversions such as ours can get caught in a local minimum so that the model presented here would not be the actual solution to minimizing equation 3. In Figure 12b, we show the final model for a different starting model which is rather unrealistic but helps illuminate how the final model depends on the starting model. This model (model B) is virtually identical to our preferred model (model A) down to 70 km but then oscillates more significantly around the N&F model for 20–52Myr. Higher velocities are found down to about 150 km while much lower velocities are found below that, though they remain above the Priestley and Tilmann velocities. The misfit of this model is slightly less than that of model A ($\chi^2 =1.19$) but we nevertheless discard it as an improbable solution. In a hypothesis test, we remove one deep layer after the other and test the misfit. We would expect that the misfit does not decrease dramatically initially, due to the decreased sensitivity at great depth. This is the case for model A where the misfit increases by 1.6% when omitting the bottom layer. For model B this increase is 40%. This means that the bottom slow layer is required to counteract the effects of high shallower velocities in order to fit the data. Including structure of only the upper 13 layers (down to 125 km) of model A gives a misfit of 1.7 while that of model B gives 12.9 and is clearly inconsistent with our data.

Figure 13 shows the model obtained along the two–station leg 3–4. Shear velocities are significantly
Fig. 12. Shear velocity models for the two–station leg 1–8. A: Model obtained using the modified Nishimura and Forsyth 52-110Myr starting model. The predictions for this model are shown in Figure 8. The grey area marks the range of models along the trade–off curve that still fit the data to a given misfit (see Figure 11).

B: Model obtained using a constant velocity as starting model. In the upper 75 km, the final model is very similar to the model in A but is faster down to 150 km and the significantly slower. Also shown are model PREM, the age–dependent models by Nishimura and Forsyth (1989) and the model by Priestley and Tilmann, 1999 between the islands of Oahu and Hawaii.
higher than along station leg 1–8, by about 4.5% in the lithosphere and 6% in the asthenosphere at 150 km depth. Below about 70 km depth, velocities roughly follow those of PREM where the velocity increase at about 200 km is uncertain in our model. At nearly 4.8 km/s, the velocities found in the upper lithosphere are unusually high but are required to fit the dispersion curve in Figure 8. They are not unphysical and have been observed beneath the Canadian Shield (Grand and Helmberger, 1984) and in laboratory experiments (Jordan, 1979; Liebermann, 2000). The azimuth of the station leg is roughly aligned with past and present–day plate motion directions between 60 and 95°. Strong azimuthal anisotropy has been found in the Eastern Pacific Ocean (e.g. Montagner and Tanimoto, 1990; Larson et al., 1998; Laske et al., 1998; Ekström (2000)), and we find evidence that azimuthal anisotropy is about 3% in the southwestern part of our array, away from the Hawaiian Swell (manuscript in preparation). The velocities shown here may therefore be those associated with the fast direction of azimuthal anisotropy though this would also include velocities in the asthenosphere where mantle flow is assumed to align anisotropic olivine.

Inverting all dispersion data shown in Figure 9 provides more reliable estimates of isotropic velocity variations. The final model of this inversion is shown in Figures 14 and 15. While small–scale variations are most likely imaging artifacts caused by sparse path coverage, the most striking feature is a strong velocity gradient across the swell margin, starting at a depth of about 60 km, while the upper lithosphere is nearly uniform. The gradient amounts to about 1% across the array at 60 km depth but increases with depth to nearly 8% at 140 km depth. Along a profile across the swell margin we find clear evidence that the on–swell lower lithosphere has either been eroded from 90 to 60 km or has lower seismic velocities which is consistent

![Shear Velocity for Leg 34](image)

Fig. 13. Shear velocity model for the two–station leg 3–4. For details see Figure 12.
Fig. 14. Final three–dimensional model of shear velocity variation across the SWELL pilot array from the inversion of all two-station dispersion curves. Variations are shown at 4 depths and are given in per cent with respect to the velocities of the N&F model for 52-110Myr old lithosphere (given in the right bottom corner).

with its rejuvenation by lithosphere–plume interaction. Our results appear in conflict with those of Priestley and Tilmann (1999) who find no evidence for lithospheric thinning along the Hawaiian Ridge. On the other hand, their model includes only two layers in the depth range shown here, the upper one being 75 km thick and representing the entire lithosphere. The velocity in their upper layer is 4.48 km/s which is lower than what we find in the upper 40 km but larger below that. Whether or not our model is consistent with an eroded lithosphere will be addressed in a later section but we clearly find some type of rejuvenation. One could argue that this has to do with our 17–layer parameterization. However, with a two–layer parameterization as that of Priestley and Tilmann we still find a lowering of velocities in the upper layer toward the islands which indicates some type of rejuvenation.

The exact base of the lithosphere is not determined in our modeling that does not explicitly include dis-
Fig. 15. Shear velocity profile across the 3D model of Figure 14. Velocities along the profile represent averages over velocities within 50 km of the profile. Imaging capabilities are reduced toward the end of the profile due to lack of data (e.g. the apparent thickening of the lithosphere east of sites # 1 and 8. Variations in the lithosphere and asthenosphere are clearly imaged. "Distance from zero" refers to the distance from the northeastern end of the line marked in the map.

continuity kernels. But our suggestion of a doming lithosphere–asthenosphere boundary (LAB) is consistent with the results from a recent receiver function study that reaches into our array (Li et al., 2004). Their earlier study (Li et al. 2000) which samples the mantle beneath the island of Hawaii places the LAB at 120 km depth. Li et al. (2004) argue that the lithosphere thins away from the island of Hawaii and is only 50 km thick beneath Kauai, lending support for the hybrid dynamic support – lithosphere erosion model. Beneath a rejuvenated lithosphere we find a pronounced on–swell anomaly centered at 140 km depth in the asthenosphere. The anomaly could reach deeper than 200 km where our data lose resolution. This slow anomaly is consistent with the asthenosphere identified by Priestley and Tilmann thought they give a somewhat lower velocity of 4.03 km/s. The anomaly found in the low–velocity body is about 4.5% slower than the off–swell, probably unaltered asthenosphere (our off–swell velocities are consistent with the velocities of PREM). Though not well resolved, our image suggests that we sense the bottom of the asthenosphere in the southwestern half of our array. Priestley and Tilmann (1999) placed the bottom of the asthenosphere at about 190 km depth beneath the Hawaiian islands though this is somewhat uncertain.
Fig. 16. Period-dependent lateral phase velocity variations obtained with the station triangle method. The maps are obviously smoothed versions of those in Figure 9 but the velocity gradient across the swell margin is still observed. Measurement errors and the number of earthquakes used for each station triangle are shown in Figure 17.

9 VALIDATION OF THE MODEL WITH OTHER APPROACHES

The two-station approach is appealing for several reasons. It readily provides path-averaged dispersion estimates along two-station legs without having to know details in earthquake source mechanisms. Having crossing paths available, it may provide detailed insight into lateral structural variations. Problems arise, however, in cases where unmodeled effects become significant. These include off-great circle approach caused by lateral refraction between earthquakes and the array. We can validate our model by testing it against results obtained in with the tripartite approach where we fit incoming spherical waves to the phase within station triangles. This is a low-resolution approach laterally but the advantage is that off-great circle propagation is included in the modeling and so may not bias the resulting model. The velocity maps obtained in Figure 16 are significantly smoothed versions of the ones obtained by the two-station method in Figure 9 but the basic features of velocity variations are consistent: there is a significant gradient across the swell margin and the gradient appears most pronounced at long periods. The fact that the velocity difference at 50s between triangles 3–4–6 and 1–8–6 is only 1.5% indicates that the extreme velocity differences must be confined to the edges of our array and likely extend beyond. The maps in Figure 17 indicate that errors are largest at long periods but the errors are small compared to observed variations. Since station #2 was operating only during
Fig. 17. Error maps for the phase velocity maps of Figure 16. The errors are largest at long periods but remain below 0.007 km/s. The velocity gradient across the swell margin is therefore significant. The number of earthquakes used for each station triangle is given in the map for 30s.

In the presence of azimuthal anisotropy, the velocities shown in Figure 16 represent true average isotropic velocities only in cases of good data coverage. We therefore check our results against inversions when azimuthal anisotropy is included in the modeling. The azimuthally varying phase velocity is parameterized as a truncated trigonometric power series,

\[c(\Psi) = c_i + a_1 \cos(2\Psi) + a_2 \sin(2\Psi) + a_3 \cos(4\Psi) + a_4 \sin(4\Psi) \]

(4)

where \(\Psi \) is the azimuth and the \(a_i \) are known local linear functionals of the elastic parameters of the medium (Smith and Dahlen, 1973; Montagner and Nataf, 1986) and \(c_i \) is the azimuth-independent average (or isotropic) phase velocity.

Solving Equation 4 is straightforward and in cases of adequate data coverage, the results for \(c_i \) should be consistent with those of Figure 16. Figure 18 shows that this is indeed the case for most of the periods considered, except at long periods where the number of reliable data decreases. When solving Equation 4 we search for 5 times as many unknowns as in the isotropic case. In cases of sparse data coverage, an inversion can yield anisotropic models that fit the data extremely well but are unnecessarily complicated or physically unrealistic.
Most realistic petrological models have one dominant symmetry axis that may be oriented arbitrarily in 3D space. For all such models, the contribution of the 4Ψ-terms is relatively small for Rayleigh waves. We see from Figure 18 that ignoring the 4Ψ-terms yields consistent results for c_i as well as the strength of anisotropy. The only time when results from anisotropic modeling including or excluding the 4Ψ-terms diverge is at long periods beyond 65 s where results are also different whether or not anisotropy is considered at all. In these cases of sparse data, ignoring strong azimuthal anisotropy yields biased values for c_i. On the other hand, with few data available the fits become uncertain, yielding phase velocity distributions that strongly oscillate with azimuth which is especially so for the 4Ψ-fits. Such strong variations have to be discarded as numerically unstable as well as unphysical. Over all the test here demonstrates that we obtain reasonably unbiased ve-
The Hawaiian SWELL Pilot Experiment

locities when we ignore anisotropy. The general good agreement of results obtain when including azimuthal anisotropy in the modeling or not gives us confidence that the frequency-dependent phase velocities we obtain in this study and their implications for structure at depth are very well constrained. The modeling of the azimuth-dependence of phase velocity in terms of 3-D anisotropic structure is beyond the scope of this paper (manuscript in preparation) but our modeling reveals that the average structure beneath the pilot array is consistent with a two-layer lithosphere-asthenosphere system, where the orientation of fast P-velocity in the asthenosphere is constrained by present-day plate motion while that of the overlying lithosphere follows the fossil plate motion.

Both the two–station as well as the triangle approach use only subsets of data. Due to the presence of noise or transient problems with individual stations, our database rarely contains earthquakes for which we can measure phase at all 8 stations. Both methods also strictly provide images within the array but give no information on structure outside of it though we have already discussed evidence that anomalies reach to the outside of our array. In a last consistency test, we embed our entire dataset of nearly 2000 phase measurements in our global database (Bassin et al., 2000). The global dataset includes nearly 20,000 high–quality hand–picked minor and major arc and great circle data and well as arrival angle data that enhance small–scale resolution (Laske and Masters, 1996). In a global inversion, contributions to our SWELL data from lateral heterogeneity between seismic sources and the array are implicitly included in the modeling. The highest frequency in our global dataset is currently 17 mHz which is near the long–period limit of the SWELL dataset. We choose 16 mHz (62.5s) for our test. All phase and arrival angle data are used in an inversion for a global phase velocity map that is parameterize in half–degree equal area cells. We use nearest neighbor smoothing in a least–squares iterative QR scheme (e.g. van der Sluis and van de Vorst, 1987). The resulting maps in Figure 19 clearly show that the SWELL data help image a low velocity region that is not resolved by the current global network of permanent seismic stations. With station KIP being until recently the only site in the area that has delivered high–quality data, not enough crossing rays are available to resolve structure at wavelengths much below 1000 km. The imaged velocity contrast between the deep ocean and the swell reaches 8% which is consistent with what we found with the two–station method. Being able to image structure outside of the array, we also notice that the low velocity anomaly extends well to the northeast of our array, most likely beyond the Hawaiian Islands. This is roughly consistent with Wolfe et al. (2002) who find a pronounced low–velocity anomaly extending from OSN1 to the Hawaiian Islands and from Oahu south to the northern end of the island of Hawaii. We are therefore confident that the results obtained in our two–station approach are robust features and trace a profoundly altered lithosphere and asthenosphere beneath the Hawaiian Swell.
Rayleigh Phase Velocity for 16 mHz

Fig. 19. North Pacific section of the global phase velocity map at 16 mHz obtained when inverting the global dataset only (top) and when including the SWELL data (bottom). Due to inadequate station distribution, the global dataset lack resolution near Hawaii. The SWELL data dramatically improve resolution and help image a low velocity region that extends from the SWELL array east beyond the islands.

10 DISCUSSION

10.1 Comparison with SWELL MT Data

During the first 7.5 months of the deployment, Constable and Heinson, 2004) collected seafloor magnetotelluric data with a seven-station array that roughly overlapped with ours. The major features in their model include a resistive lithosphere underlain by a conductive lower mantle, and a narrow, conductive 'plume'
connecting the surface of the islands to the lower mantle. They argue that their data require this plume, which is located just to the northwest of our array but outside of it. It has a radius of less than 100 km and contains 5-10% of melt. Unfortunately, our model does not cover this area. Constable and Heinson did not find any evidence for a lowering of shallow (60 km) resistivity across the swell and therefore argue against lithosphere reheating and thinning as proposed by Detrick and Crough (1978). In fact, resistivity appears to slightly increase in the upper 50 km. Due to the high resistivities found in the lithosphere (100-1000 Ω m), they place an upper bound of 1% melt at 60 km depth where our lithosphere is thinnest and argue for a ‘hot dry lithosphere’ (1450-1500°C) compared to a cooler (1300°C) off–swell lithosphere. They estimate that a melt fraction of 3-4% could explain a 5% reduction in seismic velocities (Sato et al., 1989) but it would also reduce the resistivity to 10 Ω which is not observed. Using temperature derivatives given by Sato et al. (1989) Constable and Heinson estimate that an increase of mantle temperature from 0.9 to 1.0 of the melting temperature (150-200 K in our case) can also cause a 5% velocity increase in our model but would not cause electrical resistivity to drop to 10 Ω m. The authors therefore propose a thermally rejuvenated but not eroded lithosphere that would be consistent with both seismic and MT observations. On the other hand, the estimates of Sato et al., (1989) were obtained in high–frequency laboratory experiments and Karato (1993) argues that taking into account anelastic effects can increase the temperature derivatives for seismic velocities by a factor of 2. In this case, much smaller temperature variations are required to fit the seismic model. Constable and Heinson do not attempt to reconcile the seismic and MT model below 150 km depth but it is worth mentioning that their model exhibits a gradient to lower resistivity near the low–velocity body in the asthenosphere. Anelastic effects become most relevant at greater depths, below 120 km, when attenuation increases in the asthenosphere. As dramatic as our seismic model appears, it is nevertheless physically plausible. Modeling attempts that include thermal, melt and compositional effects reveal that no melt is required to explain our model below 120 km, while depletion through melt extraction could explain the lower velocities above it (Stephan Sobolev, personal communication).

10.2 Comparison with Bathymetry and Geoid

Both model parameterization and regularization used in the inversion influence the resulting velocity model, especially the amplitude of velocity anomalies. We can test the physical consistency of our model with other geophysical observables, such as the bathymetry in the region. Our test is based on the assumption that the regional lithosphere and asthenosphere is isostatically compensated, i.e. there is no uplift nor subsidence. We also assume that the causes for our observed velocity anomalies are predominantly of thermal origin in which case we can apply the velocity–density scaling of Equation 2 to convert δV_S to density variations.
We assume Pratt isostacy and search for the optimum depth of compensation that is most consistent with observed lateral variations in bathymetry along the profile in Figure 15. We find that a compensation depth of about 130 km is most consistent with the observed bathymetry (Figure 20). Taking into account deeper structure grossly overpredicts variations in bathymetry while shallower compensation depths are unable to trace slopes in bathymetry. With a compensation depth of 130 km, the low–velocity anomaly in the asthenosphere would then give rise to uplift unless it is compensated by dense material further down. Katzman et al. (1998) argued that Hawaii is underlain by dense residue material that may be capable of sinking. On the other hand, the exact V_S–to–ρ scaling is relatively poorly known. Karato (1993) argues that anelastic and anharmonic effects significantly alter the temperature derivatives for velocity. In low-Q regions, such as the asthenosphere, the correction due to anelasticity roughly doubles. In this case, temperature anomalies as well as density anomalies have to be corrected downward, for a given shear velocity anomaly, or $d\ln V_S/d\ln \rho$ needs to be increased. In principle, we would need to reiterate our inversions using different scaling factors but here we only discuss the effects. Karato indicates that when taking anelastic and anharmonic effects into account $d\ln V_S/d\ln \rho$ decreases from roughly 4.4 at 100 km to 4.0 at 200 km. If we then assume an average scaling of 4.0 over the whole depth of our model, the predicted compensation depth deepens to 170 km, because shear velocity variations now have a reduced effect on bathymetry. This would include the anomaly in the asthenosphere without requiring compensating material at greater depth. We find no justifiable strategy to raise the compensation depth to 90 km or above that would be consistent with lithospheric thinning as proposed by Detrick and Crough (1978). Rather, the results here are roughly in agreement with the dynamic support model of Watts (1976) that places the compensation depth at 120 km.

We also test our model against the geoid. For Pratt compensation, the geoid anomaly, ΔN, is

$$\Delta N = \frac{-2\pi G}{g} \left\{ \int_0^h (\rho_w - \rho_0) zdz + \int_h^W (\rho(z) - \rho_0) zdz \right\}$$

(5)

where G is the gravitational constant, g acceleration of gravity, ρ_0 a reference density, h the water depth and W the compensation depth. Equation 5 only holds if the area is isostatically compensated. We are somewhat cautious about this test because deeper structure in our model has now a graver impact than shallow structure but at the same time model errors are also greater. Figure 21 shows the observed geoid anomalies from OSU91A1F (Rapp et al., 1991) and the anomalies predicted from our velocity model. The exact base level caused by of our model is somewhat uncertain because our data do not constrain structure of extremely long wavelength (e.g. harmonic degrees $l = 3$). As can be seen, taking into account structure above 110 km depth is most consistent with the geoid, east of the -400 km mark. A compensation depth of 120 km therefore appears roughly in agreement with both bathymetry and geoid which validates the approach assumed here.
The Hawaiian SWELL Pilot Experiment

Fig. 20. Observed bathymetry along the profile marked in Figure 15. Also shown is the predicted bathymetry derived from the shear velocity model. We assume that the lithosphere is isostatically compensated above the compensation depth given by the labels at each curve. Assuming a deep compensation depth, we overpredict the bathymetry while a depth of about 130km matches it quite well. A shallower compensation depth is also inconsistent with the bathymetry.

Fig. 21. Observed geoid anomalies from OSU91A1F. Only harmonic degrees $l = 3$ and above are considered. Also shown are geoid anomalies predicted from our model. The compensation depth for each curve is given by the label. Pratt isostatic compensation is calculated with respect to PREM. A baseline of 7m was added to the predictions to best match the geoid undulations between -400 and 0 km along the profile, since our data are insensitive to very long–wavelength structure.

To the west of the −400 km, our model grossly overpredicts the geoid and we have no immediate explanation for this. Changing the velocity–density scaling relationship has only little impact overall and no impact at all on the optimal compensation depth. Our model implies an excess mass above 110 km, since lower compen-
sation depths cause no changes. Velocity anomalies at great depth are somewhat uncertain but it is hard to find a compelling reason to conclude that velocities at shallower depths are wrong. Even if we assume that the model resulting from our two–station dispersion is biased toward fast velocities off the swell, the model obtained from the tripartite method still implies the same overall inconsistency (low above the swell, high off the swell). As mentioned above, Katzman et al., (1998) find high velocities near Hawaii that correlate with a bathymetric and geoid high to the east of our profile mark -200 km. To the west of the -300 km mark they find a strong negative anomaly in the mid–upper mantle that our technique is unable to image due to its depth. Such an anomaly would most likely compensate our shallow "excess mass".

11 SUMMARY

The results of the 1997/1998 SWELL pilot experiment suggest that our experimental design worked out extremely well. We recorded Rayleigh waves on differential pressure sensors on the seafloor at a signal level that allows us to image the lithosphere and asthenosphere beneath the Hawaiian Swell to depths beyond 150 km. The relatively inexpensive equipment is reliable in one–year experiments without significant maintenance.

On average, the lithosphere beneath the pilot array is not significantly different from that of mature 100 Myr old lithosphere given by Nishimura and Forsyth (1989) though the data require slightly higher velocities in the lid. We find pronounced lateral variations across the margin of the swell. In the deep ocean, velocities in the asthenosphere closely follow those of reference Earth model PREM, and are significantly higher than what is found along the island chain (Priestley and Tilmann, 1999). Velocities in the lid are higher than in PREM and also higher than in the Nishimura and Forsyth (1989) model for mature 100 Myr old lithosphere. Velocity variations along a profile across the swell margin suggest that the lithosphere on the swell has undergone a rejuvenation process.

Comparison of the velocities with those found in laboratory experiments and the results of a concurrent magnetotelluric study suggest that the anomalies are caused by thermal effects and that the amount of melt cannot exceed 1% in the altered lithosphere at 60 km depth. Our model is consistent with thermal rejuvenation and is in some disagreement with Priestley and Tilmann (1999) who find no significant rejuvenation beneath the Hawaiian Islands. The seismic images bear the signature of a thermally rejuvenating lithosphere but our model is inconsistent with significant amounts of melt beneath the on–swell lithosphere, speaking against a mechanically eroded lithosphere. The comparison with local bathymetry and the geoid also shows that our model is inconsistent with a shallow compensation depth as implied by the lithospheric thinning model. We rather find a compensation depth similar to that of the dynamic support model but the latter does not account for the velocity variations we find in the lithosphere. To summarize, our data are consistent with thermal
rejuvenation but inconsistent with mechanical thinning of the lithosphere unless the area around Hawaii is currently not isostatically compensated. Our data are also inconsistent with the dynamic support model that requires and unaltered lithosphere across the swell margin.

Our results lend no support for the compositional buoyancy model that requires high seismic velocities, unless plume–lithosphere interaction involves a very large area that extends well beyond the Hawaiian Swell. Off the swell, we find evidence for seismically fast material that is in conflict with the geoid, for compensation depths of 120 km or shallower. (Katzmann et al., 1998) find deeper low velocity anomalies in the upper mantle and it has been suggested that these are the signature of secondary shallow mantle convection.

The pilot study covered only a small area of the Hawaiian Swell and Rayleigh waves do not provide significant constraints below 200 km. SWELL is now part of PLUME (Plume–Lithosphere–Undersea–Mantle Experiment) that is conducted in collaboration with colleagues from other institutions to image the Hawaiian Swell and Plume.

ACKNOWLEDGMENTS

We wish to thank the L-CHEAPO team at IGPP (Cris Hollinshead, Paul Zimmer and Dave Willoughby) for making this experiment possible. The team deployed and recovered the instruments on U. Hawaii’s R/V Moana Wave. We thank the officers and crew of this vessel for three excellent cruises. many thanks go to Stephan Sobolev for his thermo–mechanical calculations for our model. We also thank the operators of OSN1, GEOCOPE, GSN, IRIS and its data management center to provide data and instrument responses used in this study. This research was financed by National Science Foundation grants OCE-95-29707 and OCE-99-06836.

12 APPENDIX A: EFFECTS FROM SHALLOW STRUCTURE

In the period range analyzed here, surface waves are quite sensitive to crustal structure without being able to resolve details. We therefore take crustal effects into account in a starting model. The crustal structure in our study area is not known in great detail. The most profound difference between the crust on the islands and in the oceans is its thickness which has a significant effect. Since we will compare our results with some land studies, we results from crustal studies in this section.

Information on crustal structure of the islands, especially the island of Hawaii, comes from refraction seismic and teleseismic work. An early travel time study of regional earthquakes recorded on the island of Hawaii revealed that, on average, the Moho discontinuity is found at 12-15km below sea level (Eaton, 1962). Swarms of deep earthquakes near 60km depth outline a possible source of magma for the volcano. In
Laske & Orcutt

refraction seismic work on the north flank of Kilauea, the crust was found to have 3 principal layers (Ryall and Bennett, 1968. A 1.2–2.5km thick layer with $V_P = 3\text{km/s}$ – thought to be a series of fractured vesicular lava flows – is underlain by a 4–6km thick layer with $V_P = 5.3\text{km/s}$ (principal volcanic layer) and a 6–7km thick layer with $V_P = 7\text{km/s}$ (principal layer of oceanic crust). A more comprehensive seismic refraction study with sea shots surrounding the island (Hill, 1969) found similar velocities on the southwest flanks of Kilauea. On average, Hill found a two-layer crust beneath the island where a 4-8km thick layer with V_P increasing from 1.8–3.3km/s near the top to 5.1–6.0km/s near the bottom (accumulated pile of lava flows) is underlain by a 4–8km thick basal layer with $V_P = 7.0–7.2\text{km/s}$ (original oceanic crust plus intrusive systems) though the crust may be as thick as 20km beneath Mauna Kea and Kohala Mountain. Eaton (1962) argued for sightly lower velocities (3.9km in 3.1km thick upper layer; 5.0km/s in 9.4km thick lower layer; or perhaps a combination with a third thin basal layer with $V_P = 6.8\text{km/s}$) though his data were quite sparse. Hill also pointed out that early arrivals associated with the summits of Kilauea and Mauna Loa suggest shallow (2–3km) high velocities ($V_P ≥ 7.0\text{km/s}$). Shallow high-velocity bodies (3-5km depth) were also found beneath Mauna Kea and Kohala Mountain. Hill and Zucca (1987) argued that these bodies represent the upper crustal magma storage complexes.

In a teleseismic study, Ellsworth and Koyanagi (1977) used a 26–station array on the south flank of the island of Hawaii to collect data from 108 circum–Pacific earthquakes in 1971–1975. In a standard Aki–inversion (Aki et al., 1977), they determined structure down to 70km depth. They found normal uppermost mantle, with $V_P = 8.1\text{km/s}$, beneath the summit of Kilauea suggesting that the magma storage reservoirs must be deeper and corresponding passageways rather narrow. In the starting model, the crust was assumed to be 12km thick, with an average crustal velocity of $V_P = 6.0\text{km/s}$. The crust beneath the summit and two radial rifts were confirmed to have anomalously high velocities ($V_P = 7.0\text{km/s}$) in contrast to the nonrift areas where velocities can be as low as 5.0km/s. They found no evidence for significant partial melt (5%) down to at least 40km. Okubo et al. (1997) examined details in crustal structure over the same area applying finite difference tomography on a large dataset of 4754 local earthquakes in 1986-1992, recorded at a 42–station array. They confirm that a high–velocity body ($V_P > 6.4\text{km/s}$) can be found in the upper 10km beneath Kilauea’s summit and the rift zones, while low velocities ($V_P < 6.0\text{km/s}$) are found southeast of the rift zones.

The crustal structure of the islands is quite different from that of the surrounding ocean. Early work by Raitt (1956) northeast of the island of Hawaii, on the island side of the moat, revealed a two–layered, 7km thick crystalline crust covered by 240 meters of sediments. The parameters of the crystalline layers were given as 2.3km thick with $V_P = 4.3\text{km/s}$ and 4.7km thick with $V_P = 6.6\text{km/s}$. Shore (1960) collected refraction seismic data across a flat bank at Gardner Pinnacles, roughly 900km to the northwest of Kauai. He
Fig. 22. The crustal model used in this study. \(V_S \) and \(V_P \) are simplified versions of the crustal structure along the ESP 1 profile (Lindwall, 1991), near OSN1. The crust is 6.5km thick, including the 200m-thick sedimentary layer.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness [m]</th>
<th>(V_P) [km/s]</th>
<th>(V_S) [km/s]</th>
<th>(\rho) [g/cm(^3)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>5000</td>
<td>1.50</td>
<td>0.00</td>
<td>1.03</td>
</tr>
<tr>
<td>sediments</td>
<td>200</td>
<td>2.00</td>
<td>0.5</td>
<td>1.50</td>
</tr>
<tr>
<td>Layer 2A</td>
<td>1300</td>
<td>5.30</td>
<td>3.00</td>
<td>2.50</td>
</tr>
<tr>
<td>Layer 2B</td>
<td>2000</td>
<td>6.40</td>
<td>3.70</td>
<td>2.80</td>
</tr>
<tr>
<td>Layer 3</td>
<td>3000</td>
<td>7.00</td>
<td>3.90</td>
<td>2.90</td>
</tr>
<tr>
<td>Mantle</td>
<td>–</td>
<td>8.19</td>
<td>4.63</td>
<td>3.35</td>
</tr>
</tbody>
</table>

Table 1. Crustal model used in this study.

found the crust to be 17km thick on the Hawaiian ridge but the crust thins to 5km within 190km of the ridge. The velocities found in the two–layer crystalline crust are slightly higher than those found by Raitt (4.7km/s and 6.9km/s). Surveys more closely tied to our own study area include the wide–angle refraction and multi–channel seismic studies of Watts et al. (1985), Brocher and ten Brink (1987), and Lindwall (1988) for which about 15 sonobuoy and expanding spread profiles (ESP) were deployed in a corridor roughly perpendicular to the Hawaiian Ridge, passing through the Kaiwi Channel between Oahu and Molokai. The southwestern end of the corridor was near the OSN1 borehole. Brocher and ten Brink (1987) found normal oceanic crust away from the islands. The velocity structure varies along the corridor but the authors summarize the structure in three principal layers. The top layer includes pelagic sediments (\(V_P = 1.5 – 1.7 \) km/s) in the top 250m and volcanic clasts to depths up to 2700m (\(V_P = 3.7 – 4.4 \) km/s), close to the islands. Their initial assessment of
sedimentary cover through two-way travel times indicated a cover of 250m away from the islands, and about 1km in the Hawaiian Moat (see Figure 1) but the latter was corrected upward, after including first arrival phases in the modeling. A sedimentary cover of 243m was later found at the OSN1 borehole (Dziewonski et al., 1991). Layer 2 and 3 represent the igneous crust. Velocities in layer 2 increase from 4.5 to 6.5km/s for V_P and from 2.2–3.5km/s for V_S. Velocities in layer 3 increase from 6.5 to 7.0km/s for V_P and from 3.5 to 3.8km/s for V_S. Brocher and ten Brink reported that the velocities in layer 2 are normal far away from the Hawaiian Arch but are significantly lower, by up to 0.9km/s, in the vicinity of the arch, near the northeastern end of our array. Watts et al. (1985) presented a 600km long composite model in which crustal structure is found to be symmetric with respect to the Hawaiian Ridge. The crust is up to 20km beneath the ridge but decreases to the 6.5km typical of oceanic crust 175km away from the ridge. Lindwall (1988) reported the results of two 60-80km long ESP profiles in the Kaiwi Channel and in the Kauai Channel between Oahu and Kauai. He found the crust there to be 16km thick, with a 4km thick sedimentary cover ($V_P = 3.5–4.2km/s$) and a 5km thick layer comprising the main volcanic edifice ($V_P = 5.0–6.4km/s$) overlying a normal, 7km thick oceanic crust. ten Brink and Brocher, 1987 had earlier postulated that the oceanic crust is thinned and underlain by a subcrustal intrusive complex, with $V_P >7.0km/s$. Lindwall (1991) analyzed profile ESP1, which is close to the OSN1, in greater detail. He refined the earlier model to include updated estimates of Q, a series of seismically fast layers at 3km depth and a 1km transition to the mantle.

We use Lindwall’s (1991) model to construct our 4-layer crustal reference model (Figure 22 and Table 1). Density constraints come from the OSN1 borehole (Collins et al., 1991) and standard scaling relationships. We choose a sedimentary cover of 200m. This is lower than what is found at OSN1. On the other hand, sediment maps of the area, suggest an average of no more than 150m (Renkin and Sclater, 1988). The effect of such a difference in thickness on Rayleigh wave phase velocity is insignificant. There is no evidence that crustal structure varies significantly across the SWELL pilot array other than that velocities in layer 2 may be low in the northeast corner (station triangle 2–1–8), though the extent of this is uncertain. Figure 23a shows that phase velocities between 20 and 40s are affected somewhat though such changes in velocities are within measurement uncertainties. Figure 23 also shows effects of extreme variations in crustal structure that are most likely irrelevant for the study within our array but need to be considered when comparing our model with models determined using island stations. When increasing the sediment thickness to 1km the phase velocities are reduced overall, but notably only for periods shorter than 40s. These changes may be barely larger than measurement uncertainties. On the other hand, a thickening of oceanic layer 3 by 10 km significantly shifts the whole phase velocity curve downward, in the period range shown. Effects are enhanced by lowering crustal velocities to match those found beneath the islands. Locally, the most relevant effects for this study are most likely due to variations in water depth (Figure 23b) where only periods shorter than
Fig. 23. The impact of variations in shallow structure on Rayleigh wave phase velocities. a) The reported lowering of velocities in layer 2 by 0.8 km/s (V_p) and 0.5 km/s (V_s) has an insignificant impact. Assumed, but not observed differences in sediment thickness by 800 m have a barely significant impact. On the other hand, a thickening of oceanic crust by 10 km lowers the whole dispersion curve by about 0.7%. b) Local differences in water depth (4100 m at site #1 to 5600 m at site #4) change phase velocities significantly only at periods shorter than 30s, by up to 0.7%. The effects of any path-averaged water depth lie in between.

30s are affected significantly. In practice, the impact of water depth are obscured by path-averaging along two-station legs though we take changes in water depth into account.
13 REFERENCES

Sato, H., Sacks, S. and Murase, T., (1989), The Use of Laboratory Velocity Data for Estimating Tem

