CHANNEL NAMING

Contributed by Scott Halbert

Seismologists have used many conventions for naming channels. Usually, these conventions are designed to meet the particular needs of one network. But general recording systems such as the various Global Seismographic Network (GSN) systems that can record many channels at high sample rates create a need for a standard to handle the variety of instruments that can be recorded. Modern instrumentation and the need for conformity among cooperating networks have greatly complicated the problem. Sensors are available in narrow band and broadband configurations with pass bands in very different parts of the spectrum of interest. Each sensor may have several different outputs with different spectral shaping. In addition, station processors often derive several data streams from one sensor channel by digital filtering. These possibilities require a comprehensive convention. The desire to combine data from cooperating networks and to search for like channels automatically requires standardization.

The SEED format uses three letters to name seismic channels, and three letters to name weather or environmental channels. In the following convention, each letter describes one aspect of the instrumentation and its digitization. SEED does not require this convention, but we recommend it as a usage standard for Federation members to facilitate data exchange.

BAND CODE

The first letter specifies the general sampling rate and the response band of the instrument. (The RAS code is reserved for administrative functions such as miscellaneous state of health.)

<table>
<thead>
<tr>
<th>Band code</th>
<th>Band type</th>
<th>Sample rate (Hz)</th>
<th>Corner period (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Extremely Short Period</td>
<td>> or = 80</td>
<td>< 10 sec</td>
</tr>
<tr>
<td>S</td>
<td>Short Period</td>
<td>> or = 10 to < 80</td>
<td>< 10 sec</td>
</tr>
<tr>
<td>H</td>
<td>High Broad Band</td>
<td>> or = 80</td>
<td>> or = 10 sec</td>
</tr>
<tr>
<td>B</td>
<td>Broad Band</td>
<td>> or = 10 to < 80</td>
<td>> or = 10 sec</td>
</tr>
<tr>
<td>M</td>
<td>Mid Period</td>
<td>> 1 to < 10</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Long Period</td>
<td>~ 1</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Very Long Period</td>
<td>~ 0.1</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Ultra Long Period</td>
<td>~ 0.01</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Extremely Long Period</td>
<td>~ 0.001</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Administrative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Weather/Environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Experimental</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUMENT CODE AND ORIENTATION CODE

The second letter specifies the family to which the sensor belongs. The third letter specifies the physical configuration of the members of a multiple axis instrument package or other parameters as specified for each instrument.
Seismometer:
Measures displacement / velocity / acceleration along a line defined by the dip and azimuth.

Instrument Code
H High Gain Seismometer
L Low Gain Seismometer
G Gravimeter/Accelerometer Seismometer
M Mass Position Seismometer

Orientation Code
Z N E Traditional (Vertical, North-South, East-West)
A B C Triaxial (Along the edges of a cube turned up on a corner)
T R For formed beams (Transverse, Radial)
1 2 3 Orthogonal components but non traditional orientations
U V W Optional components

Dip/Azimuth: Ground motion vector (reverse dip/azimuth if signal polarity incorrect)

Signal Units: M, M/S, M/S**2, (for G & M) M/S**2 (usually)
Channel Flags: G

Tilt Meter:
Measures tilt from the horizontal plane.
Azimuth is typically N/S or E/W.

Instrument Code
A

Orientation Code
N E Traditional

Dip/Azimuth: Ground motion vector (reverse dip/azimuth if signal polarity incorrect)

Signal Units: Radians
Channel Flags: G

Geophone:
Very short period seismometer, with natural frequency 5 - 10 Hz or higher.

Instrument Code
P

Orientation Code
Z N E Traditional

Dip/Azimuth: Ground Motion Vector (Reverse dip/azimuth if signal polarity incorrect)

Signal Units: M, M/S, M/S
Channel Flags: G

Magnetometer:
Measures the magnetic field where the instrument is sitting. They measure the part of the field vector which is aligned with the measurement coil.
Many magnetometers are three axis. The instrument will typically be oriented to local magnetic north. The dip and azimuth should describe this in terms of the geographic north.

Example: Local magnetic north is 13 degrees east of north in Albuquerque. So if the magnetometer is pointed to magnetic north, the azimuth would be +103 for the E channel. Some magnetometers do not record any vector quantity associated with the signal, but record the total intensity. So, these would not have any dip/azimuth.

Instrument Code
F

Orientation Code
Z N E Magnetic
Signal Units: T Teslas
Channel Flags: G

Creep Meter:
Measures the absolute movement between two sides of a fault by means of fixing a metal beam on one side of the fault and measuring its position on the other side. This is also done with light beams.

The orientation and therefore the dip and azimuth would be the perpendicular to the measuring beam (light or metal), which would be along the average travel vector for the fault. Positive/Negative travel would be arbitrary, but would be noted in the dip/azimuth.

Another type of Creep Meter involves using a wire that is stretched across the fault. Changes in wire length are triangulated to form movement vector.

Instrument Code
B
Orientation Code
Unknown
Dip/Azimuth: Along the fault or wire vector
Signal Units: M
Channel Flags: G

Linear Strain:
One typical application is to build a very sensitive displacement measuring device, typically a long quartz rod. One end is affixed to a wall. On the free end, a pylon from the floor reaches up to the rod where something measures the position of the pylon on the rod (like a large LVDT).

There are also some interferometry projects which measure distance with lasers.

Dip/Azimuth are the line of the movement being measured. Positive values are obtained when stress/distance increases, negative, when they decrease.

Instrument Code
S
Orientation Code
Z N E Vertical, North-South, East-West
Dip/Azimuth: Along axis of instrument
Signal Units: M/M
Channel Flags: G

Volumetric Strain:
Unknown

Instrument Code
V
Orientation Code
Unknown
Dip/Azimuth: Not Applicable -- Should be zero.
Signal Units: M**3/M**3
Channel Flags: G

Tide:
Not to be confused with lunar tidal filters or gravimeter output. Tide instruments measure the depth of the water at the monitoring site.
Instrument Code

T
Orientation Code

Dip/Azimuth: Always vertical
Signal Units: M -- Relative to sea level or local ocean depth
Channel Flags: G

Rainfall:
Measures total rainfall, or an amount per sampling interval.

Instrument Code
R
Orientation Code
Unknown

Dip/Azimuth: Not applicable -- Should be zero.
Signal Units: M, M/S
Channel Flags: W

Wind:
Measures the wind vector or velocity. Normal notion of dip and azimuth does not apply.

Instrument Code
W
Orientation Code

S Wind speed
D Wind Direction Vector -- Relative to geographic North

Dip/Azimuth: Not applicable -- Should be zero.
Channel Flags: W

Temperature:
Measurement of the temperature at some location. Typically used for measuring:
1. Weather - Outside Temperature
2. State of Health - Inside recording building
 - Down hole
 - Inside electronics

Instrument Code
K
Orientation Code

O Outside Environment
I Inside Building
D Down Hole
1 2 3 4 Cabinet sources
All other letters available for mnemonic types.

Dip Azimuth: Not applicable -- Should be zero.
Signal Units: deg C or deg K
Channel Flags: W or H

Humidity:
Absolute/Relative measurements of the humidity. Temperature recordings may also be essential for meaningful results.

Instrument Code
I
Orientation Code

O Outside Environment
I Inside Building
D Down Hole
1 2 3 4 Cabinet Sources
All other letters available for mnemonic source types.
Dip/Azimuth: Not applicable -- Should be zero.
Signal Units: %
Channel Flags: W

Pressure:
A barometer, or microbarometer measures pressure. Used to measure the weather pressure or sometimes for state of health monitoring down hole.

Instrument Code
D
Orientation Code
O Outside
I Inside
D Down Hole
Dip/Azimuth: Not applicable -- Should be zero.
Signal Units: Pa (Pascals)
Channel Flags: W or H

Bolometer:
Infrared instrument used to evaluate average cloud cover. Used in astronomy to determine observability of sky.

Instrument Code
U
Orientation Code
Unknown
Dip/Azimuth: Not applicable -- Should be zero.
Signal Units: Unknown
Channel Flags: W

Electronic Test Point:
Used to monitor circuitry inside recording system, local power or seismometer. Usually for power supply voltages, or line voltages.

Instrument Code
E
Orientation code
Designate as desired, make mnemonic as possible, use numbers for test points, etc.
Dip/Azimuth: Not applicable
Signal Units: V, A, Hz, Etc.
Channel Flags: H

Calibration Input:
Usually only used for seismometers or other magnetic coil instruments. This signal monitors the input signal to the coil to be used in response evaluation. Usually tied to a specific instrument. Sometimes all instruments are calibrated together, sometimes horizontals are done separately from verticals.

Instrument Code
C
Orientation Code
A B C D... for when there are only a few cal sources for many devices.
Blank if there is only one calibrator at a time or, Match Calibrated Channel (i.e. Z, N or E)
We suggest that two sequences be reserved for special channels: the "LOG" channel for the console log, and the "SOH" channel for the main state of health channel. Subsidiary logs and state of health channels should begin with the "A" code; the source and orientation fields can then be used in any way.

Here are some typical channel arrangements used by a GSN system:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHZ/EHN/EHE</td>
<td>Short Period 100 sps</td>
</tr>
<tr>
<td>BHZ/BHN/BHE</td>
<td>Broad Band 20 sps</td>
</tr>
<tr>
<td>LHZ/LHN/LHE</td>
<td>Long Period 1 sps</td>
</tr>
<tr>
<td>VH2/VHN/VHE</td>
<td>Very Long Period 0.1 sps</td>
</tr>
<tr>
<td>BCI</td>
<td>Broad Band Calibration Signal</td>
</tr>
<tr>
<td>ECI</td>
<td>Short Period Cal</td>
</tr>
<tr>
<td>LOG</td>
<td>Console Log</td>
</tr>
</tbody>
</table>