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S U M M A R Y
Benchmark comparisons are an essential tool to verify the accuracy and validity of compu-
tational approaches to mantle convection. Six 2-D Cartesian compressible convection codes
are compared for steady-state constant and temperature-dependent viscosity cases as well
as time-dependent constant viscosity cases. In general we find good agreement between all
codes when comparing average flow characteristics such as Nusselt number and rms velocity.
At Rayleigh numbers near 106 and dissipation numbers between 0 and 2, the results differ
by approximately 1 per cent. Differences in discretization and use of finite volumes versus
finite elements dominate the differences. There is a small systematic difference between the
use of the anelastic liquid approximation (ALA) compared to that of the truncated ALA. In
determining the onset of time-dependence, there was less agreement between the codes with
a spread in the Rayleigh number where the first bifurcation occurs ranging from 7.79 × 105 to
1.05 × 106.

Key words: Numerical solutions; Numerical approximations and analysis; Equations of
state; Dynamics of lithosphere and mantle.

1 I N T RO D U C T I O N

As pressure increases through the mantle there is a corresponding
increase in density due to self-compression. In a vigorously con-
vecting mantle, the rate at which mechanical energy is converted
into heat (i.e. viscous dissipation) is non-negligible and contributes
to the heat energy of the fluid, resulting in adiabatic temperature and
density gradients that reduce the vigour of convection. In the non-
dimensional form of the equations, the magnitude of the dissipation
is controlled by a dimensionless parameter called the Dissipation
number, Di. For the Earth’s mantle, the effect of compressibility is
moderate (Jarvis & McKenzie 1980) and the dissipation number
is between 0.25 and 0.8. The majority of mantle convection stud-
ies have assumed an incompressible mantle where the dissipation
number is assumed to be zero. However, viscous dissipation may
interact with rheology and/or changes in composition and the effect
on mantle dynamics and geophysical observations may be more sig-
nificant than has been previously thought (e.g. King & Ita 1995; Ita
& King 1998; Tan & Gurnis 2005, 2007; Leng & Zhong 2008; Lee
& King 2009). In addition, the effect of compressibility on time-
dependent flow has not be examined. Often an adiabatic gradient
is added a posteriori to convection calculations to incorporate the

effect of compressibility. However, this does not take into account
the potential feedback between rheology and adiabatic heating (cf.
Yuen et al. 1987). While there has been extensive benchmarking of
incompressible mantle convection codes (Blankenbach et al. 1989;
Travis et al. 1990; van Keken et al. 1997; Koglin et al. 2005; van
Keken et al. 2008), there has been no compressible convection
benchmark.

This paper grew out of a workshop on compressible convec-
tion held at Purdue University in 2006 March that was spon-
sored by the Computational Infrastructure for Geodynamics project
(www.geodynamics.org). As in Blankenbach et al. (1989) we fo-
cus on a comparison of derived quantities from the temperature
and velocity field that are predicted for a number of prescribed
cases. The derived quantities include the Nusselt number Nu (non-
dimensional average heat flow), and the non-dimensional root-
mean-square (rms) velocity, volume averaged work and viscous
dissipation. We did not compare computational efficiency given the
different computer architectures that the contributing groups em-
ployed. Authors chose the grid resolution based on their experience
with the codes and their desire to balance accuracy versus CPU
time. We illustrate the effect of increasing grid resolution on one
typical problem with one code. Many of the codes have previously
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published resolution analyses for Bousinessq convection (e.g. van
Keken et al. 1997; Tan & Gurnis 2007; Leng & Zhong 2008; King
2009). The benchmark cases formulated below result in convective
vigour that is below that of the Earth’s interior as expressed in the
Nusselt number (well below the 20–30 estimated for the Earth).
The cases are also for isoviscous or limited temperature-dependent
viscosity and for 2-D Cartesian geometry. While simplified, the
benchmark cases provide a basis for a comparison between mul-
tiple codes that can be performed without the need for massively
parallel computing. We hope that this benchmark comparison will
stimulate the further development of a benchmark in 3-D spherical
geometry at appropriate convective vigour.

In the Section 2, we outline the equations and different approxi-
mations for compressible convection. In Section 3, the benchmark
problems are described and, Section 4 describes the six codes used
in the benchmark. Section 5 describes the benchmark results. We
chose a limited, representative number of experiments for the fig-
ures illustrating the difference between results from the different
codes and, we include tables of results from all experiments in an
online supplement.

2 E Q UAT I O N S

While the general, dimensional equations for a compressible fluid
and various simplifying approximations have been presented else-
where (e.g. Turcotte et al. 1974; Jarvis & McKenzie 1980; Ita &
King 1994; Schubert et al. 2001; Leng & Zhong 2008), it is worth
repeating them here again for clarity. The derivation below follows
that in Schubert et al. (2001). Mass conservation is given by

∂ρ

∂t
+ ∇ · (ρ�u) = 0, (1)

where ρ is the density and �u is the velocity. The conservation of
momentum is given by,

Dρ�u
Dt

= −∇ P + ∇ · τ + ρ�g, (2)

where P is the pressure, �g is the gravity, D/Dt is the material
derivative, and τ is the deviatoric stress tensor given by,

τ = 2ηε̇ = η(∇�u + ∇�uT ) − 2

3
η∇ · �uδi j , (3)

where η is the dynamic viscosity, ε̇ is the strain-rate tensor, and δij

is the Kroneker delta. Eq. (3) assumes that the bulk viscosity of the
fluid is zero. Finally, the equation of energy conservation is given
by,

ρcp
DT

Dt
− αT

DP

Dt
= ∇ · (k∇T ) + ρH + φ, (4)

where T is the temperature, cp is the heat capacity at constant pres-
sure, α is the coefficient of thermal expansion, k is the thermal
conductivity, H is the volumetric heat production and φ is the vis-
cous dissipation given by,

φ = 1

2
τ : ε̇ = τi j

∂ui

∂x j
. (5)

In compressible convection, there is the additional required
assumption—the reference state,

T = T̄ + T ′ (6)

P = p̄ + p′ (7)

ρ = ρ̄(T̄ , p̄) + ρ ′, (8)

where the overbarred quantities are time-independent and functions
of depth only. The reference pressure is given by the hydrostatic
approximation,

∇ p̄ = ρ̄g. (9)

Using the assumption that p′ � p̄, we can eliminate pressure
from the energy eq. (4), yielding

ρcp
DT ′

Dt
= ∇ · [k∇(T ′ + T̄ )] + ρH + φ − ρcp �u · ∇ T̄

−α(T̄ + T ′)ρ̄gw, (10)

where �u · �g = −wg, where w is the upward component of velocity.
For the reference state (ρ̄, T̄ ), we assume an adiabatic

Adams–Williamson equation of state (Birch 1952), where

ρ̄(z) = ρr exp

(
αr gr

γr cpr

z

)
, T̄ (z) = Tsurf exp

(
αr gr

cpr

z

)
, (11)

where z is the depth coordinate (parallel to the direction of gravity),
γ r is the reference value for the Grüneisen parameter, T surf is the
surface temperature, and variables with the subscript r are constant
values used in defining the reference state. From this reference state,
we note that ∇ T̄ = (0, −αr gr T̄ /cpr ), which along with dropping
terms with ρ ′ and that cp ≈ cpr , allows us to further simplify the
energy eq. (10),

ρ̄c̄pr

DT ′

Dt
= ∇ · [k∇(T ′ + T̄ )] + ρ̄H + φ − ρ̄ᾱgwT ′. (12)

The expansivity ᾱ is α

αr
and formally dependent on the reference

state. For the purposes of the benchmark we will assume that ᾱ = 1.

2.1 Equations under the anelastic liquid approximation
(ALA)

We non-dimensionalize the equations using the reference values
for density, ρr, thermal expansivity, αr, temperature contrast, �T r,
thermal conductivity, kr, heat capacity, cp, once again assuming
that cp ≈ cpr depth of the fluid layer, L and viscosity, ηr. The
non-dimensionalization for velocity, ur, pressure, pr and time, t r,
become

ur = kr

ρr cp L
, pr = ηr kr

ρr cp L2
, tr = ρr cp L2

kr
. (13)

The non-dimensionalization introduces four non-dimensional
numbers, the Prandtl number, Pr, the Mach number, M , the dis-
sipation number, Di and the Rayleigh number, Ra. If we assume
that the relative volume change due to temperature, αr �T r � 1,
M2 Pr � 1 and Pr → ∞, we arrive at the ALA.

Under the ALA, the conservation of mass becomes,

∇ · (ρ̄�u) = 0, (14)

the conservation of momentum becomes,

0 = −∇ p′ + ∇ · τ + Di
ρ̄cp ĝ

Ksγr cv

p′ − Raρ̄ᾱĝT ′/�Tr , (15)

where ĝ is the unit vector in the direction of gravity, cv is the specific
heat at constant volume, ρ̄ is now dimensionless [i.e. eq. (11) divided
by ρr] and the Rayleigh number and dissipation number are given
by

Ra = αr�Trρr
2gr L3cp

ηr kr
, Di = αr gr L

cp
. (16)
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With the assumption of constant thermal conductivity, and using
the dimensionless reference states for ρ̄ and T̄ given by

ρ̄ = ρr exp(z′ Di/γr ), and T̄ = Tsurf

�Tr
exp(z′ Di), (17)

where z′ is the dimensionless vertical coordinate. The conservation
of energy (12) under the ALA becomes,

ρ̄cp
DT ′

Dt
+ Di ρ̄ᾱwT ′ = ∇2T ′ + ρ̄H + φ

Di

Ra
+ Di2T̄ . (18)

Eq. (18) resembles the familiar energy equation in Bousinessq con-
vection with the addition of three terms: the viscous dissipation,
φ Di

Ra , the work done against gravity,

W = Di ρ̄ᾱwT ′, (19)

and a second-order term in dissipation number, Di2T̄ that arises
from substituting eq. (17) into the ∇ · (k∇ T̄ ) term in eq. (12).
Because T̄ is independent of time and only depends on depth,
this terms acts like a depth-dependent internal heat source. The
volume-averaged work done against gravity 〈W 〉 exactly balances
the volume-averaged viscous dissipation 〈φ〉 (Hewitt et al. 1975;
Zhang & Yuen 1996; Leng & Zhong 2008). This is one of the
measures that we use to assess the energy conservation of the codes.

2.1.1 Boundary conditions for compressible convection

It is important to point out that boundary conditions for tempera-
ture require special care when compared with the more commonly
used Bousinessq approximation. In the description here, the total
temperature jump across the model is �T r which is comprised of
both a contribution from the reference state T̄ and the potential
temperature T ′. The non-dimensional temperature at the surface,
T o is given by T surf/�T r. Because eq. (18) is written in terms of
the potential temperature, T ′ the boundary conditions for eq. (18)
are, T ′(z = 0) = 0 and T ′(z = 1) = 1 − exp(Di). This requires
care when defining the Nusselt number, as discussed below. The
different codes used different formulations (e.g. CU formulation
is based on total temperature, while the VT and UM formulations
are based on potential temperature). Assessing whether of not this
impacted the results from these codes was one of the objectives of
the benchmark project.

It is also worth pointing out that the reference state used here fails
when T o → 0, leading to the non-sensible reference temperature
state T̄ = 0. For the ALA benchmark, eqs (14), (15) and (18) are
solved.

2.2 Equations under the truncated anelastic liquid
approximation (TALA)

For the TALA, the pressure term in the buoyancy force is ignored,
in which case eq. (15) becomes

0 = −∇ p′ + ∇ · τ − Raρ̄ᾱĝT ′. (20)

Some numerical methods have difficulty with eq. (15) and the
TALA (eq. 20) has often been used in compressible studies (Jarvis
& McKenzie 1980; Christensen & Yuen 1985; Ita & King 1994).
Jarvis & McKenzie (1980) show that there is an imbalance be-
tween viscous dissipation and gravitational potential energy with
the TALA. Leng & Zhong (2008) demonstrate that the imbalance is
caused by ignoring the effect of dynamic pressure on buoyancy and

can be removed using the ALA. We further compare the difference
between these formulations below.

2.3 Equations under the extended Bousinessq
approximation (EBA)

For the EBA, the reference state changes to ρ̄ = 1 and T̄ = 0. This
leads to the first step beyond the Bousinessq approximation and is
a useful check that the additional terms in the energy equation that
scale with dissipation number, Di , have been implemented and
scale properly. With the further assumption that ᾱ = 1, k = 1 and
¯cpr = 1, the conservation and constitutive equations become,

∇ · �u = 0, (21)

the conservation of momentum becomes,

0 = −∇ p + ∇ · τ − RaĝT ′ (22)

DT ′

Dt
+ Diw(T ′ + To) = ∇2T ′ + ρ̄H + φ

Di

Ra
. (23)

and

τ = 2ηε̇ = η(∇�u + ∇�uT ). (24)

Note that because T̄ = 0, the boundary condition at the base of
the fluid layer remains unmodified in the EBA (i.e. T ′ = 1).

2.4 Equations under the Bousinessq approximation (BA)

By dropping the terms that scale with the dissipation number, Di,
eqs (21)–(23) reduce to the Bousinessq approximation. Under the
BA, eqs (21), (22) and (24) remain unchanged and eq. (23) becomes

DT ′

Dt
= ∇2T ′ + ρ̄H. (25)

3 D E S C R I P T I O N O F T H E B E N C H M A R K
P RO B L E M S

The benchmark problems are an extension of the problems in the
Blankenbach et al. (1989) benchmark. We begin with a unit-aspect
ratio domain, with free-slip top, bottom, and sides walls. The total
temperature is fixed at the top T (z = 0) = 0 and bottom T (z = 1) =
1 and the side-walls have no flux boundary conditions. We consider
BA, EBA, TALA and ALA. All thermodynamic properties are fixed
constants. The Rayleigh number, Ra, ranges from 104 to 106 and we
vary the Dissipation number, Di, from 0 to 2. For the initial cases,
we consider a constant viscosity fluid. Each participant selected
the grid that was best suited to their method. All grids used in the
benchmark are in the range of 60–128 elements (or nodes) per side.
We compared some solutions on more refined grids to check the
convergence of the methods and error; however, the grids here are
sufficient to resolve the problems in this study. The participants
were asked to report surface heat flux (Nusselt number) and rms
velocity for all cases and in addition, the viscous dissipation and
work done for the compressible cases.

The Nusselt number is a ratio of the average surface heat flow
from the convective solution to the heat flow due to conduction and
is calculated by,

Nu = − 1

λ�T

∫ λ

0

∂T ′(x, z = ztop)

∂z
dx, (26)
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where 0 and λ are the left- and right-hand coordinates of the do-
main, respectively, ztop is the top of the domain and, �T is the
temperature contrast across the domain. The rms velocity is given
by

Vrms = 1

λ(ztop − zbot)

∫ ztop

zbot

∫ λ

0

[
(u2 + w2)

] 1
2 dx dz. (27)

In addition to the set of calculations described above, we added
a series of temperature-dependent cases with a viscosity function,

η(T ) = ηo exp [−βT ] , (28)

where ηo = 1, T is normalized by �T = 3000 and β = ln (1000),
following problem 2a in Blankenbach et al. (1989). These calcula-
tions are in a unit-aspect ratio domain, with free-slip top, bottom
and sides walls. Participants were asked to provide ALA results if
possible and if not, TALA results.

For the time-dependent cases we focus on the transition from
steady to the first time-dependent mode for the case with a dis-
sipation number of 0.25 for constant viscosity convection in the
unit-aspect ratio domain, with free-slip top, bottom and sides walls.
Time-dependent behaviour in the unit-aspect ratio domain occurs
at lower Rayleigh numbers for compressible convection than in-
compressible convection. As this problem appears to be sensitive
to the initial condition, we suggested that participants start from
the steady solution for the Rayleigh number 5 × 105, dissipation
number 0.25 case, for which all participants found a steady one-cell
solution. Participants were asked to provide ALA results if possible
and if not, TALA results.

4 D E S C R I P T I O N O F T H E C O D E S

Most of the codes here are based on incompressible versions that
have been described in detail elsewhere. The description of the codes
here focuses on the modifications for compressible convection. For
the reader’s convenience we have provided Table 1 with a short
description of solution techniques and mesh resolution used. A
more complete description is provided below.

Van Keken from the University of Michigan (UM) provided
a code based on the finite element package Sepran used in van
Keken et al. (2002). Streamline-upwind Petrov–Galerkin elements
(Hughes & Brooks 1979; Hughes et al. 1988) are used for energy
equation, which is solved with a Picard iteration scheme (with a
relaxation factor, typically 0.5) to achieve steady-state solutions.
Taylor–Hood elements (Taylor & Hood P. 1973) are used in the mo-
mentum equation. Both the energy and momentum equations are
solved iteratively with Bi-CGstab and ILU pre-conditioner. For the
benchmark problems a mesh consisting of 60 × 68 elements with

refinement in top and bottom boundary layers is used, except for the
time-dependent problem.

King and Lee from Virginia Tech (VT) provided a code based on
the finite element code ConMan (King et al. 1990) with the com-
pressible formulation described in Lee & King (2009). Streamline-
upwind Petrov–Galerkin elements (Hughes & Brooks 1979; Hughes
et al. 1988) as implemented in the original ConMan solver are used
for the energy equation with a second-order predictor–corrector
method for time stepping or Picard iteration. A penalty method
(Hughes et al. 1979) is used to eliminate pressure in the momentum
equation and we consider two different direct solution methods: a
non-symmetric direct solver and the original symmetric Cholesky
solver in ConMan, where we move the non-symmetric terms to
the right-hand side of the equation and iterate, as in Ita & King
(1994). We found for the TALA results, both the symmetric plus
right-hand side terms and non-symmetric solver produced identical
results, whereas we found putting the non-symmetric terms on the
right-hand side would not converge for the ALA formulation. For
the benchmark problems a mesh consisting of 64 square elements
on each side is used.

Leng and Zhong from University of Colorado (CU) provided a
code based on the finite element code Citcom (Moresi et al. 1996)
with the compressible formulation described in Leng & Zhong
(2008). Streamline-upwind Petrov–Galerkin elements (Hughes &
Brooks 1979; Hughes et al. 1988) are used for energy equation,
which is solved with a second-order predictor–corrector method for
time stepping. The momentum equation is solved by a modified
Uzawa algorithm (Cahouet & Cahbard 1988). For the benchmark
problems a mesh consisting of 64 elements on each side with re-
finement in top and bottom thermal boundary layers are used.

Tan from Caltech (CT) provided a code the finite element
code Citcom (Moresi et al. 1996) with the compressible formu-
lation described in Tan & Gurnis (2005, 2007). Streamline-upwind
Petrov–Galerkin elements (Hughes & Brooks 1979; Hughes et al.
1988) are used for energy equation, which is solved with a second-
order predictor–corrector method for time stepping. An Uzawa
scheme for the momentum eq. (Cahouet & Cahbard 1988) with
the outer loop (correcting pressure) solved with Bi-CGStab and the
inner loop (solving velocity for given pressure) is solved with LU
decomposition. W is computed at element level while the φ is com-
puted on the node level because the stresses can be oscillatory in the
elements (cf. Hughes 1987). For the benchmark problems a mesh
consisting of 64 square elements on each side are used.

Tosi from Charles University (CZ) provided a code where the
equations are discretized using a control volume representation. For
each cell of the domain, the momentum equation is first solved
for horizontal and vertical velocity at staggered nodes, then the
continuity equation is explicitly solved for the pressure at the centre

Table 1. Summary of methods and discretizations for the codes used in the benchmark.

Code Energy equation Energy discretization Momentum equation Momentum discretization Benchmark mesh

UM (Sepran) Picard SUPG BI-CGStab/ILU Taylor-Hood 60 × 68r
VT (ConMan) Picard SUPG Penalty/direct Q1-P0 64 × 64
CT (ConMan) 2nd-order explicit SUPG Uzawa/BI-CGStab/LU Q1-P0 64 × 64
CU (Citcom) 2nd-order explicit SUPG Uzawa/multigrid Q1-P0 64 × 64r
CZ Semi-Lagrangian Finite volume direct Finite volume 70 × 70r

Crank-Nicolson
KS Crank–Nicolson or implicit First-order Euler FD Artificial compressibility/ Finite volume 128 × 128

with upwinding multigrid

Notes: SUPG is Streamline-Upwind Petrov Galerkin elements. BI-CGStab is stabilized bidirectional conjugate gradient method. ILU is incomplete LU
factorization. Q1–P0 are linear velocity constant pressure elements. An r after the grid values indicates top and bottom refinement of the grid. Complete code
descriptions are given in the text and associated references.
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of the cell (Gerya & Yuen 2003). For the energy equation a semi-
Lagrangian operator splitting method is used (Spiegelman & Katz
2006). The temperature is first advected through a semi-Lagrangian
scheme with bicubic interpolation. Then, a Crank-Nicolson scheme
is employed to diffuse the advected temperature. Both linear systems
are solved using the parallel direct sparse solver PARDISO (Schenk
et al. 2000). For the benchmark problems a mesh consisting of a
70 × 70 staggered grid with refinement in the top and bottom
thermal boundary layers is used.

Kameyama from Ehime University (KS) provided a code that
solves eqs (14)–(18) under the assumption that T̄ = 0 with a finite
volume discretization. The Stokes equation is solved for primitive
variables (velocity and pressure) by the multigrid method together
with the smoothing algorithm based on the artificial compressibility
and local time-stepping techniques (Kameyama et al. 2005). The
energy equation is discretized by a first-order Euler method in time.
An upwind scheme, called the power-law scheme (Patankar 1980),
is used to evaluate the contributions of heat transport by advection
and conduction. The discretized equation is solved by a fully im-
plicit scheme when we seek for a steady-state convection, or by the
Crank–Nicolson scheme when we seek for a time-dependent con-
vection. For the benchmark problems a mesh consisting of a 128 ×
128 uniformly spaced nodes is used.

5 R E S U LT S

We begin by illustrating the agreement of the codes using the BA,
eqs (21), (22), (25) and (24). The difference between the Nu (eq. 26)
and rms-velocity (eq. 27) for the six codes from a high-resolution
(256 × 256 element grid) VT calculation for the steady-state, BA
cases for Rayleigh numbers 104–106 is shown in Fig. 1. The high
resolution VT results (Ra = 106, Nu = 21.9765, rms-velocity =
834.20) agree quite well with the extrapolated results of Chris-
tensen (Ra = 106, Nu = 21.9720, rms-Velocity = 833.99) reported
in Blankenbach et al. (1989). All of the codes produce a steady,
one cell solution and all results are in excellent agreement up to a
Rayleigh number of 2 × 105. Above a Rayleigh number of 2 × 105,
the difference between the high-resolution VT result and the UM,
CU, CZ and KS codes becomes systematically larger with the CU,
KS and UM results in close agreement with each other. Yet even for
a Rayleigh number of 106 the largest difference in Nusselt number is

less than 1 per cent for the CU, KS and UM codes and slightly larger
for the CZ code. For the rms-velocity the UM is almost identical to
the high-resolution VT result while the CU, CT and low-resolution
VT results cluster together slightly higher than the high-resolution
VT result, the CZ result is larger still, and the KS result is slightly
lower than the high-resolution VT result. The KS rms-velocities are
almost identical to the high-resolution VT results for all the other
cases and the Rayleigh number 106 result could still be approaching
the steady-state solution. The compressible solutions are less vigor-
ous and thus these grids are sufficient to resolve the solutions that
follow. The VT and UM solutions use Picard iteration to find the
steady-state solution quickly, while the other codes explicitly inte-
grate forward in time until a steady-solution is achieved. The data
for all calculations are available in the online supplement Table 1.

We next address the calculation of the viscous dissipation, φ, and
the work against the gravitational potential, W , by considering the
EBA, eqs (21), (22), (23) and (24). To highlight the differences be-
tween the codes, we plot the difference between the Nusselt number
and rms velocity relative to the 64 × 64 element VT calculation. The
Nu difference, rms-velocity difference, viscous dissipation (eq. 5)
and work (eq. 19) for the six codes for the steady-state, EBA cases
for Rayleigh numbers 104–106 are shown in Figs 2–4 for Di =
0.25, 0.5 and 1.0, respectively. We plot total magnitude of viscous
dissipation (eq. 5) and work (eq. 19), as opposed to relative dif-
ferences to illustrate the level of agreement among the codes. All
codes found steady, one-cell flows up to a Rayleigh number of
5 × 106 for dissipation numbers 0.25 and 0.5. For Di = 0.25 at
Rayleigh numbers of 5 × 105 and 106 several of the codes found
steady two-cell solutions. Due to the inherent non-linearity of the
equations it is sometimes difficult to attain a one-cell steady state
starting from a conductive solution and in general the contributors
obtained the higher Rayleigh number solutions by starting from the
steady solution at a lower Rayleigh number. It is interesting note
that none of the solutions at high Di show penetrative convection.
This style of convection, where the lower part of the model are
stabilized by a steep adiabatic gradient, was reported by Jarvis &
McKenzie (1980), but this is likely due to the flux boundary con-
dition that was used in that paper, rather than the fixed temperature
boundary condition employed here.

The VT code has the largest Nusselt number and rms-velocity
for all Rayleigh numbers for the dissipation number of 0.25 and

Figure 1. Nusselt number (eq. 26) and rms-velocity (eq. 27) for the six codes subtracted from a high resolution (256 × 256 element grid) VT calculation
for the steady-state, Boussinesq Approximation (BA) cases for Rayleigh numbers 104–106. In this and following figures we identify the codes by an acronym
identifying (approximately) the originating institution: UM - University of Michigan; VT - Virginia Tech; CT - Caltech; CU - University of Colorado at Boulder;
CZ - Charles University in Prague and KS - Ehime University.
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Figure 2. Nusselt number and rms-velocity differences subtracted from 64 × 64 element VT result, viscous dissipation (eq. 5) and work (eq. 19) for the six
codes for the steady-state, Extended Boussinesq Approximation (EBA) cases for Rayleigh numbers 104–106 with Di = 0.25. The codes are identified by an
acronym based on (approximately) the originating institution. See Fig. 1.

0.5 (below Rayleigh number of 5 × 105) and the CZ code had
the smallest Nusselt number and rms-velocity over the same range.
The differences between codes grow systematically as a function of
Rayleigh number and decreases with increasing dissipation number.
The magnitude of the difference is similar to the magnitude of the
difference between the BA results and the high-resolution VT code
and shows similar behaviour with Rayleigh number. We observe
occasional systematic differences in Nu and Vrms. These are likely
due to consistent differences in discretization (resolution as well as
the use of finite volume versus finite elements) or differences in the
treatment of the incompressibility constraint. Since the differences
are small we have not performed a systematic study to investigate
the causes suggesting that the difference is related to resolution. This
is less than a 1 per cent difference in rms velocity and somewhat
larger difference in Nusselt number and follows a similar trend with
the difference between the UM and high-resolution VT solution in
Fig. 1. The other notable disagreement among the results is for the
calculation of φ and the difference between φ and W for the CT code.
This results because the calculation of φ is done at the element level
while the calculation of W is done at the node level and is a post-
processing issue that does not impact the solution, as the agreement
between the Nusselt number and rms velocity demonstrates. The
data for all calculations are available in Tables S2–S4.

Next we compare the TALA results using eqs (14), (20), (18) and
(3). Nu (eq. 26), rms-velocity (eq. 27), viscous dissipation (eq. 5)
and work (eq. 19) for the six codes for the steady-state, TALA cases

for Rayleigh numbers 104–106 are shown in Figs 5 and 6 for Di =
0.25 and 1.0. Nusselt number and rms-velocity are plotted relative
to the VT solution to highlight the differences. All of the solutions
are steady, one-cell flows. We see a similar pattern to the EBA
results with the VT code producing the largest Nusselt number and
rms-velocity for all Rayleigh numbers and the CZ code produces
the smallest Nusselt number while KS produces the smallest rms-
velocity. The difference between the largest and smallest values
grows with increasing Rayleigh number and the magnitude of the
difference is similar to the magnitude of the difference between
the codes and high-resolution VT results for the Bousinessq cases.
For the Di = 0.25 cases, the balance between viscous dissipation,
φ and the integral of work done against gravity, W , are nearly in
balance, except for the CT code where the post-processing problem
is again apparent. For the Di = 1 cases (Fig. 6), the difference
between results is smaller. This again suggests that grid resolution
differences dominate the difference between the codes because for
the Di = 1.0 cases the vigour of convection is reduced. This is
more apparent by looking at the Nusselt number and rms-velocity
as a function of dissipation number for the Rayleigh number 105

case (Fig. 7). Here the absolute values of Nusselt number and rms-
velocity are plotted. The largest discrepancy between the results
from different codes is for Di = 1.25 where some codes report a
single cell solution and other codes report two cell solutions. The
imbalance between work and viscous dissipation grows until the
dissipation number reaches 1.25 and then decreases. The decrease

C© 2009 The Authors, GJI, 180, 73–87

Journal compilation C© 2009 RAS



Compressible benchmark 79

Figure 3. Nusselt number and rms-velocity differences subtracted from 64 × 64 element VT result, viscous dissipation (eq. 5) and work (eq. 19) for the six
codes for the steady-state, EBA cases for Rayleigh numbers 104–106 with Di = 0.5. The codes are identified by an acronym based on (approximately) the
originating institution. See Fig. 1.

Figure 4. Nusselt number and rms-velocity differences subtracted from 64 × 64 element VT result, viscous dissipation (eq. 5) and work (eq. 19) for the six
codes for the steady-state, EBA cases for Rayleigh numbers 104–106 with Di = 1.00. The codes are identified by an acronym based on (approximately) the
originating institution. See Fig. 1.
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Figure 5. Nusselt number and rms-velocity differences subtracted from 64 × 64 element VT result, viscous dissipation (eq. 5) and work (eq. 19) for the six
codes for the steady-state, truncated anelastic liquid approximation (TALA) cases for Rayleigh numbers 104–106 with Di = 0.25.

Figure 6. Nusselt number and rms-velocity differences subtracted from 64 × 64 element VT result, viscous dissipation (eq. 5) and work (eq. 19) for the six
codes for the steady-state, TALA cases for Rayleigh numbers 104–106 with Di = 1.00.
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Figure 7. Nusselt number and rms-velocity, viscous dissipation (eq. 5) and work (eq. 19) for the six codes for the steady-state, TALA cases for Rayleigh
number 105 with Di = 0 − 2.

occurs because the total amount of work decreases as the
vigour of convection increases. The results for the TALA cal-
culations from Di = 0.25–2 for all six codes are available in
Table S5–S11.

Finally we compare the ALA results using eqs (14), (15), (18) and
(3). Nu (eq. 26), rms-velocity (eq. 27), viscous dissipation (eq. 5) and
work (eq. 19) for the three codes for the steady-state, ALA cases for
Rayleigh numbers 104–106 are shown in Figs 8 and 9 for Di = 0.25
and 1.0. Only three codes had an ALA formulation (UM, VT and
CU) however the results were consistent with all previous results,
VT produced the largest Nusselt number and rms-velocity and UM
produced the smallest (with the exception of Ra = 5 × 105) and the
trend was increasing difference with increasing Rayleigh number.
Once again, the differences between the code are on the same order
as the differences due to resolution. The VT code produced the best
balance of work and gravitational potential energy, with the UM and
CU code showing a slight imbalance that appears to increase with
increasing Rayleigh number. All of the solutions are steady, one-
cell flows for dissipation number of 0.25 and for the lower Rayleigh
numbers at dissipation number 1.0. For dissipation number 1.0 and
Rayleigh number 2 × 105 the UM code found a steady two cell
solution while CU and VT found a single-cell solution. All codes
found a steady two-cell solution for dissipation number 1.0 and
Rayleigh number 5 × 105. The results as a function of dissipation
number (Fig. 10) parallel the TALA results with the exception of the
balance between viscous dissipation and work, which is uniformly
closer to zero for the ALA cases regardless of dissipation number.

The results for the ALA calculations from Di = 0.25–2 for VT,
UM and CU are available in Table S12–S15.

The results plotted in the figures are obtained with grids consist-
ing of 60–70 nodes (elements) in each direction except for KS which
used 128 nodes in each direction. For some cases, authors reported
convergence tests. The grids used are noted in the online supple-
mental tables. For consistency, each code used the same grid for all
results plotted in the figures except for the time-dependent results as
noted in that section. To demonstrate typical convergence, we show
the results of a grid resolution study from then VT code using 32,
64, 96 and 128 uniformly spaced elements in each direction for the
TALA problem described above with a Rayleigh number of 104 and
dissipation numbers of 0.25, 0.5 and 1.0 (Fig. 11). The difference
between the Nusselt number and rms-velocity on the 32 × 32 and
128 × 128 grids differs by less than 1 per cent. For the codes using
grid refinement, the results may converge faster when compared
with the uniform grids used by the VT code. The results for the
convergence study with the VT code are available in Table S16.

5.1 Difference between TALA and ALA results

Because the ALA formulation requires an accurate calculation of
the dynamic pressure, some codes are unable to solve the equa-
tions under the ALA and are limited to the TALA. To evaluate
the difference between ALA and TALA results, we plot the differ-
ence between the calculated Nusselt number and rms-velocity from
codes using the ALA and TALA formulation, plotting the difference
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Figure 8. Nusselt number and rms-velocity differences subtracted from 64 × 64 element VT result, viscous dissipation (eq. 5) and work (eq. 19) for the UM,
CU and VT codes for the steady-state, anelastic liquid approximation (ALA) cases for Rayleigh numbers 104–106 with Di = 0.25.

Figure 9. Nusselt number and rms-velocity differences subtracted from 64 × 64 element VT result, viscous dissipation (eq. 5) and work (eq. 19) for the UM,
CU and VT codes for the steady-state, ALA cases for Rayleigh numbers 104–106 with Di = 1.00.
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Figure 10. Nusselt number and rms-velocity, viscous dissipation (eq. 5) and work (eq. 19) for the UM, CU and VT codes for the steady-state cases for Rayleigh
number 105 with Di = 0 − 2.

Figure 11. Nusselt number and rms-velocity as a function of grid spacing for TALA calculations using the VT code with Rayleigh number 105 and dissipation
number 0.25, 0.5 and 1.0. The inset figures focus in on the dissipation number 0.5 cases.

between results obtained from the same code using the same grid for
each approximation. As seen in Figs 12–14, the difference between
the ALA and TALA is slightly larger than the grid resolution errors
for the dissipation numbers 0.5 and 1.0 cases and the codes behave
consistently as a function of both Rayleigh number and dissipation

number. The differences between the ALA and TALA results grow
systematically larger (although small) as the dissipation number
increases and, with the exception of the Nusselt number from the
CU code for the Di = 0.25 cases, show little systematic variation
with Rayleigh number. While previous work (Jarvis & McKenzie
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Figure 12. Nusselt number and rms-velocity differences between the ALA and TALA formulation from the UM, CU and VT codes for the steady-state cases
with Rayleigh numbers 104–106 with Di = 0.25. The systematic differences reflect the energy imbalance in the truncated anelastic liquid approximation.

Figure 13. Nusselt number (eq. 26), rms-velocity (eq. 27) differences between the ALA and TALA formulation from the UM, CU and VT codes for the
steady-state cases with Rayleigh numbers 104–106 with Di = 0.50.

Figure 14. Nusselt number (eq. 26), rms-velocity (eq. 27) differences between the ALA and TALA formulation from the UM, CU and VT codes for the
steady-state cases with Rayleigh numbers 104–106 with Di = 1.00.
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Figure 15. Nusselt number (eq. 26), rms-velocity (eq. 27) for the six codes for the steady-state cases with temperature-dependent viscosity using ALA (UM,
VT, CU) or TALA (CT, CZ, KS) for Rayleigh number 104 with Di = 0.25–2. This is a compressible equivalent of case 2a of the Blankenbach et al., 1989
benchmark.

1980) has shown that the TALA results in a systematic imbalance in
the conservation of energy and that energy is conserved using ALA
(Leng & Zhong 2008), the results here show that for dissipation
numbers of order 0.25, the difference between the TALA and ALA
is of the same order as the difference between codes and only
slightly larger than the level of grid resolution errors. However. the
difference grows with increasing dissipation number in the TALA
formulation (Fig. 7) and is quite significant for Di = 0.75–1.25 for
many codes.

5.2 Temperature-dependent viscosity results

We compare ALA (or TALA) results for convection in the same
domain using the temperature-dependent rheology described in
eq. (28). The Nu (eq. 26), rms-velocity (eq. 27), viscous dissipation
(eq. 5) and work (eq. 19) for the six codes for the steady-state, ALA
(or TALA) are shown in Fig. 15 for a Rayleigh number of 104 and
dissipation numbers from 0–2. The case with Di = 0 corresponds
to case 2a in the Blankenbach et al. (1989). The absolute Nus-
selt number and rms-velocity are plotted. The difference between
the solutions is similar in magnitude and pattern to the difference
among the constant viscosity solutions. All of the solutions are
steady, one-cell flows and once again for several of the codes it was
necessary to coax the solution into the steady, one-cell flow at the
higher Rayleigh numbers by starting from the steady solution at a
lower Rayleigh number. The results for the temperature-dependent
calculations for all six code are available in Table S17.

5.3 Time-dependent convection results

As the compressible formulations lead to time-dependent behaviour
in the unit-aspect ratio domain at lower Rayleigh numbers than in-
compressible convection, we decided to test whether the different
codes obtain the same time-dependent behaviour. To confirm that
the time-dependent algorithms worked correctly for the Bousinessq
case, we first requested the results for case 3 from the Blankenbach
et al. (1989) benchmark. This Boussinesq benchmark is for an as-
pect ratio 1.5 domain that is internally heated with an isothermal
top, zero-heat flux bottom and side boundaries. The top and bottom
boundaries are rigid and side walls have reflective boundary condi-
tions. The Rayleigh number of the Blankenbach case is 216 000. In
this problem, the fluid shows a regular oscillatory behaviour where
instabilities in the top boundary layer are formed and are swept into
the downwelling. At first, every blob is identical (P1 cycle), then
at slightly higher Rayleigh numbers every second blob is identical
(P2 cycle), then every forth (P4 cycle). Most codes in the Blanken-
bach study found a P2 cycle at this Rayleigh number and reported
maximum and minimum Nusselt numbers and rms-velocites along
with the period of the oscillation. All of our codes produced a P2
cycle at this Rayleigh number and the results are reported in Table 2.

For the compressible time-dependent case we focus on the
Rayleigh number where the transition to time-dependence first oc-
curs in aspect ratio one case with constant viscosity and Di = 0.25.
Participants reported the maximum and minimum Nusselt number,
rms-velocity, period and character of the instability at the Rayleigh
numbers around the transition. UM, CU and VT use 128 × 128
refined grids for the time-dependent problem and found that lower

Table 2. Comparison of incompressible time-dependent results with Blankenbach et al. (1989) case 3.

Code Resolution Numax1 Numin1 Numax2 Numin2 V rmsmax1 V rmsmin1 V rmsmax2 V rmsmin2 Period

UM 90 × 68r 7.360 6.462 7.178 6.773 60.630 31.939 57.81 30.36 0.04805
UM 160 × 128r 7.378 6.468 7.201 6.797 60.479 31.949 57.633 30.316 0.04812
VT 94 × 64r 7.392 6.482 7.218 6.796 60.329 31.831 57.477 30.222 0.04840
VT 192 × 128r 7.382 6.472 7.201 6.796 60.575 31.961 57.712 30.346 0.04840
CU 128 × 128r 7.381 6.468 7.199 6.796 60.427 32.005 57.466 30.332 0.04824
CZ 100 × 70r 7.359 6.441 7.185 6.770 60.536 31.987 57.734 30.329 0.04900
CT 192 × 136r 7.424 6.506 7.236 6.841 60.42 30.32 57.45 32.13 0.0481
KS 192 × 128 7.379 6.472 7.199 6.797 60.296 31.988 57.416 30.344 0.04810

BB best 7.379 6.468 7.196 6.796 60.367 31.981 57.43 30.32 0.04803
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Figure 16. Nusselt number (eq. 26) as a function of Rayleigh number for
constant viscosity ALA (UM, VT, CU) or TALA (CT, KS) calculations with
Di = 0.25. The transition from steady state to periodic convection is a
classical bifurcation in a non-linear system. Due to the sudden transition it
provides an important test for the accuracy of the time-integration methods,
particularly for compressible convection where the inherent non-linearities
are stronger than in the case of Boussinesq convection. UM, VT and CU
find the transition to time-dependent convection in a Rayleigh number range
of 7.79–8.0 × 105, CZ finds steady-state solutions up to 9 × 105 while KS
finds steady solutions up to 1.05 × 106.

resolution grids give somewhat inconsistent results. The results from
the UM, VT, CZ and KS are plotted in Fig. 16. UM, VT and CU
use ALA find the transition to time-dependent convection within
a Rayleigh number range of 7.79–8.0 × 105, while CZ and KS,
both using TALA, find steady-state solutions up to 9 × 105 and
1.05 × 106, respectively. All codes report an initial P1 mode of
time-dependence, while some codes found an additional transition
to P2 with a small increase in Rayleigh number beyond the initial
transition.

6 C O N C LU S I O N S

Our benchmark comparison shows a satisfactory agreement among
all codes for most of the quantities for all compressible formulations.
The differences between codes for a given problem are generally the
same magnitude as the grid resolution errors between the code and
a high-resolution solution for Bousinessq convection. Although we
did not perform a grid resolution study for all compressible cases,
the consistency of the pattern of the results as a function of Rayleigh
number regardless of compressible approximation suggests that grid
errors dominate the differences between codes. We find a small
but systematic difference between TALA and ALA results that is
only weakly dependent on Rayleigh number. This difference is only
slightly larger than the differences due to grid resolution. The re-
sults for temperature-dependent, steady convection are consistent
with the constant viscosity results and suggest that the interaction
between rheology and viscous dissipation is something that all meth-
ods were able to handle. In compressible convection the transition
to time-dependent behaviour in the unit-aspect-ratio domain occurs
at a lower Rayleigh number than incompressible convection. This
is perhaps not surprising given that a number of the codes found
two-cell solutions at Rayleigh numbers where steady, one-cell so-
lutions are found in incompressible convection. It appears that the
most unstable wavelengths of compressible convection are smaller
than for incompressible convection.
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