


Rheology of the Mantle and Plates (part 1):

Deformation mechanisms and 
flow rules of mantle minerals
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Topics covered in this class
• Rheology of Earth (viscous limit) 

• Fluid Dynamics for geological phenomena 

• Composition of the Earth 

• Thermodynamics and high-pressure mineral physics 

• Seismological structure of the mantle 

• Geochemical structure of the mantle 

• Dynamic processes of the Earth (plumes, slabs, thermochemical piles) 

• Heat and mass transport in the deep Earth (convection, thermal history) 

• Energetics of the core (magnetic field generation)
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Where to turn to for more help..
• Mantle Convection in Earth + Planets 

Schubert, Turcotte, and Olson (2001) 

• Numerical Geodynamic Modelling 
Gerya (2009) 

• Hirth and Kohlstedt (2003) 

• Regenaur-Lieb and Yuen (2003) 

• Treatise on Geophysics V. 7, Ch. 2 

• Papers by those lucky people in the 
Rheology fan club (partial list only): 

• numerical modelers: 
Podladchikov, Solomatov, Burov, 
Gerya, Bercovici, Tackley, Yuen 

• experimentalists:                   
Karato, Kolhstedt, Hirth, Jackson
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What is rheology?
• Rheology is the physical property 

that characterizes deformation 
behavior of a material (solid, fluid, 
etc) 

• Rheology of Earth materials includes 
elasticity, viscosity, plasticity, etc 

• For the deep Earth: mantle is fluid 
on geological timescales so we 
focus on its viscosity 

• For tectonic plates: still viscous on 
geological timescales, but the 
effective viscosity is a subject of 
debate

solid mechanics

fluid mechanics



SIO 224: Internal Constitution of the Earth, 
Rheology of the Mantle and Plates

What is viscosity?
• constitutive relation between stress 

and strain-rate (deformation rate) 

• in the continuum description, it is 
the analog of the elastic moduli 
which relate stress and strain 

• measure of a fluid’s ability to flow 

• diffusivity of momentum 
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Definition of creep
• movement of crystal defects  

• point defects - extra atoms or 
vacancies 

• line defects - dislocations which 
represent a rearrangement of 
atomic bonds 

• two types of dislocations: 
“edge” and “screw”  

• each described by parallel or 
normal Burgers vector (b*) 

• creep will occur through 
whichever mechanism requires 
least amount of energy
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Diffusion creep
point defects move by diffusion 

• through the crystal matrix 
(Nabarro-Herring) 

• along the grain boundaries (Coble) 
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Diffusion creep
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Dislocation creep
line defects move by dislocation 

• two types of dislocations:    
“edge” and “screw” 

• any line defect can be represented 
by linear combination of  the two 
(simply add Burgers vectors) 

• line dislocations have two types of 
motion: glide and climb  

• independent of grain-size (point of 
difference with diffusion creep) 
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Glide process of dislocation creep
• glide motion stays within glide plane
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• climb dislocation occurs outside 
the glide surface

Climb process of dislocation creep
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Deformation maps
• for any given stress + temperature, 

one mechanism will be weaker (and 
preferred) over all others 

• map assumes constant grain size 
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Creep mechanisms in the mantle

Billen, Annual Rev. Geophys., 2008
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Flow rule
• relates the deformation (strain rate) 

to the applied deviatoric stress 
through a viscosity 

• deformations add in series 
(viscosities add in parallel) 
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Flow rule
• for isotropic fluids, we can describe 

the flow rules with an effective strain 
rate, an effective stress, and an 
effective viscosity 

• 2nd invariants of deviatoric stress 
and strain rates are scalars 

• in practice, we know the strain-rates 
from the velocity field rather than 
stress, so viscosity is normally 
rewritten in terms of strain-rate 

NOTE:  contractions of these tensors 
usually have a 1/2 term times the sum 
of the squares of the components 
(when assuming co-axial compression 
/ pure shear)
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• Newtonian strictly means linear 
viscosity, but is commonly used to 
refer to diffusion creep with stress 
exponent (n=1) 

• Non-Newtonian usually refers to 
non-linear rheology resulting from 
dislocation creep that is stress 
dependent through power law on 
stress with an exponent               
(n=3.5, or historically n=3) 

• Example: diffusion creep is 
thermally activated and pressure 
dependent, and thus has exponential 
sensitivity to T,P but is sometimes 
referred to as “Newtonian” even 
though it is a non-linear f(T,P)

Rheology: land of jargon and confusion

Tackley, 2000
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• any non-linear rheology can be 
represented by an effective linear 
rheology 

• the effective viscosity is simply the 
slope of the line drawn from the 
origin to the stress-strainrate curve 

• example of effective viscosity for 
several different rheologies that may 
be important for the mantle + plates 

• think a little more about these curves  
stress vs. effort, efficiency vs. effort, 
and total productivity vs. effort

Comparison of deformation processes

Tackley, 2000
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Arrhenius dependence
• one can use thermodynamics to 

describe the sensitivity of diffusion 
when it is thermally activated  

• the diffusion of vacancies, etc has 
an exponential dependence on T,P  

• this can also be understood in terms 
of the homologous temperature 

• the deformation resulting from the 
diffusion creep is the strain rate and 
is inversely proportional to viscosity 

• the Arrhenius term describes the 
exponential behavior of viscosity  

• also valid for dislocation creep
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General flow rule for mantle material

• note: diffusion and dislocation creep have different activation enthalpies
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What is “n” for dislocation creep?

• note: different y-intercept corresponds to different activation enthalpies 
which is due to the influence of water

Hirth and Kohlstedt, 2003
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Extrapolating to mantle conditions

Hirth and Kohlstedt, 2003
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Just add water...
• contour lines are strain rates in (1/s) - dislocation is horizontal because it is 

independent on grain size but diffusion creep shows grain size dependence 

• much lower stresses required to achieve same strain rate when water is 
present (note different y-axis) which translates into lower activation enthalpy
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Just add water...
• contour lines are strain rates in (1/s) - dislocation is horizontal because it is 

independent on grain size but diffusion creep shows grain size dependence 

• much lower stresses required to achieve same strain rate when water is 
present (note different y-axis)  

• translates into lower activation energy and volume (E* and V*)
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Grain size sensitive creep
• GSS creep relies on combination of 

mechanisms: grain boundary sliding 
(GBS) and basal slip along the 
easiest slip system (easy) 

• GSS operates at small grain size   
only relevant to diffusion creep 

• accommodates large amounts of 
strain without deforming crystals 
(referred to as superplasticity) 

• GSS important process in lower 
mantle with small grain size (Karato 
et al., Science, 1995) through 
extrapolation to high P, low strainrate

Drury, 2005
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Recrystallization
• dynamic process changing the 

distribution of grain sizes 

• grain size reduction (large grains 
fracture) and growth (small grains 
fuse together) 

• microstructure important feedback 
with dislocation creep 

• time-dependent process 

linear (n=1) power law (n=3.5)
without recrystallization

with recrystallization

Jessell et al, EPSL, 2005
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Grain growth in the lower mantle

Solomatov, EPSL, 2001

• recrystallization for material going down through 660 phase change  

• diffusion creep likely dominant mechanism for lower mantle but if the grain 
size is sufficiently small, then superplasticity could be important mechanism
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• low-temperature plasticity OR Peierls stress mechanism* 

• applicable to the interior of a subducted slab (below: 4 cm/yr and 10 cm/yr)

Harper-Dorn creep

Karato et al, PEPI, 2001

*read about Peierls other contributions to science here: https://en.wikipedia.org/wiki/Rudolf_Peierls

https://en.wikipedia.org/wiki/Rudolf_Peierls
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Generalized flow rule for a slab

• diffusion, dislocation, Harper-Dorn creep mechanisms work independently, so 
in general, only a single power-law (m,n,q) is in effect at any given time 

• usual values for exponents (m,n,q) are (2.5,1,0) + (0,3.5,0) + (0,2,2)  

•  each mechanism has a different value for A; E and V depend on water content
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Viscoplasticity
• most materials have finite strength 

described by limiting stress and 
materials cannot support stresses in 
excess of their yield stress 

• upon reaching their yield stress they 
deform through plastic flow (a solid 
beam starts to act like toothpaste) 

von Mises yield envelope
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Viscoplasticity
• most materials have finite strength 

described by limiting stress and 
materials cannot support stresses in 
excess of their yield stress 

• upon reaching their yield stress they 
deform through plastic flow (a solid 
beam starts to act like toothpaste) 

• actually, care must be taken to 
guarantee one is actually on the 
yield surface and remains on it (i.e. 
use harmonic avg at your own risk) 

• visco-elasto-plastic behavior can be 
written as generalized flow rule with 
an associated flow for each of the 
viscous, elastic, and plastic parts
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• maximum stress that is supported is 
equivalent to a yield stress 

• three layer lithosphere: brittle crust, 
strong core, ductile underside 

• based on extrapolating the 
deformation behavior of crystals 
(microscale) to that of a rock scale 
(macroscale) 

• role of large scale faults and tectonic 
fabric (mesoscale) 

• likely mechanism in strong core is 
Peierls creep (low strainrate, high 
stress)

Strength envelope for an oceanic plate

Kohlstedt et al, JGR, 1995
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Anisotropy
• dislocation creep (n=3.5) and dynamic recrystallization during deformation 

generate crystal alignments and lattice preferred orientation (LPO) of crystals  

• significant seismic anisotropy observed in the upper mantle ->               
implies dislocation creep is the dominant mechanism  

• lack of anisotropy seen in lower mantle -> diffusion creep is dominant

Blackman, Rep. Prog. Phys, 2007
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Anisotropy
• significant seismic anisotropy observed in upper mantle ->                        

implies dislocation creep is the dominant mechanism  

• lack of anisotropy seen in lower mantle -> implies diffusion creep is dominant 

Blackman, Rep. Prog. Phys, 2007



Thank you!  Questions??

www.thelifetectonic.com

http://www.thelifetectonic.com

