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Fluid Mechanics

1. Introduction

Earlier on in the class, we derived the equations of mass and momentum conservation. Conservation of
mass is

∂ρ

∂t
+∇ · (ρv) = 0 (1)

or, equivalently

Dρ

Dt
+ ρ∇ · v = 0 (2)

Note that if ∇ · v = 0, it immediately follows that Dρ/Dt = 0 so that the density of a particle does not
change with time. This states that the medium is incompressible and is a commonly used approximation in
fluid mechanics.

The conservation of linear momentum is

ρ
Dv
Dt

= ∇ ·T + ρb (3)

Where T is the Cauchy stress tensor and b is the body force density (gravity from here on out) . Previously
we considered the equilibrium state of the mantle when v is zero and the initial stress state is one of
hydrostatic pressure:

T0 = −p0I

and where the body force is g. This leads to an equation for p0:

∂p0

∂r
= −ρ0g0 (4)

where ρ0 is the equilibrium density field and g0 is given by

g0(r) =
1
r2

r∫
0

4πGρ0x
2 dx (5)

2. Newtonian Fluids

To use the conservation of linear momentum in flow problems in the Earth’s mantle, we need a constitutive
relationship. In previous lectures, we considered relationships between stress and strain rate for various
deformation mechanisms, some of which were nonlinear. Here we will confine attention to linear beavior
between stress and strain rate – this type of fluid is called a Newtonian fluid. We first write the stress tensor
as the sum of an isotropic part (pressure) and a deviatoric part:

T = −pI + σσσ (6)

In general, a Newtonian fluid has a constitutive relationship that looks like

τττ = κ(∇ · v)I + 2ηD (7)
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where κ is the bulk viscosity and η is the shear velocity and D is the strain rate tensor (ε̇εε). It is common to
ignore the bulk viscosity (and the first term would be zero for an incompressible fluid anyway) and we can
write the stress strain relationship as

T = −pI + 2ηD (8)

3. Navier Stokes equation

Substituting equation 8 into equation 3 and identifying the body force density as g gives

ρ
Dv
Dt

= ∇ · (−pI + 2ηD) + ρg = −∇p+ 2∇ · (ηD) + ρg (9)

Note that if the effects of the flow on density can be neglected (as in incompressible flow) then g = g0ẑ. To
make further progress we shall assume that η is constant resulting in

ρ
Dv
Dt

= −∇p+ η∇2v + ρg (10)

Now divide though by ρ and introduce the kinematic viscosity: ν = η/ρ which has units of a diffusivity
(m2/s)

Dv
Dt

== −1
ρ
∇p+ ν∇2v + g (11)

which is the most common form of the Navier-Stokes equation.

4. Scaling and dynamic similarity

Inspection of equation 11 suggests that velocity solutions are functions of viscosity, density, geometry,
etc. It turns out that combinations of quantities control the nature of flow. A particularly important
combination is the Reynolds number. To see how this arises, we nondimensionalize equation 11 using a
characteristic velocity, V , a characteristic length scale, L (which leads to a characteristic time, T = L/V )
and a characteristic pressure. Pressure is a force per unit area. We use as a characteristic mass M = ρL3 so
pressure has dimensions

ρL3 L

T 2

1
L2

= ρ
L2

T 2
= ρV 2

Also, we note that the operator ∇ has units of inverse length so we multiply by L to get a dimensionless
operator. Finally, in applications to the shallow regions of the earth, both ρ and g0 are considered constant
so that the hydrostatic pressure is just given by p0 = ρg0z. We now denote non-dimensional quantities as

v∗ =
v
V

x∗ =
x
L

t∗ =
t

T
∇∗ = L∇ p∗ =

p− p0

ρV 2
(12)

Note that p∗ is chosen to be the pressure difference between the actual pressure and the hydrostatic pressure
where ∇p0 = ρg0ẑ. In incompressible flow, this will cancel the last term in equation 10 so p∗ represents the
pressure generated by flow, e.g. the dynamic pressure. The result of doing this is

Dv∗

Dt∗
= −∇∗p∗ +

ν

V L
∇∗2v∗ (13)

The dimensionless quantity V L/ν is called the Reynolds number denoted by Re so we have

Dv∗

Dt∗
= −∇∗p∗ +

1
Re
∇∗2v∗ (14)
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Note that Re is the single number that governs the nature of flow in the system. The idea of dynamic
similarity is that flows with the same Re will be similar (if they have the same boundary conditions).
This means that is is possible to design lab experiements that mimic a desired scenario with the correct
combination of parameters making upRe. The Reynolds number is just one of many dimensionless numbers
that are used to characterize flow.

Physically,Re represents the balance between inertial and viscous forces. Viscous flows are characterized
byRe < 1, laminar flows are characterized byRe < 2000 and higherRe systems are characterized by turbulent
flows. Given the nature of flow in the mantle where velocites are small and viscosities are high, the Re is
very small and inertial forces can be neglected. Physically this means that if the physical forcing of the flow
is stopped, the flow will stop. Flow in a system where inertial forces can be neglected is called Stokes flow.

There are many other non-dimensional numbers, depending on which forces are included as well as
coupling to other governing equations which can produce an equivalent controlling parameter. You may
have heard of some of these before, such as the Mach number (Ma), the Ekman number (Ek), the Rossby
number (Ro), the Rayleigh number (Ra). Many of the dimensionless groups don’t usually play a role in
mantle dynamics, like the Froude number, the Weber number, or the Strouhal number, but these play an
important role in other fluid dynamic processes.

5. Some simple flows

When looking at Stokes flow, the Navier-Stokes equation reduces to the Stokes equation:

0 = −∇∗p∗ +
1
Re
∇∗2v∗ (15)

where pressure variations within the fluid balance viscous forces. We shall consider some special cases of
Navier-Stokes equation in which very simplified situations can be solved analytically.

Poiseuille Flow or Pipe Flow

Pipe flow is defined to be unidirectional, i.e. there is only a single non-zero component of velocity and
that component is both independent of distance in the flow direction and has the same direction everywhere.
The geometry is that of a long cylindrical pipe with length l and radius a so the appropriate coordinate
system is cylindrical polar (r, θ, z). The pressures at each end of the pipe are P1 and P0 so the pressure
gradient, dP/dz, is constant everywhere in the pipe.

6.4 Pipe Flow 421

Figure 6.6 Poiseuille flow through a circular pipe.

Problem 6.5 For an asthenosphere with a viscosity µ = 4 × 1019 Pa s
and a thickness h = 200 km, what is the shear stress on the base of the
lithosphere if there is no counterflow (∂p/∂x = 0)? Assume u0 = 50 mm yr−1

and that the base of the asthenosphere has zero velocity.

Problem 6.6 Assume that the base stress obtained in Problem 6–5 is
acting on 6000 km of lithosphere with a thickness of 100 km. What tensional
stress in the lithosphere (hL = 100 km) must be applied at a trench to
overcome this basal drag?

6.4 Pipe Flow

With subsequent applications to flows in aquifers and volcanic conduits in
mind, we next consider viscous flow through a circular pipe. The pipe has
a radius R and a length l, as illustrated in Figure 6–6. The flow is driven
by the pressure difference (p1 − p0) applied between the sections a distance
l apart. We assume that the velocity of the fluid along the pipe u depends
only on distance from the center of the pipe r. The form of the velocity
profile u(r) can be found by writing a force balance on a cylindrical control
volume of radius r and length l, as shown in Figure 6–6. The net pressure
force on the ends of the cylindrical control volume is (p1 − p0)πr2; this is
a force along the cylinder axis in the direction of flow. Since there can be
no net force on the control volume if the flow is steady, this pressure force
must be balanced by the shear force acting on the cylindrical surface of the
control volume. The shear stress on the cylindrical surface τ(r) exerts a net
frictional force −2πrlτ(r) on the control volume (τ is a negative quantity).
The force balance equation is thus

πr2(p1 − p0) = −2πrlτ (6.29)

or

The unidirectional nature of the problem means vr = 0 and vθ = 0, thus the continuity equation is reduced
to ∂vz/∂z = 0. This means that because of the incompressibility constraint, at any value of z the velocity
must both be a constant value as well as have an identical velocity profile. Furthermore, any change in
the flow will occur everywhere in the pipe instantaneously. However, even in the more general case of the
Navier-Stokes equation that has an inertial term, ρ (∂vz/∂t+ vz∂vz/∂z), one can see that for steady flow
(∂vz/∂t = 0) the geometry of the problem and the incompressibility of the fluid specify that the inertial term
is exactly zero. So Poiseuille Flow is not limited to the Stokes regime, but also occurs at higher Re and
we’ll see that this is important.

This 1-D version of the momentum equation in cylindrical coordinates is then
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−dP
dz

+ η∇2vz = 0

or

−dP
dz

+ η
1
r

∂

∂r

(
r
∂vz
∂r

)
= 0 (16)

Integrating the above equation twice

vz =
1
4η
dP

dz
r2 + c1 ln r + c2 (17)

where c1 and c2 are constants of integration. We specify boundary conditions of no-slip at the side walls and
regularity of the solution everywhere – including r = 0 – which requries that c1 = 0. The no slip condition
requires that vz = 0 ar r = a allowing us to evaluate c2 giving

vz(r) =
1
4η
dP

dz

(
r2 − a2

)
(18)

This means the velocity profile of the flow has a parabolic shape with a maximum in the center (r = 0) and is
zero at the pipe walls. Also note that the flow is independent of the fluid density. The velocity is maximum
at the center where r = 0 and is just

vmax = − 1
4η
dP

dz
a2 (19)

Pressure gradients are normally defined to be negative, such that water flows from high pressure to low
pressure, so when P1 > P0, vmax is a positive quantity. It is also useful to calculate the total flow rate through
the pipe, so we integrate the velocity over the cross-section of the pipe

Q =

a∫
0

2πrvz(r)dr = −dP
dz

πa4

8η
=
πa4(P1 − P0)

8ηl
(20)

The volumetric flow rate (units of volume/time or m3/s) shows that for a given pressure gradient and
viscosity, the flow through the pipe is proportional to the radius of the pipe to the fourth power. This is
what Poiseuille demonstrated experimentally. The mean velocity is simply the total flow normalized by the
cross-sectional area of the pipe

v̄ = −dP
dz

πa4

8πa2η
= −dP

dz

a2

8η
=

1
2
vmax (21)

The mean velocity is the result of the net force exerted on the fluid by the pressure gradient acting to
overcome the viscous drag from the pipe walls. The force (per unit length) from pressure is

FP = πa2 (P0 − P1)
l

= −πa2 dP

dz
(22)

This shows that the mean flow, v̄, is related to the pressure force by v̄ = FP /(8πη) and so it is linearly
inversely proportional to η. Similarly, for a Newtonian fluid, viscous drag is proportional to the shear
(tangential) stress, σzr, which we can evaluate near the wall of the pipe, r = a

σzr|r=a = η
∂vz
∂r
|r=a = η

(−a
2η

dP

dz

)
= −a

2
dP

dz
(23)

We can determine a friction factor, f , which describes the effect of drag. We use the shear stress evaluated
at the wall as a characteristic stress and normalize that value by a characteristic pressure ( 1

2 ρf v̄
2) in which

we use the mean velocity:
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f =
σzr|r=a
1
2 ρf v̄

2
= − 4a

ρf v̄2

dP

dz
(24)

If we substitute for just one of the v̄, then f looks like

f = − 4a
ρf v̄

1
v̄

dP

dz
= − 4a

ρf v̄

8η
a2 (−dP/dz)

dP

dz
=

32η
ρf v̄a

(25)

If we choose a characteristic length scale as the diameter of the pipe, D = 2a, then we have

f =
64η
ρf v̄D

=
64
Re

(26)

This relationship holds until the transition into the turbulent flow regime at Re ∼ 2000− 3000.
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Figure 6.7 Dependence of the friction factor f on the Reynolds number
Re for laminar flow, from Equation (6–41), and for turbulent flow, from
Equation (6–42).

Figure 6.8 Illustration of the difference between (a) laminar and (b) turbu-
lent flow. Laminar flow is steady, and the fluid flows parallel to the walls:
lateral transport of momentum takes place on a molecular scale. Turbulent
flow is unsteady and has many time-dependent eddies and swirls. These
eddies are much more effective in the lateral transport of momentum than
are molecular processes. Therefore, the friction factor (pressure drop) in
turbulent flow is larger at a prescribed Reynolds number (flow velocity).

stress and rate of strain as given in Equation (6–1) or Equation (6–31)
exists for turbulent flow. It is found empirically that

f = 0.3164 Re−1/4 (6.42)

in the turbulent flow regime. This result is also shown in Figure 6–7 along
with the transition from laminar to turbulent flow.

Problem 6.7 Determine the Reynolds number for the asthenospheric flow
considered in Problem 6–5. Base the Reynolds number on the thickness of
the flowing layer and the mean velocity (u0 = 50 mm yr−1 and ρ = 3200 kg
m−3). This problem illustrates that the viscosity of mantle rock is so high
that the Reynolds number is generally small.

Channel Flow

Another unidirectional flow is the flow between two rigid plates driven by a pressure gradient. This
is actually just Poiseuille flow in Cartesian geometry (with ẑ the same direction as in cylindrical polar
geometry) so the pressure gradient and resultant flow are both only in the x direction (vy = vz = 0) and the
velocity profile varies with z. The geometry has the x-axis along the mid-plane of the channel, and since the
channel has height h, the channel walls are at ±h/2. As the flow is deemed incompressible,the continuity
equation gives ∂vx/∂x = 0 and the Navier-Stokes equation is

−dP
dx

+ η∇2vx = −dP
dx

+ η
∂2vx
∂z2

= 0 (27)

Again, since dP/dx is constant, the integration is straightforward and integrating twice gives
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vx =
1
2η
dP

dx
z2 + c1z + c2 (28)

where the c’s are constants of integration. The boundary conditions are from the mirror symmetry along the
mid-plane (vx(z) = vx(−z)) and no-slip at the walls (vx(z = ±h/2) = 0). The mirror symmetry forces c1 to
be zero and c2 is determined by the no slip condition. We end up with

vx =
1
2η
dP

dx

[
z2 − (h/2)2

]
(29)

The velocity profile is again parabolic in shape and constant everywhere. All the same insights from
Poiseuille flow in a pipe are applicable here.
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Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.

To evaluate the constants, we must satisfy the boundary conditions that
u= 0 at y = h and u= u0 at y = 0. These boundary conditions are known as
no-slip boundary conditions. A viscous fluid in contact with a solid bound-
ary must have the same velocity as the boundary. When these boundary
conditions are satisfied, Equation (6–11) becomes

u =
1
2µ

dp

dx
(y2 − hy)− u0y

h
+ u0. (6.12)

If the applied pressure gradient is zero, p1 = p0 or dp/dx = 0, the solution
reduces to the linear velocity profile

u = u0

(
1− y

h

)
. (6.13)

This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
velocity of the upper plate is zero, u0 = 0, the velocity profile is

u =
1
2µ

dp

dx
(y2 − hy). (6.14)

When we rewrite this in terms of distance measured from the centerline of
the channel y′, where

y′ = y − h

2
, (6.15)

Couette flow

Couette flow is similar to channel flow and has the same geometry but with an important modification.
Instead of the pressure gradient driving the flow, it is driven by the motion of one of the boundaries and
that motion is parallel to the direction of the channel (dP/dx is in fact absent from this problem). The
assumption is that some external force is applied to move the wall and that applied force simply scales with
the viscosity of the fluid. Depending on the reference frame you choose to do the problem in, the top or
bottom plate can be moving at some velocity (V0) or they can both move in opposite directions at (V0/2).
The most convenient choice for the coordinate system is to have a stationary plate at z = 0 and a moving
plate at z = h so again the channel has height h. The governing equations for a shear driven flow are even
simpler than for channel flow since now dP/dx = 0. Again, from the assumption of incompressiblity, we
have ∂vx/∂x = 0 and the Navier-Stokes equation becomes

η∇2vx = η
∂2vx
∂z2

= 0 (30)

Integrating twice gives the solution vx = c1z + c2. The boundary conditions are again no-slip velocity
boundary conditions at the stationary and moving walls, so vx(z = 0) = 0 and vx(z = h) = V0. c2 is zero so
the final solution is

vx = V0
z

h
(31)
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and the velocity profile is linear across the channel. The velocity profile in a shear driven flow is again
identical for all values of x, varies linearly with distance from the moving wall, and is independent of both
density and viscosity. Also note that the shear stress is also constant everywhere because

σxz = η
∂vx
∂z

= η
V0

h
(32)

6. Classification of PDEs and types of Boundary Conditions

Any PDE can be classified using the method of characteristics which determines if the PDE is either
hyperbolic, elliptic, or parabolic. Both Laplace’s equation and Poisson’s equation are classified as elliptical,
and is a common class of equation one encounters in fluid dynamics. Other examples include the wave
equation (hyperbolic) and the diffusion equation (parabolic). It is important to understand which class of
equation you are attempting to solve, in particular if you are using numerical methods, because the stability
or success of the numerical method applied to one class of equation may be a completely unstable or be an
unsuccessful approach if applied to a different class of PDE.

The primary variable is the variable in the governing equation (either PDE or ODE) and every primary
variable always has an associated secondary variable. The secondary variable is usually the derivative of the
primary variable and always has a physical meaning that is often a quantity of interest. In fluid dynamics
the primary variable is velocity and the secondary variable is stress. Another example is heat transfer in
which the primary variable is temperature and the secondary variable is heat flux.

In order to obtain a solution to any PDE, boundary conditions must be specified. There are two types of
boundary conditions that can be applied: those that specify the primary dependent variable on the boundary
and those that specify a secondary variable on the boundary, and usually the derivative is taken normal to the
boundary. The first type of boundary condition is called an essential boundary condition and when solving
an elliptic class of equation it is known as a Dirichlet boundary condition. The second type of boundary
condition is called a natural boundary condition and when solving an elliptic class of equation it is known
as a Neumann boundary condition. It is quite ok, and even somewhat common, to have mixed types of
boundary conditions along different parts of the boundary. For example, one portion of the boundary will
specify a Dirichlet boundary condition and another portion will specify a Neumann boundary condition.
However, it is impossible to specify both types of conditions at the same point of any portion of the boundary.

This is actually quite a powerful, and useful, thing to know, especially in situations like Couette flow
and channel flow, which have the same geometry. It is actually possible to combine the simple solutions
from both problems because 1) they are both linear ODEs we can use the principle of superposition and 2)
the solutions were arrived upon by applying the same type of boundary condition. Both problems specified
the velocity on the walls and therefore both applied Dirichlet boundary conditions. We can then write the
solution of Couette flow that now includes a pressure gradient by simply transforming the channel flow
solution to a coordinate system with the bottom wall at z = 0 (see equation 28)

vx = V0
z

h
+

1
2η
dP

dx

[
z2 − hz] (33)

A simple model of asthenospheric counterflow is motivated by a shear flow driven by plate motions on the
surface. The shear flow sets up a pressure gradient in the the opposite direction which drives an associated
channel flow underneath the shear flow (a return flow). This is the same as the above problem, except the
direction of the pressure gradient is reversed

vx = V0
z

h
− 1

2η
dP

dx

[
z2 − hz] (34)

It is interesting to note that Turcotte and Schubert show that confining the return flow to the asthenosphere
requires the sea floor to rise as you move away from a ridge to provide the correct pressures. Clearly, much
of the return flow must be substantially deeper.
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7. Viscous flow past a sphere

The most famous application of Stokes flow is that of viscous flow around a sphere. In a laboratory
reference frame, the sphere sinks through a viscous fluid and this is actually the fluid dynamics inside a
viscometer which is an instrument used to measure viscosity. Recently, such viscosity experiments have
actually been done at high pressure in a multi-anvil device.

The solution to the problem of a sinking Stokes sphere is done numerous places (basically every book on
fluid dynamics that exists). We begin with the dimensional form of the Stokes equation in spherical polar
geometry, with the coordinate system that has θ = 180◦ in the flow direction, i.e. the fluid approaches the
sphere from z = ∞ with velocity −V0 in the z-direction. The problem is solved in the reference frame of
the sphere (so flow is moving past the sphere) and the sphere has radius a. The problem has an azimuthal
symmetry such that vφ=0 and ∂/∂φ = 0

468 Fluid Mechanics

Figure 6.31 Steady flow of a viscous fluid past a sphere.

µ. The flow is clearly axisymmetric about the z axis. Thus, neither the
velocity nor the pressure p of the fluid depends on the azimuthal angle φ.
In addition there is no azimuthal component of fluid motion; that is, the
only nonzero components of fluid velocity are the radial velocity ur and the
meridional velocity uθ, as shown in Figure 6–31. The continuity equation
and the equations of motion for the slow, steady, axisymmetric flow of a
viscous incompressible fluid are, in spherical polar coordinates with uφ = 0,

0 =
1
r2

∂

∂r
(r2ur) +

1
r sin θ

∂

∂θ
(sin θuθ) (6.194)

0 = −∂p

∂r
+ µ

{
1
r2

∂

∂r

(
r2∂ur

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ur

∂θ

)
− 2ur

r2

− 2
r2 sin θ

∂

∂θ
(uθ sin θ)

}
(6.195)

0 = −1
r

∂p

∂θ
+ µ

{
1
r2

∂

∂r

(
r2∂uθ
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂uθ
∂θ

)

In spherical geometry, the governing equations are:

1
r2

∂

∂r

(
r2vr

)
+

1
r sin θ

∂

∂θ
( sin θvθ) = 0

− ∂P

∂r
+ η

[
1
r2

∂

∂r

(
r2
∂vr
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂vr
∂θ

)
− 2
r2
vr − 2

r2 sin θ
∂

∂θ
(vθ sin θ)

]
= 0

− 1
r

∂P

∂θ
+ η

[
1
r2

∂

∂r

(
r2
∂vθ
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂vθ
∂θ

)
+

2
r2
∂vr
∂θ
− 1
r2 sin 2θ

vθ

]
= 0

(35)

We can solve these equations subject to these 4 boundary conditions: the no-slip velocity boundary conditions
(vr = 0 and vθ = 0 at r = a), and the far-field boundary conditions (vr → −V0 cos θ as r →∞ and vθ → V0 sin θ
as r → ∞). This is one of those systems of PDE’s that is obvious how to solve it when someone else has
already found the solution. According to Turcotte and Schubert, the nature of the boundary conditions
suggests that the solution is of the form

vr = f(r) cos θ and vθ = g(r) sin θ (36)

Substituting these functions into the governing equations we obtain
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− 1
2r

d

dr

(
r2f
)

= g

− ∂P

∂r
+
η cos θ
r2

[
d

dr

(
r2
df

dr

)
− 4(f + g)

]
= 0

− ∂P

∂θ
+
η sin θ
r

[
d

dr

(
r2
dg

dr

)
− 2(f + g)

]
= 0

(37)

To elliminate the pressure, we apply the ∂/∂θ and ∂/∂r derivatives to the second two of these equations
respectively, and then subtract. This gives

− 1
2r

d

dr

(
r2f
)

= g

1
r2

d

dr

(
r2
df

dr

)
− 4(f + g)

r2
+

d

dr

[
1
r

d

dr

(
r2
dg

dr

)
− 2(f + g)

r

]
= 0

(38)

The solutions of functions f and g can be found by assuming simple powers of r

f = crn (39)

where c is a constant. Substituting this into the continuity equation (the first of 38) gives

g = −c(n+ 2)
2

rn (40)

Now the functions f and g can be substituted into the remaining momentum equation (the second of 38) and
it produces a simple algebraic expression which has several roots for n

n(n+ 3)(n− 2)(n+ 1) = 0 which gives n = 0,−3, 2,−1 (41)

This gives the full description for the linear combinations of f(r) and g(r) using the values of n above

f =c1 +
c2
r3

+
c3
r

+ c4r
2

g =− c1 +
c2
2r3
− c3

2r
− 2c4r2

(42)

These can be substituted into the expressions for velocity to give

vr =(c1 +
c2
r3

+
c3
r

+ c4r
2) cos θ

vθ =(−c1 +
c2
2r3
− c3

2r
− 2c4r2) sin θ

(43)

We can apply the boundary conditions to solve for the constants. Applying the far field velocity boundary
conditions gives

c1 = −V0 and c4 = 0 (44)

Applying the no-slip condition at r = a gives

c2 = −a
3V0

2
and c3 =

3aV0

2
(45)

This gives the final expressions for the velocity components

vr =− V0

(
1 +

a3

2r3
− 3a

2r

)
cos θ

vθ =V0

(
1− a3

4r3
− 3a

4r

)
sin θ

(46)
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These can be substituted back into the original equation for momentum in the θ direction and integrating
with respect to θ

P (θ) =
3ηaV0

2r2
cos θ (47)

The solution for flow is now given as both components of velocity as well as pressure have been solved
for. Stokes flow is a balance of viscous forces and pressure and the net effect of these forces describes the
amount of drag the sphere has with respect to the surrounding flow. Since we know the solution to the flow,
we can calculate these forces and determine the drag on the sphere. There are two contributions to the drag,
one from pressure and one from viscous stresses.

D = DP +Dv (48)

In order to calculate the contribution from pressure, we need the component of the force in the direction that
pressure is pushing on the sphere. This equates to the vertical component of the pressure in the negative z
direction projected on the surface of the sphere at radius a, or just

P cos θ =
3ηV0

2a
cos 2θ (49)

We need to integrate this pressure over the surface of the sphere, but since it only acts on the cross-sectional
area of the sphere (πa2 sin θ) we have

DP =

π∫
0

(P cos θ) 2πa2 sin θdθ = 3πηaV0

π∫
0

sin θ cos 2θdθ = 2πηaV0 (50)

The viscous contribution to the drag has two components, one from the normal stresses and one from the
tangential stress, so we need to apply the constitutive relation (σ = ηε̇) using the strain rates in spherical
polar coordinates

(σrr)r=a = 2η
(
∂vr
∂r

)
r=a

(σrθ)r=a = η

(
r
∂

∂r

(vθ
r

)
+

1
r

∂vr
∂θ

)
r=a

(51)

These are easily found by substituting in the solutions for the velocity components

(σrr)r=a = 0 and (σrθ)r=a =
3ηV0 sin θ

2a
(52)

There are no normal stresses because the boundary conditions define the sphere to be rigid due to the
boundary condition. It is a property of incompressible fluid that the deviatoric stress acting across a rigid
boundary is wholly tangential. The tangential stress is in the θ direction all along the sphere, but we need
the component in the negative z direction so use the sin θ projection

σrθ sin θ =
3ηV0 sin 2θ

2a
(53)

Once again, integrate the product of this quantity with the cross-sectional area of the sphere

Dv =

π∫
0

(
3ηV0 sin 2θ

2a

)
2πa2 sin θdθ = 3πηaV0

π∫
0

sin 3θdθ = 4πηaV0 (54)

Notice that the contribution to drag from viscous stresses is exactly double the contribution from pressure
forces. It is more common to report the drag coefficient, cD, defined the total drag normalized by both a
characteristic pressure ( 1

2 ρfV
2
0 ) and cross-sectional area of the sphere (πa2)
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cD ≡ D
1
2 ρV

2
0 πa

2
=
DP +Dv
1
2 ρV

2
0 πa

2
=

6πηaV0
1
2 ρV

2
0 πa

2
= 1

2 (ρV0a) /η =
24
Re

(55)

Notice that the Reynolds number appears in the denominator. These sinking sphere experiments can be
done at various Re and it is very striking that the predicted Stokes drag coefficient holds remarkably well
up until Re ∼ 1 when inertial effects begin to become important.

The final thing that is useful to do is calculate the terminal velocity of the sphere. As the sphere can
be rising or sinking, it has many applications in geological fluid dynamics such as settling of crystals in a
magma, or rise of a plume head in the mantle. Archimedes principle describes the buoyancy force of an
object as the density contrast with respect to a background fluid, in this case a rising sphere

F = (ρf − ρs)g
(

4
3
πa3

)
(56)

and by setting this force equal to the drag force, the terminal upward velocity is obtained.

vterm =
2a2(ρf − ρs)g

9η
(57)

It is important to recognize that the velocity depends on the radius squared.

8. The Stream Function

The stream function, ψ, is both an illustrative and useful approach to apply to fluid dynamics as it can
provide relatively quick solutions to 2-D incompressible flow problems. The major drawback of the stream
function is that it is basically limited entirely to 2-D incompressible flow problems. The stream function
is like a potential field in that only the difference in ψ between two points has any physical meaning (the
absolute value of ψ is arbitrary). Lines of constant ψ are called stream lines and give an excellent visual
representation of the flow, however, only in a 2-D geometry. In 2-D, the incompressibility constraint is

∇ · v = 0 or
∂vx
∂x

+
∂vy
∂y

= 0 (58)

The definition of the stream function is

vx = −∂ψ
∂y

and vy =
∂ψ

∂x
(59)

Obviously, the stream function satisfies the continuity equation since

−∂2ψ

∂x∂y
+

∂2ψ

∂y∂x
= 0 (60)

The stream function can also be substituted into the Stokes equation

0 =
dP

dx
+ η

(
∂3ψ

∂2x∂y
+
∂3ψ

∂y3

)
0 =− dP

dy
+ η

(
∂3ψ

∂x3
+

∂3ψ

∂y2∂x

) (61)

Now eliminate the pressure term using the same technique that was applied earlier when solving for the flow
around a Stokes sphere, i.e. take partial derivatives w.r.t. the other dimension

0 =
∂

∂y

[
dP

dx
+ η

(
∂3ψ

∂2x∂y
+
∂3ψ

∂y3

)]
0 =

∂

∂x

[
−dP
dy

+ η

(
∂3ψ

∂x3
+

∂3ψ

∂y2∂x

)] (62)
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then subtract the resulting equations:

0 =
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
(63)

Rearranging the derivatives we now have

0 =
(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)
ψ (64)

This equation can be recognized as the Laplacian operator (∇2) being applied twice to ψ

0 =
(∇2

) (∇2
)
ψ (65)

This is known as the Biharmonic operator (
(∇2

)2 = ∇4) which we can use to write

0 = ∇4ψ (66)

There are well-known solutions to this equation and it is also valid for non-Cartesian geometries.

9. Corner Flow

The situation of a subduction zone is in some ways analogous to one variation of the classic corner flow
problem in fluid dynamics. In this version, two rigid plates (infinite in extent) converge at a point where
the advancing plate (plate A) dips at an angle below the back-arc plate (plate B). We will use the point
of convergence as the origin of a 2-D cylindrical coordinate system with plates on the surface (the line at
θ = 0). The angle that plate A makes between itself on the surface and the dipping portion is defined as θa
and the “’dip angle” between plates A and B is defined as θb (and assumed to be acute). Plate B is assumed
to remain stationary while plate A is moving on the surface at velocity vr = −V0 (towards the origin) and
along the dip angle at vr = V0 (away from the origin). For both plates, the velocities in the θ direction are
assumed to be zero (vθ = 0). Notice that there are no body forces in this problem, and that the Stokes flow
is driven entirely by the velocity boundary conditions (which themselves are driven by some applied force
but since it is not a body force it is irrelevant).

Consequences and causes of plate motions 13 

Subject to these various assumptions the steady state velocity of an incompres- 
sible fluid must satisfy: 

0 = r p v + p V U - V P  (3.1) 

(3 * 2) 

v 2 0 = o  (3 * 3) 

0 = v . v  

U is the gravitational potential and P the pressure. The curl of equation (3.1) gives: 

where o(= V xv) is the vorticity. Most island arcs are approximately two-dimen- 
sional structures, and it is therefore convenient to use cylindrical co-ordinates with 
the z axis parallel to the arc. Fig. 5 shows a vertical section through an idealized 
arc, with the motions of the lithosphere and slab represented by the motion of planes. 
If the co-ordinate axes are fixed to ab, the lithosphere behind the arc, all boundary 
conditions are simple. Thus v may be written. 

where $ is the stream function. 
The resulting equations are simple if u, = 0 everywhere, a condition which 

requires the motion between ab and bc in Fig. 5 to be normal to the arc. This con- 
dition is not satisfied by all presently active island arcs (McKenzie & Parker 1967; 
Le Pichon 1968), and solutions to equation (3.4) can if necessary be obtained if 
v, # 0. It is, however, doubtful if these general solutions would display any features 
which are not possessed by the special case discussed below. Equation (3.3) then 
becomes: 

v4* = 0 (3.5) 
Solutions to equation (3.5) are required which satisfy v = a,xconstant, where a, 
is the radial unit vector, at specified values of 0 (Fig. 5). Such solutions are easily 
obtained by substituting (Batchelor 1967). 

t,b = rG(0) (3.6) 
into equation (3.5) to give: 

d 4 0  d 2 0  - 3-2- + @  = 0. 
de4 de2 

The general solution to equation (3.7) is: 
0 = A sind+B cosd+CO sind+ D6’cosO (3.8) 

FIG. 5. 

The governing equations for Stokes flow are simply ∇ · τττ = 0 and ∇ · v = 0. Expanding the momentum
equation out into the components of total stress

∂τrr
∂r

+
1
r

∂τθr
∂θ

= 0

∂τrθ
∂r

+
1
r

∂τθθ
∂θ

= 0
(67)

We can use the constitutive relationship between total stress and strain rate for an incompressible fluid,
τ = −P I + 2ηD
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τrr =− P + σrr = −P + 2ηε̇rr
τθθ =− P + σθθ = −P + 2ηε̇θθ
τrθ(=τθr) = σrθ = 2ηε̇rθ

(68)

Now rewrite the total stress with the strain rate in terms of the velocity gradients

τrr =− P + 2η
∂vr
∂r

τθθ =− P + 2η
(

1
r

∂vθ
∂θ

+
vr
r

)
τrθ =η

(
1
r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

) (69)

Notice that if we add the normal components of stress together we get

τrr + τθθ = −2P + 2η
(
∂vr
∂r

+
1
r

∂vθ
∂θ

+
vr
r

)
(70)

The 2nd term on the RHS vanishes since ∇ · v = 0, and, because the fluid is isotropic, the expressions for
the normal stresses become

τrr = −P and τθθ = −P (71)

Using these allows us to express the momentum equation entirely in terms of P and τrθ

−∂P
∂r

+
1
r

∂

∂θ
τrθ = 0

−1
r

∂P

∂θ
+

∂

∂r
τrθ = 0

(72)

and this can be rewritten in terms of velocity gradients as

−∂P
∂r

+ η
1
r

∂

∂θ

(
1
r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
= 0

−1
r

∂P

∂θ
+ η

∂

∂r

(
1
r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
= 0

(73)

The equations 69 and 71 put severe constraints on any allowed velocity function. To proceed, we use the
stream function where, in cylindrical coordinates

vr =
1
r

∂ψ

∂θ
and vθ = −∂ψ

∂r
(74)

The geometry of our problem suggests that the solution for velocity may be independent of r. To test this,
we write the stream function as

ψ = R(r)T (θ) (75)

and calculate ∂vr/∂r which, by the first of equation 69, must be zero (the second of equation 69 is then
automatically satisfied). This is only achieved if R(r) ∝ r which results in both vr and vθ being independent
of r as expected. In 2-D cylindrical coordinates, the Laplacian is

∇2ψ =
1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2
∂2ψ

∂θ2
(76)

Using this result (twice), the substitution for ψ into the biharmonic equation with R ∝ r results in

13



d4T

dθ4
+ 2

d2T

dθ2
+ T = 0 (77)

Our problem has now been reduced to a 4th order ODE which has a general solution of the form

T (θ) = A sin θ +B cos θ + Cθ sin θ +Dθ cos θ (78)

We can solve this as there are 4 boundary conditions but these are given as velocities so we need vr and vθ

vr =
∂T (θ)
∂θ

= A cos θ −B sin θ + C( sin θ + θ cos θ) +D( cos θ − θ sin θ)

vθ =− T (θ)
(79)

where we have absorbed the scaling inR into the constants. At this point its a good idea to break the problem
into two portions and solve for the stream function in each domain. The obvious choice for the two domains
is the “back-arc region” formed by the (acute) dip angle between the subducting plate and overriding plate
and the “fore-arc region” underneath the subducting plate. The flows are identical along the boundary of
the subducting plate, and this line is known as the separatrix. The boundary conditions are then

vr(θ = 0) =− V0 in the fore-arc region
vr(θ = 0) =0 in the back-arc region
vθ(θ = 0) =0 in both regions
vθ(θ = θb) =0 along the separatrix
vr(θ = θb) =V0 along the separatrix

(80)

Each region has 4 boundary conditions to solve for the 4 unknowns constants, and after a lot of algebra one
arrives at the solution

ψa =− rV0
[(θa − θ) sin θ − θ sin (θa − θ)]

θa + sin θa
≡ −rV0fa(θ) in the fore-arc region

ψb =rV0
[(θb − θ) sin θb sin θ − θbθ sin (θb − θ)]

θ2b − sin 2θb
≡ rV0fb(θ) in the back-arc region

(81)

The velocities in each region are readily obtained through differentiation of ψ: vr = −V0f
′
a(θ) and vθ =

V0fa(θ) in the fore arc and vr = V0f
′
b(θ) and vθ = −V0fb(θ) in the back arc.

What we are really interested in is the differential pressure between the top and the bottom of the slab
which can cause the slab to "float". The situation is illustrated in the following figure

6.11 Angle of Subduction 443

Figure 6.17 Forces acting on a descending lithosphere.

Figure 6.18 Viscous corner flow model for calculating induced flow pres-
sures on a descending lithosphere.

at a finite angle of dip θ. (This was discussed in Section 1–4 and illustrated
in Figure 1–9). The approximate dip angles associated with subduction at
several ocean trenches are given in Table 6–3.

One explanation for why the lithosphere descends at an angle other than
90◦ is that pressure forces due to the induced flows in the mantle balance
the gravitational body forces. This problem is illustrated in Figure 6–17.
The pressure forces are due to the mantle flow induced by the motion of the
descending lithosphere; they are flow pressures relative to the hydrostatic
pressure. The dip of a subducting lithosphere is thus a consequence of the
balance between the gravitational torque and the lifting pressure torque.

The pressure forces acting on a descending lithosphere can be calculated
using the two-dimensional viscous corner flow model in Figure 6–18. The
trench is located at x = 0. It is assumed that the surface y = 0, x < 0
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In order to obtain the pressure, we need to go back to the momentum equation and use the fact that
pressure is related through equation 72 to the shear (tangential) stress which is given by

τrθ =η
V0

r
[−f ′′a (θ)− fa(θ)] in the fore-arc region

τrθ =η
V0

r
[f ′′b (θ) + fb(θ)] in the back-arc region

(82)

Integrating the second of equation 72 allows us to obtain the pressure solution

Pa(r, θ) =
2V0η

r

[ sin θ − sin (θ − θa)]
θa + sin θa

in the fore-arc region

Pb(r, θ) =− 2V0η

r

[θb sin (θb − θ)− sin θb sin θ]
θ2b − sin 2θb

in the back-arc region
(83)

Inspection of these solutions reveals that Pa is always a positive quantity and Pb is always a negative
quantity. A positive pressure below the subducting plate implies compression or upward force on the
surface. A negative pressure in the mantle wedge indicates that there is a suction between the subducting
plate and overriding plate. This corner flow suction acts as a hydrodynamic lift that is proportional to the
pressure difference above and below the slab. The lift is found by integrating P (r, θ) along the dip angle,
θa, over a length l. The torque exerted by lift is balanced by gravity through the weight of the slab with
thickness h and density ∆ρ.

Tflow =

l∫
0

[Pa(r, θa)− Pb(r, θb)] r dr = 2V0ηl

[
sin θb

(π − θb) + sin θb
+

sin 2θb
θ2b − sin 2θb

]
Tgravity = 1

2 ∆ρghl2 cos θb

(84)

Both torques can be normalized by a characteristic torque, 2V0ηl, which then allows one to find the critical
dip angle, θc that determines when the torque derived from gravity is balanced by the lift generated by
circulation in the mantle wedge. For any angle smaller than θc, the torque exerted on the slab by mantle flow
will exceed the weight of the slab, and assuming the velocities remain constant, a positive feedback will
occur such that θ decreases to zero. This critical angle was determined by Stevenson and Turner, (1977),
to be 63◦ for which they found the net torque was about 2 times the characteristic torque. Assuming a 100
km thick slab that is 600 km in length subducts at 6 cm/yr and has ∆ρ =80 kg/m3 gives 2 ∼ ∆ρghl/(4ηV0)
which can be used to estimate the upper mantle viscosity: η = π1021 Pa s.

Clearly, θc = 63◦ is too large as many slabs are observed to have dip angles shallower than this estimate,
so obviously there must be many other important factors. One of the more important factors is the non-
Newtonian rheology of the mantle wedge as studied by Tovish et al. (1978) who found this reduced θc = 54◦

for a power law fluid with n=3. There are also reasons for θc to be larger, as slabs with finite lateral extent
allow for a 3-D component of the mantle flow (i.e the toroidal flow) around slab edges which reduces the
pressure differential Dvorkin et al. (1993).

10. Postglacial Rebound

We can get important information about the fluid behavior of the mantle by looking at its response to
loading and unloading. Of course, mountains are an example of a load, but mountain building takes so long
that there really is no dynamic response. On the other hand, loading of the Earth by ice sheets followed
by unloading during rapid ice sheet melting results in a dynamic response with a time-scale of thousands
of years, one that is sensitive to the viscous properties of the (upper) mantle. This process is shown in the
following figure

For example, during the last ice-age, Scandinavia was covered with a thick ice sheet which depressed
the surface causing mantle material to flow. When the ice sheet melted about 10,000 years ago, the surface
rebounded. The rate of rebound has been found by dating elevated beaches.
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Figure 6.14 Subsidence due to glaciation and the subsequent postglacial
rebound.

discussed in Section 2–2. However, mountain building is so slow that dy-
namic effects can be neglected; that is, the mantle beneath a mountain is in
essential hydrostatic equilibrium throughout the life cycle of the mountain.
The growth and melting of ice sheets, on the other hand, occur sufficiently
fast so that dynamic effects are important in the adjustment of the mantle
to the changing surface load. The thick ice sheet that covers Greenland has
depressed the surface several kilometers so that it is below sea level in places.
The load of the ice sheet has forced mantle rock to flow laterally, allowing
the Earth’s surface beneath the ice to subside. During the last great ice
age Scandinavia was covered with a thick ice sheet that caused considerable
subsidence of the surface. When the ice sheet melted about 10,000 years
ago the surface rebounded. The rate of rebound has been determined by
dating elevated beaches. We will now show how these data can be used to
determine the solid-state viscosity of the mantle. The process of subsidence
and rebound under the loading and unloading of an ice sheet is illustrated
in Figure 6–14.

To determine the response of the Earth’s mantle to the removal of an ice

To get an idea of how rebound data can constrain the viscosity of the mantle, we consider a much
simplified model: a semi-infinite viscous fluid half-space subject to an initial periodic surface displacement:

w = wm cos
(

2πx
λ

)
(85)

where λ is the wavelength and wm � λ. The displacement of the surface leads to a horizontal pressure
gradient due to the hydrostatic load. When the surface is displaced upward (negative), the pressure is positive
and fluid is driven away from this region. When the surface is displaced down (positive), the pressure is
negative. This corresponds to the case whan a load has been removed.

We can solve this problem by considering the biharmonic equation. Since the initial displacement has a
consinusoidal dependence, it is reasonable to anticipate that the ψ must behave similarly but perhaps with
some phase lag, i.e., it is not clear if ψ ∝ cos (2πx/λ) or sin (2πx/λ) or some combination. It turns out the
the behavior is sinusoidal so we shall assume this to be the case. We can now apply the method of separation
of variables to the biharmonic equation using a trial form of

ψ = sin
(

2πx
λ

)
M(z) (86)

Substituting into the biharmonic equation results in

d4M

dz4
− 2k2 d

2M

dz2
+ k4M = 0 (87)

where k = 2π/λ. Solutions of a constant coefficient ODE are of the form M ∝ exp (mz) and substitution
gives

m4 − 2k2m2 + k4 = (m2 − k2)2 = 0 (88)

so

m = ±k (89)

These two solutions are incomplete and the two additional solutions needed are of the form z exp (±mz)
(see also equation 78) so the general solution for ψ is
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ψ = sin (kx) [A exp (−kz) +Bz exp (−kz) + C exp (kz) +Dz exp (kz)] (90)

If we require that the solution remains finite as z →∞ then C = D = 0 so ψ becomes

ψ = sin (kx)e−kz [A+Bz] (91)

The velocities can be determined from equation 59:

vx = sin (kx)e−kz [k(A+Bz)−B]

vz =k cos (kx)e−kz [A+Bz]
(92)

To mimic the fact that the part of the mantle that behaves like a fluid is overlain by a rigid lithosphere, it is
appropriate to force vx to be zero at the surface (actually, we should apply the no slip bounday condition at
the perturbed boundary but we are assuming that the vertical displacement of the surface is small so, to first
order, we can apply this at z = 0). This means that B = kA. So now we have

ψ =A sin (kx)e−kz [1 + kz]

vx =A sin (kx)e−kzk2z

vz =Ak cos (kx)e−kz [1 + kz]

(93)

In order to evaluate the final constant A, we need to relate the hydostatic pressure head to the normal stress
at the top boundary. Thus

σzz(z = 0) = −ρgw = P − 2η
∂vz
∂z

(94)

Consider the horizontal force balance:

0 = −∂P
∂x

+ η

[
∂2vx
∂x2

+
∂2vx
∂z2

]
(95)

Using equation 93 for vx and integrating the result wrt x gives the pressure on z = 0:

P = 2ηAk2 cos (kx) (96)

Equation 93 for vz can be differentiated wrt z and then evaluated which gives ∂vz/∂z = 0 at z = 0 Thus
equation 94 simplifies to

w(z = 0) = −2ηA
ρg

k2 cos (kx) (96)

Note that the vertical component of velocity at the surface is just ∂w/∂t (we should evaluate at z = w but
we can linearize and identify this with vz evaluated at z = 0). Using equation 93 gives

vz(z = 0) ' ∂w

∂t
(z = 0) = Ak cos (kx) (97)

Combining this with equation 96 gives at z = 0

∂w

∂t
= −wλρg

4πη
(98)

This can be integrated with the initial condition that w = wm at t = 0 to give

w = wme
−t/τ (99)

where
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Figure 6.16 Uplift of the mouth of the Angerman River, Sweden, as a func-
tion of time before the present compared with the exponential relaxation
model, Equation (6–104), for wm0 =300 m less 30 m of uplift yet to occur,
τr =4400 years, and an initiation of the uplift 10,000 years ago.

occur in the future; that is, we take w = 30 m at t = 104 years, the present.
The solid line in Figure 6–16 is obtained with τr = 4400 years. Except for
the earliest times, there is quite good agreement with the data.

This value of the relaxation time can be used to obtain a viscosity for
the mantle using Equation (6–105). For the glaciation of Fennoscandia, a
reasonable value for the wavelength is λ = 3000 km. Taking ρ = 3300 kg m−3

and g = 10 m s−2 along with τr = 4400 years, we find that µ = 1.1×1021 Pa s.
We have considered only the response to a spatially periodic surface dis-

placement. Because the problem is linear, solutions can be superimposed in
order to consider other distributions of surface displacement. However, more
complete studies of postglacial rebound include the flexural rigidity of the
elastic lithosphere and a depth-dependent mantle viscosity. If the ice sheets
continue to melt during the period of rebound, the sea level will increase, and
this must be taken into account. Available rebound data including changes
in sea level are included on a worldwide basis. These studies require numeri-
cal solutions, and the results of one such effort are summarized in Table 6–2.
We see that the mean mantle viscosity is in good agreement with the value
we obtained using the approximate analytic solution.

Problem 6.12 The ice sheet over Hudson Bay, Canada, had an
estimated thickness of 2 km. At the present time there is a negative free-air
gravity anomaly in this region of 0.3 mm s−2.

τ =
4πη
ρgλ

(100)

Once the relaxation time τ can be estimated from observations, we can find out what the viscosity is.
Applying this to elevated beach terraces in Scandinavia gives the result shown in the figure above. This
gives an initiation of uplift 10,000 years ago and a relaxation time of 4400 years. With an initial depression
of 300m, there are less than 30 m of uplift yet to occur. A reasonable value for the wavelength of deglaciation
in Fennoscandia is 3000 km. Using equation 100, these data give η = 1.1× 1021 Pa s. The value of 1021 Pa
s is sometimes called the "Haskell" value after an early paper on this subject (Haskell, 1935). This value is
an average of a range of depths. Modern studes of PGR take account of the history and geometry of the ice
load (as well as we know it) , they may also need to take account of the sea-level change associated with
melting of ice sheets globally. This requires numerical modelling of the entire system.
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11. Rayleigh Taylor Instability

Some of the most interesting natural phenomena of fluid dynamics are waves and instabilities. Among
these is the classic instability at an interface of two fluids (ρ1 and ρ2) which are unstably stratified (i.e. the
fluid with ρ2 is on the bottom and ρ2 < ρ1). This is the set-up used by Nobel prize winning physicist Lord
Rayleigh who first described the physics of the instability. He was also one of the key people (along with
Reynolds and Stokes) in establishing the idea of hydrodynamic similarity for flows. A famous example of
a RTI is the development of salt diapirs illustrated in the following figure:

448 Fluid Mechanics

Figure 6.19 Diapiric formation of salt domes due to the gravitational in-
stability of a light salt layer buried beneath heavier sedimentary rocks.

boundary of the bottom layer are rigid surfaces. Because we are interested
in the case of instability, we take ρ1 > ρ2. The gravitational instability of
heavy fluid overlying light fluid is known as the Rayleigh–Taylor instability.

The undisturbed interface between the superposed fluid layers is taken
to be at y = 0. Thus, y = −b and y = b are the upper and lower rigid
boundaries, respectively. As a consequence of the gravitational instability,
the interface between the fluids distorts and motions occur in the fluid layers.
The displacement of the disturbed fluid interface is denoted by w. We assume
that w is given by Equation (6–79). The stream function ψ1 for the flow in
the upper fluid layer has the form of Equation (6–85), which we rewrite here
using hyperbolic functions instead of the exponentials

ψ1 = sin
2πx

λ

(
A1 cosh

2πy

λ
+ B1 sinh

2πy

λ

Consider the figure on the following page. The unperturbed density interface, w, is at y = 0 and there
are walls at y = ±b which provide no-slip boundary conditions (y is positive downwards). For now we will
assume that the two fluids have the same viscosity. Since this is Stokes flow problem in 2-D, the stream
function can be used to solve for the velocity.

The general solution for the stream function in the top and bottom fluids is best expressed in terms of
hyperbolic trig functions

ψ1 = sin (kx) (A1 cosh (ky) +B1 sinh (ky) + C1 y cosh (ky) +D1 y sinh (ky)) (101)

where k = 2π/λ. The boundary conditions are
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6.12 Diapirism 449

Figure 6.20 Satellite photograph of salt domes (dark circular areas) in the
Zagros Mountains of Iran (NASA STS 047–151–035).

Figure 6.21 The Rayleigh–Taylor instability of a dense fluid overlying a
lighter fluid.

+ C1y cosh
2πy

λ
+ D1y sinh

2πy

λ

)
. (6.125)

Similarly, the stream function ψ2 for the lower layer is

ψ2 = sin
2πx

λ

(
A2 cosh

2πy

λ
+ B2 sinh

2πy

λ

+ C2y cosh
2πy

λ
+ D2y sinh

2πy

λ

)
. (6.126)

The velocity components in the layers are found by differentiating these
equations for ψ1 and ψ2 according to Equations (6–69) and (6–70):

u1 = −2π
λ

sin
2πx

λ

{(
A1 + C1y +

λD1

2π

)
sinh

2πy

λ

]

ux1(y = −b) = 0
uy1(y = −b) = 0
ux2(y = b) = 0
uy2(y = b) = 0
ux1(y = 0) = ux2(y = 0)
uy1(y = 0) = uy2(y = 0)
σxy1(y = 0) = σxy2(y = 0)

(102)

and the shear stress is the usual σxy = η (∂ux/∂y + ∂uy/∂x). This means that to solve for the constants,
the appropriate derivatives of the stream functions need to be taken to obtain velocities. However, for right
now notice that there are only 7 boundary conditions and 8 constants, so the best we can do at this point is
get stream functions for both layers into expressions with a single unknown constant (after lots of tedious
algebra... - see Turcotte and Schubert for the full details).

ψ1 = A1 sin (kx) { cosh (ky)+[
y

kb2
tanh(kb) sinh (ky) +

(
y

b
cosh (ky)− 1

kb
sinh (ky)

)(
1
kb

+
1

sinh (kb) cosh (kb)

)]
×
[

1
sinh (kb) cosh (kb)

− 1
k2b2

tanh(kb)
]−1

} (103)

The expression for ψ2 is obtained by replacing y with −y and A1 with A2.
6.12 Diapirism 453

Figure 6.22 The buoyancy force associated with the displacement of the
interface.

To eliminate the constant A1 from the equation of motion of the interface,
we need to incorporate an essential aspect of the physics of the problem into
the analysis. This is the buoyancy force brought into play by the displace-
ment of the interface. Figure 6–22 compares two columns of fluid, one with
the interface in the undisturbed location and the other with the interface
displaced downward. Because of the interface displacement, fluid of density
ρ1 replaces fluid of density ρ2 between y = 0 and y = w. The additional
weight of this fluid (ρ1 − ρ2)gw is felt as a normal stress or pressure on the
disturbed interface. It must be balanced by the net normal stress on the
interface due to flow pressure and normal viscous stress. It is sufficient to
determine these stresses on y = 0 because of the small interface displace-
ment. According to Equation (6–57) the normal viscous stress on y = 0 is
2µ(∂v/∂y)y=0. By differentiating Equation (6–148) with respect to x and y

and evaluating the result on y = 0, we see that this quantity is zero. Thus
the buoyancy force per unit area due to the displacement of the interface
is balanced solely by the net flow pressure exerted on the interface. This
condition can be written

(ρ1 − ρ2)gw = (P2 − P1)y=0. (6.151)

Equation (6–151) provides a second relationship between w and the flow
field that allows us to relate w to A1 and thereby convert Equation (6–150)
into an equation for w.

The flow pressure on y = 0 in the upper layer can be found by substituting
Equation (6–148) into Equation (6–72) with the result

(P1)y = 0 =
2µA1

b

(
2π
λ

)(
λ

2πb
+

1
sinh 2πb

λ cosh 2πb
λ

)

×
(

1
sinh 2πb

λ cosh 2πb
λ

−
(
λ

2πb

)2

We need to use some physics to add a constraint in order to solve for the final constant. If the interface,
w, is perturbed, there will be a buoyancy force associated with the amount of fluid that is displaced from
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the reference position, and this buoyancy force will generate a dynamic pressure (in the case where the
two fluids are stably stratified, the buoyancy force is acts a restoring force). This additional constraint is
described as

(ρ1 − ρ2)gw = (P2 − P1)
∣∣∣∣
y=0

(104)

In order to solve for pressure at the interface, we need to go back to when the momentum equation was
written in terms of the stream function but before the pressure had been eliminated.

0 =
dP

dx
+ η

(
∂3ψ

∂2x∂y
+
∂3ψ

∂y3

)
0 =− dP

dy
+ η

(
∂3ψ

∂x3
+

∂3ψ

∂y2∂x

) (105)

and after substituting in ψ1, P1 can then evaluated at y = 0, giving

P1(x)
∣∣∣∣
y=0

=
2ηA1k

b
cos (kx)

(
1
kb

+
1

sinh (kb) cosh (kb)

)
×
[

1
sinh (kb) cosh (kb)

− 1
k2b2

tanh(kb)
]−1

(106)

At this point, one should recognize that most of that complicated expression is only a function of kb and
these are not variables in the system, so P1(x) at y = 0 can be rewritten more simply as

P1(x)
∣∣∣∣
y=0

=
2ηA1

b
cos (kx)f(kb) (107)

where

f(kb) = k

(
1
kb

+
1

sinh (kb) cosh (kb)

)
×
[

1
sinh (kb) cosh (kb)

− 1
k2b2

tanh(kb)
]−1

(108)

An equivalent expression for P2(x) can be found using ψ2 and it turns out that

P1(x)
∣∣∣∣
y=0

= −P2(x)
∣∣∣∣
y=0

so then (P2 − P1)
∣∣∣∣
y=0

= −2P1(x)
∣∣∣∣
y=0

(109)

This means that

(ρ1 − ρ2)gw = −2P1(x)
∣∣∣∣
y=0

(110)

Thus, if the fluids are unstably stratified (ρ2 < ρ1), a downward displacement of the interface (w > 0)
establishes a pressure gradient across the interface that promotes further deflection, and thus the instability
will grow. If the two fluids are stably stratified, the pressure gradient would be in the opposite direction and
resist the motion of the interface.

(ρ1 − ρ2)gw = −4ηA1

b
cos (kx)f (111)

Solving for A1 gives

A1 = − (ρ1 − ρ2)gwb
4η

[fcos(kx)]−1 (112)

The same procedure can be done using P2(x) evaluated at y = 0 to solve for A2 and then both of the last
remaining constants have been determined.
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When the interface is deflected, the time rate of change of the deflection, dw/dt, must be equal to the
vertical component of velocity at the fluid interface (otherwise a void would open but that can’t happen
because this is an incompressible fluid). It doesn’t matter if it’s fluid 1 or fluid 2:

∂w

∂t
= uy(y = 0) (113)

(valid if the deflection of the interface is small) and then using the definition of the stream function

∂w

∂t
=
∂ψ

∂x

∣∣∣∣
y=0

(114)

Now that all the constants are known, we can take (∂ψ/∂x) and set it equal to the time rate of change of the
deflection to calculate the rate of growth of this instability.

∂w

∂t
= kA1 cos (kx) (115)

and substituting in for A1 gives

∂w

∂t
= −w (ρ1 − ρ2)gb

4fη
(116)

This is straightforward to integrate and solve for w

w = w0e
t/τa where τa =

4fη
(ρ1 − ρ2)gb

(117)

This can be evaluated at the limits of very long wavelengths and very short wavelengths

τa =
24η

(ρ1 − ρ2)gb

(
1
kb

)2

for λ >> b

τa =
4η

(ρ1 − ρ2)gb
kb for λ << b

(118)

The expression can also be differentiated to find the wavelength that has the maximum growth rate (corre-
sponding to a minimum for τa)

τa =
13.04η

(ρ1 − ρ2)gb
(119)

which corresponds to λmin = 2.568 b. Often times in nature, there are many perturbations simultaneously
in the system so the question becomes which wavelength is dominant and will grow the fastest (a perfectly
flat spectrum with all wavelengths represented is called “white noise”). Another approach to find the most
unstable wavelength is to study the growth rate of individual wavelengths in isolation of all other wavelengths
as this ensures the measured growth rate is associated with a single wavelength rather than any possible
combination due to non-linear effects that may be present.

This simple scaling relationship for very long and very short wavelengths can be applied to a few natural
examples. The first example is that of a salt dome which is very common in the southeastern United States
and formed due to the instability of a salt layer underneath an more recently deposited sediments.. These
salt domes have a characteristic spacing and originate from a salt layer about 3-5 km deep. Assuming the
fastest growing instability was responsible for creating the salt domes, a density difference of 300 kg/m3

and an viscosity of the overlying sediments as 1020 - 1021 Pa s, this gives

τa =
13.04η

(ρ1 − ρ2)gb
= 10, 080− 100, 000 years (120)

One can also estimate the rise time for a granitic diapir from ∼20 km, ∆ρ = 20kg/m3, and η between 1022 -
1023 Pa s, which gives τa ∼ 1− 10 million years.

22



6.12 Diapirism 455

Figure 6.23 Dimensionless growth time of a disturbance as a function of
dimensionless wave number for the Rayleigh–Taylor instability.

×

(
λ

2πb + 1
sinh 2πb

λ
cosh 2πb

λ

)
((

λ
2πb

)2

tanh 2πb
λ − 1

sinh 2πb
λ

cosh 2πb
λ

) .

(6.158)

The quantity τa is the growth time (for ρ1 > ρ2) of a disturbance. Its value
depends on the wavelength λ of the interface distortion. Figure 6–23 is a
plot of the dimensionless growth time (ρ1 − ρ2)gbτa/4µ as a function of the
dimensionless disturbance wave number 2πb/λ. If heavy fluid lies on top
(ρ1 > ρ2), the interface is always unstable; that is, τa > 0. If light fluid lies
on top (ρ1 < ρ2), τa is negative for all λ and the interface is stable. It can
be shown from Equation (6–158) that for large wavelengths,

τa → 24µ
(ρ1 − ρ2)gb

(
λ

2πb

)2

. (6.159)

12. The Propagator Matrix Method

Imagine you have a layered stack of fluids and each fluid has a different density and viscosity and we want
to know the flow throughout the entire system. The brute force method is to solve for the flow independently
in each layer and enforce that the stresses and velocities are continuous across each interface (in case you’re
wondering, the jumps in viscosity will cause strain rates to be discontinuous). This results in lots of matching
the two flows at an interface to solve for the constants which gets tedious very quickly. There is however,
a more elegant method to arrive at the solution which involves a formalism that does all this automatically.
This is known as the Propagator Matrix Method. In theory it is possible to use this method to arrive at the
analytic solution for simple models (i.e. 2 layers), but this method is readily adapted into an algorithm so in
practice the analytic solution is simply evaluated by a computer (i.e. semi-analytic).

Consider flow in a 2-D box of length L that is periodic in L. It is possible then to Fourier analyze the
stresses, velocities, and density contrasts. For now we will consider the case when the flow is driven only
by buoyancy forces, but later we will recognize that the method is applicable to more general situations
including Couette flow, etc. The buoyancy forces and deformations of the boundaries can also be described
as an appropriate Fourier series (e.g. ∼ cos kx) and similarly for the horizontal velocities (e.g. ∼ sin kx).
Then for a wavenumber kn = 2πn/L and remember that τ is the total stress, we have
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uz(x, z) =
∞∑
n=1

unz (z) cos knx

ux(x, z) =
∞∑
n=1

unx(z) sin knx

τzz(x, z) =
∞∑
n=1

τnzz(z) cos knx

τxx(x, z) =
∞∑
n=1

τnxx(z) cos knx

τxz(x, z) =
∞∑
n=1

τnxz(z) sin knx

P (x, z) =
∞∑
n=1

Pn(z) cos knx

∆ρ(x, z) =
∞∑
n=1

∆ρn(z) cos knx

(121)

where P is the dynamic (or non-hydrostatic) pressure. Now use this set of equations to solve for the flow
within one homogeneous layer by substituting the Fourier expressions into the governing equations, for
example, the continuity equation (∂ux/∂x+ ∂uz/∂z = 0) becomes

∞∑
n=1

[
+knunx(z) +

d

dz
unz (z)

]
cos knx = 0 (122)

where +kn is the Fourier derivative operator. In order to perform the same substitution into the momentum
equation, ∇ · τττ + ρfb = 0, the constitutive equation needs to be transformed into an equivalent Fourier
representation

τzz(x, z) =
∞∑
n=1

(
2η

d

dz
unz (z)− Pn(z)

)
cos knx

τxx(x, z) =
∞∑
n=1

(
2ηknunx(z)− Pn(z)

)
cos knx

τxz(x, z) =
∞∑
n=1

η

(
d

dz
unx(z)− knunz (z)

)
sin knx

(123)

These series can be simplified by taking advantage of the orthoganality of the trigonometric basis functions.
Multiplying through by cos (kmx) and integrating with respect to x from 0 to L results in a complete
decoupling of the equations for each term of the Fourier series. A new set of equations for each m can
be written using notation in which the n subscripts are dropped and the dependence on z and m are now
implicit. The constitutive relationship now becomes

τzz = 2ηDuz − P
τxx = 2ηkux − P

τxz(x, z) = η (Dux − kuz)
(124)

where D = d/dz. The equations for mass and momentum become
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0 =Duz + kux

0 =− kτxx +Dτxz

0 =Dτzz + kτxz −∆ρg
(125)

The continuity equation can be substituted into the equation for vertical stress giving it now as

τzz = −2ηkux − P (126)

and this allows P to be eliminated from the problem by subtracting the normal stresses from each other
τzz − τxx

τxx = τzz + 4ηkux (127)

This expression can be substituted into the horizontal momentum equation giving

Dτxz = kτzz + 4ηk2ux (128)

We finally arrive at a system of 4 coupled equations which can be written as

D


uz
ux
τzz
τxz

 =


0 −k 0 0
k 0 0 1/η
0 0 0 −k
0 4ηk2 k 0



uz
ux
τzz
τxz

+


0
0

∆ρg
0

 (129)

This reduces to a coupled set of linear O.D.E.s. At this point it’s also a good idea to rescale the problem
so that all the values of the dependent variables are of the same magnitude, so a reference viscosity η0 is
introduced and now x can be defined 

x1

x2

x3

x4

 =


uz
ux
τzz

2η0kτxz

2η0k

 (130)

So finally we have Dx = Ax + b a

A =


0 −k 0 0
k 0 0 2k/η∗

0 0 0 −k
0 2η∗k k 0

 and b =


0
0

∆ρ/2η0k
0

 (131)

where η∗ = η/η0. This system should look familiar to you from the notes on computing geoid kernels. We
write the solution in terms of propagator matrices:

x = P(z, z0)x(z0) +

z∫
z0

P(z, ξ)b(ξ)dξ (132)

, where

P(z, z0) = exp A(z − z0) (133)

where the matrix exponential can be evaluated as a series – or analytically if A is independent of z in the
range z0 to z:

P(z, z0) =


C 0 S/η∗ 0
0 C 0 S/η∗

Sη∗ 0 C C
0 Sη∗ 0 C

+ k(z − z0)


−S −C −Cη∗ −Sη∗
C S Sη∗ Cη∗

−C/η∗ −S/η∗ −S −C
S/η∗ C/η∗ C S

 (134)
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where S = sinh [k(z − z0)] and C = cosh [k(z − z0)]. If we discretise the system into several layers then

x = P(z, z0)x(z0) +
n∑
i=1

P(z, ξi)b(ξi)∆ξi (135)

where the buoyancy has been discretized over n horizontal layers with ξi as the z coordinate in the center
of the i’th layer and ∆ξi is the i’th layer thickness. Also, the boundary conditions need to be specified and
enter the solution through the x(z0) term. If the bottom of the box is at z = 0 and the box has height H,
then, for example, free slip velocity boundary conditions correspond to

x(0) = [0, ux(0), τzz(0), 0]T at the bottom
x(H) = [0, ux(H), τzz(H), 0]T at the top

(136)

where the vertical velocities and shear stresses are specified to be zero and the non-zero terms (horizontal
velocities and vertical stresses) are to be determined as part of the solution. Alternatively, the horizontal
surface velocity could be specified, x(H) = [0, ux(k)

∣∣
(z=H)

, τzz(H), τxz(H)]T , but in this case the imposed
surface velocity must be represented as a Fourier expansion.

13. Rayleigh Taylor Instability - Redux

The Propagator Matrix Method can be used to solve for flow in the Rayleigh Taylor problem with an
arbitrary number of layers, up until the flow an interface has been deformed so much that there are no longer
coherent layers. Sometimes the question of interest is how large the deflection will be on boundaries several
layers away from the unstable layers deflection.

Also, this framework can be used to quickly assess the growth rate of instabilities in horizontally layered
fluids. Let’s revisit the simple case of two fluid layers of different densities with an interface at z = l. We
want to consider the motion of the interface as a function of the wavelength of the perturbation, the density
contrast, and the viscosity contrast. This will provide a growth rate or relaxation time, depending on whether
the fluids are unstably or stably stratified, respectively. Because within each fluid layer both the density and
viscosity are uniform, the solution of the flow just above the interface x(l+) is propagated to the surface
x(H) through the propagator matrix (and vice versa). Similarly, the flow just below the interface x(l−) is
propagated to the bottom x(0), giving

x(l−) =P(l, 0)x(0)
x(l+) =P(l,H)x(H)

(137)

In the case when the fluid layers extend to ±∞, the solution to the propagator matrix equation provides the
intrinsic relaxation timescale, τr, of the interface. Both the velocity and stress must be continuous across
the layer interface. Deflection of the interface generates a buoyancy force proportional to ∆ρ = ρ1 − ρ2 that
can be described as an equivalent pressure perturbation[

x(l+)− x(l−)
]

= ∆P (k) =
∆ρgτruz

2η0k
(138)

The pressure perturbation enters through the vertical stress at the interface and is also normalized to be of
the same magnitude. For a sinusoidal perturbation these flows are given as

x(l−) =


u−z
u−x

τ−zz/2η0k
τ−xz/2η0k

 and x(l+) =


u+
z

u+
x

τ+
zz/2η0k + ∆ρgτruz/2η0k

τ+
xz/2η0k

 (139)

The ∆ρ only needs to be accounted for on one side of the interface as vertical stress on the other side of
the interface will naturally adjust. Also, if the same pressure perturbation were applied to the other side
it would either be double counting (if in the same direction) or canceled out due to a mirror symmetry (if
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in the opposite direction). The boundary conditions in this case would be uz(−∞) = 0 and uz(+∞) = 0
assuming the fluid is at rest at ±∞. Substituting these into the propagator matrix equations gives

uz(−∞) = 0 = − cosh (kz)uz +
(
τzz

2η0k
+

∆ρgτruz
2η0k

)
1
η∗1

sinh (kz) + (terms of order kz)

uz(+∞) = 0 = cosh (kz)uz +
τzz

2η0k
1
η∗2

sinh (kz) + (terms of order kz)
(140)

Terms that are of order kz must vanish as z → ∞. Subtracting these equations and evaluating with the
appropriate limit as z →∞ gives

τr =
2η0k
∆ρg

(η∗1 + η∗2) (141)

which agrees with the result obtained previously when the fluids’ viscosity is the same (η∗1 = η∗2).
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