
SIO 224 Homework 7

1) A simple 1-D model of asthenospheric counterflow can be used to deduce some interesting results about
the mantle viscosity and upper mantle return flow. Assume a lithospheric plate that is 100 km thick overlies
an upper mantle with viscosity η that extends down to 600 km depth. Assume the mantle below 600 km
depth is “rigid”. The plate has length L and moves from ridge to trench with velocity V0.

As was shown in class, there are two components to the flow in the asthenosphere: one is a Couette flow
driven by the viscous drag of the moving plate above and the other is the return flow in the opposite direction
as the plate motion (from trench to ridge). The continuity equation prescribes that these two flows must be
equivalent and in opposite directions.

a) The return flow is a channel flow driven by the pressure gradient established by the shear flow above it.
What is the total pressure drop from trench to ridge?

b) Assuming the plate speed V =8 cm/yr and L = 8000 km (something like the Pacific plate) and assuming
an upper bound of 1 km for the “observed” dynamic topography in the ocean basins, find an upper bound
for η. How does this compare to estimates from post-glacial rebound studies? What have we assumed about
this problem that could cause these two values to be different?

2a) In the class notes for fluid-dynamics, a derivation for the terminal velocity for Stokes flow past a rigid
sphere with no slip boundary conditions is presented. Show that the terminal velocity for an inviscid sphere
rising through a fluid of viscosity ηf is given by

vterm =
a2g(ρf − ρs)

3ηf

where ρf and ρs are the densities of the surrounding fluid and the sphere, respectively, and a is the radius of
the sphere. An inviscid sphere is defined as having no viscosity which approximates the case for very low
viscosity fluid bubbles. This results in “free-slip” boundary conditions meaning no shear stress is supported
along the boundary.

b) Use an integral to show that the inviscid sphere remains spherical while rising through the surrounding
fluid. [Hint: Show that the total normal stress acting on the surface of the sphere is constant.]

c) How fast will a 1 cm3 air bubble rise through water? What is the Reynold’s number?

3) Estimate the size of the plume head that would have initiated the Hawaiian hotspot. Approximate the
plume head as a spherical diapir (with radius Rp, viscosity ηp, and density contrast ∆ρ) rising through the
mantle of viscosity ηm. Write the expression for its terminal velocity, V∞, (hint: you derived this solution
using a free slip boundary on a previous question). Imagine the trailing plume conduit that gets established
by the rising plume head is a cylindrical pipe (i.e. Poiseuille flow) and has the same viscosity as the plume
head (ηp = ηm).

Recall that the total volumetric flux of fluid in the conduit is given by: Qv = −dP/dz(πRc
4)/(8ηp where

Rc is the radius of the pipe and in this case, the pressure gradient −dP/dz = ∆ρg. Write an expression for
volumetric flow in terms of the cross-sectional area of the conduit, A = πRc

2, i.e. Qv = f(A). You can
now eliminate A from this expression by using the definition of Qv = Av̄c, where v̄c is the mean velocity
(averaged over the cross-sectional area). This allows you to derive an expression for v̄c as a function of Qv,
i.e. v̄c = f(Qv).

Now assume the buoyancy of the rising plume head established the pressure gradient for flow in the
conduit. This condition would mean that flow in the conduit maintains a mean velocity equal to the terminal
velocity of the diapir (i.e. V∞ = v̄c). You can now derive a final expression for Rp in terms of Qv and
independent of A. Given that the estimate for Qv under Hawaii is presently 13.7 km3/yr, what is your
estimate for Rp of the Hawaiian plume head? Assume a single viscosity for the mantle.
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