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Thermodynamics of phase transitions

1. The Gibbs Free Energy

When discussing phase transformations, we usually work in the P, T domain in which G, the Gibbs free
energy is the most useful function. In a system such as the mantle consisting of several minerals in different
phases, we have G = G(P, T,N1, N2, ...) where Ni is the number of moles of the i’th mineral phase present.
A general expression for the change in G is then given by (equation 43 of the thermo notes):

dG = −SdT + V dP +
∑
i

µidNi (1)

where

V =

(
∂G

∂P

)
T,N1,N2...

−S =

(
∂G

∂T

)
P,N1,N2...

and

µi =

(
∂G

∂Ni

)
P,T,Nj:j 6=i

is called the chemical potential of the i’th species ( usually taken to be “per mole” so that Ni is the number
of moles of the i’th component). In general, the Gibbs free energy is given by (equation 45 of the thermo
notes)

G =
∑
i

µiNi (2)

If only one component is present, we see that the chemical potential of a pure substance is just the Gibbs free
energy per mole. A system will always change towards the state with the lowest Gibbs free energy. Thus,
as pressure and temperature change, a new phase may have a lower possible free energy. In equilibrium, the
Gibbs free energy of a system is a minimum. This has some important consequences as we discuss in the
next section. Since G =

∑
i µiNi, we get

dG =
∑
i

dµiNi +
∑
i

µidNi (3)

and combining with equation (1) gives ∑
i

dµiNi = −SdT + V dP (4)

which is called the Gibbs-Duhem equation (equation 24 of the thermo notes) and is used in a discussion of
phase boundaries. For a single component system, equation (4) gives(

∂µ

∂T

)
P

= − S
N

and
(
∂µ

∂P

)
T

=
V

N
(5)
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2. The Clapeyron equation

Consider a one component system in which dN moles go from phase α to phase β at a particular P and T .
As T and P are fixed, then equation (1) becomes

dGα = −µαdN and dGβ = µβdN (6)

i.e. dN moles are removed from phase α and added to phase β. The total change in the Gibbs free energy
of the system must be zero for the system to be in equilibrium so

dG = dGα + dGβ = (µβ − µα)dN = 0 (7)

whence

µα = µβ (8)

i.e. the chemical potentials of the two phases are the same. In a system of many components, this argument
generalizes to give

µαi = µβi (9)

Suppose now we perturb the P and T conditions of our single component system such that the two phases
remain in equilibrium. From equation 5, we have (using molar quantities)

dµα = −SαdT + V αdP and dµβ = −SβdT + V βdP (10)

but, for equilibrium, dµα = dµβ so that the chemical potentials of the the phases stay the same and combining
the above equations gives

dP

dT
=

∆S

∆V
=

Sβ − Sα

V β − V α
(11)

which is Clapeyron’s equation for the gradient of the P − T curve separating two phases of a single
component system . ∆S and ∆V are the discontinuitues in molar entropy and volume associated with the
phase transformation. Clapeyron’s equation is sometimes written in terms of the molar latent heat of the
transition L (the amount of heat released by a mole of material undergoing the phase transformation) where
L = T∆S, i.e.

dP

dT
=

L

T∆V
(12)

At high T and P , ∆S tends to be relatively independent of temperature and pressure and of the order the
gas constant, R. Also, ∆V tends to be a slowly decreasing function of pressure. This is particularly true of
liquid–solid phase transitions since at high pressures the volumes of the liquid and solid tend to become the
same, so dT/dP → 0.

As we go from low to high pressure, phase transformations always have ∆V negative (the high pressure
phase is denser) but ∆S can be negative or positive. If it is negative, the clapeyron slope is positive
and latent heat is released (exothermic). Thus increasing temperature increases the pressure at which the
transformation occurs. A positive ∆S gives a negative clapeyron slope and heat is absorbed (endothermic).
The transformation of forsterite (magnesium end member of olivine) to wadsleyite is exothermic and happens
at pressures close to that of the 410km discontinuity. The transformation of ringwoodite to perovskite and
magnesiowustite is endothermic and occurs close to the pressures of the 660km discontinuity. Thus, it is
often loosely stated that the 410 is exothermic and the 660 is endothermic – however, this ignores the fact
that we are not dealing a single component system. The mantle is made up of more than olivine and all
minerals are solid solutions with iron substituting for magnesium. We now see how this affects possible
phase diagrams for mantle minerals.
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3. Mixtures

In the mantle, we deal with a mixture of minerals and not a single component. When two substances
are mixed together there is generally an expansion or contraction (called the “volume of mixing”) so that
volumes are not additive. An “ideal” mixture shows no volume change on mixing so that it becomes simple
to compute the fraction of the mass which corresponds to each component of the mixture. Consider a
mixture of two components A and B. with masses MA and MB and occupying volumes VA and VB and
suppose the mixture has mass M and volume V . Clearly, masses are additive:

M = MA +MB (13)

and in terms of volumes we have

VA =
MA

ρA
, VB =

MB

ρB
and V =

M

ρ
(14)

If volumes are also additive then

V = VA + VB (15)

whence it is easy to show that

1

ρ
=

1− x
ρA

+
x

ρB
(16)

where x is the mass fraction of component B so x = MB/M . Given ρa, ρB , and ρ, it is trivial to compute
x. We usually work with mole fractions rather than mass fractions. A mole fraction, Xi, can easily be
converted to a mass fraction, xi, and vice versa. We have

Xi =
ni
N

=
ni∑
i ni

(17)

and the total mass is written as M =
∑
imi so the mass fraction of the i’th component is given by

xi =
mi

M
(18)

Now, ni = mi/wi where wi is the gram molecular weight of the i’th component so

xi =
mi

M
=

niwi∑
niwi

=
Xiwi∑
Xiwi

(19)

and

Xi =
ni
N

=
xi/wi∑
xi/wi

(20)

In a two component system, this simplifies since
∑
Xi = 1 and

∑
xi = 1 so

X1 =
x1

x1 + w1

w2
(1− x1)

(21)

and so on.
Mixtures are divided into several categories. “Perfect” mixtures are those which behave ideally for all

values of x. Many solid solutions behave like perfect mixtures. True “ideal” mixtures are those which
behave ideally for small values of x and, if x is small enough, most mixtures behave ideally.
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4. Chemical potentials

The behavior of a mixture hinges on the behavior of the chemical potential. In a mixture of perfect gases
at fixed P and T conditions, the chemical potential of the i’th component behaves like

µi = µ∗i +RT lnXi (22)

where Xi is the mole fraction of the i’th component and µ∗i is the chemical potential when only the i’th
component is present. In a perfect mixture, all components have chemical potentials which behave this way
but, in a weak mixture, µ∗i can be interpreted as the chemical potential of the pure solvent when i is the
solvent component. For other components (solutes) µ∗i can not be regarded as the chemical potential of the
pure solute.

To see how equation 22 arises, we consider the simple olivine solid solution. For mantle solid solutions,
it is not always obvious how to designate the "components" which are being mixed. For olivine, it is pretty
obvious that we should use forsterite and fayalite, but it is not always that obvious. The way to approach
such solutions is to use the "mixing-on-sites" (MOS) model, which assumes that all ions occupying a given
crystallographic site mix independently (and randomly in the ideal case) on that site. The ideal model
implies that ions in the solution show no preferential interactions as a result of mixing, i.e., there is no heat
of mixing.

The key to quantifying the MOS model is to identify the number of available configurations of ions in
the crystal, W , and then compute the "configurational entropy". Consider the mixing of two different ions
(e.g. Mg2+ and Fe2+) on the same crystallographic site. Suppose the number of ions mixed are N1 and N2

respectively, then the question is: how many ways can N1 and N2 ions be distributed over N1 + N2 sites.
From probability, we have

W =
(N1 +N2)!

N1!N2!

The configurational entropy is just given by S = k lnW for each mixing site. If there are n sites that mixing
can take place on (per mineral formula unit) then the total entropy is S = nk lnW . Thus

S = nk [ ln (N1 +N2)!− lnN1!− lnN2!]

Since all the N’s are very large, we can use Stirling’s approximation ( lnn! = n lnn− n) and rewrite this as

S = −nk
[
N1 ln

(
N1

N1 +N2

)
+N2 ln

(
N2

N1 +N2

)]
If we deal with a mole of exchangeable sites then N1 +N2 = N where N is Avogadros number and R = Nk
so giving

S = −nR (X1 lnX1 +X2 lnX2) = −nRΣiXi lnXi

where, in the last term, we have generalized to the case of more than two different ions.
The free energy of mixing is given by

∆G = ∆H − T∆S

but, for ideal mixtures, there is no heat of mixing so ∆H = 0 The free energy of the the ideal solution is
then the sum of the free energies of the end members plus the free energy of mixing

G = X1µ
∗
1 +X2µ

∗
2 + nRT (X1 lnX1 +X2 lnX2)

We can also write this in terms of the chemical potentials of the individual components:

G = X1µ1 +X2µ2
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which leads to

µ1 = µ∗1 + nRT lnX1 and µ2 = µ∗2 + nRT lnX2

which is in the form of equation 22. (For more complicated mixing geometries, we find that (for perfect
mixing)

S = −RΣjnjΣiXi,j lnXi,j

where nj is the total number of crystallographic sites (expressed in terms of atoms per formula unit) on
which mixing takes place, and Xi,j is the mole fraction of the i’th atom on the j’th site.)

The equation for the chemical potential is generalized to include non-ideal behavior by introducing the
“activity”, ai with

µi = µ∗i +RT ln ai (23)

Comparison with our equation above indicates that ai = Xn
i for our ideal solution. For simplicity in what

follows, we shall assume there is just one mixing site so n = 1. Sometimes the activity is written as a
coefficient (the activity coefficient) times the ideal solution activity which means the ideal part in equation
23 can be separated from the "excess" part due to non-ideal behavior.

5. Computing phase equilibria in the mantle

The Gibbs free energy of a multiphase assemblage is given by

G(P, T, ni) =
∑
i

niµi(P, T, ni) (24)

where

µi = µ∗i +RT ln ai

ai is the activity of the i’th species and µ∗i is the chemical potential of the pure i’th species and so is the same
as the Gibbs free energy of that component:

µ∗i = Gi(P, T ) = Fi(Vi, T ) + PVi

We already have an equation of state for F (V, T ) based on the Mie-Gruneisen EOS (though we need to
include the Helmholtz free energy of formation, F0 so that

F (V, T ) = F0 + Fc(V, T0) + Fth

where Fc is the cold part (given by finite strain therory) and Fth is the thermal part given by Debye theory.
We need such an equation of state for each possible component of the mantle (which is specified by 10
numbers if we include the shear velocity). The only other thing we need is a model for the activity of the i’th
species (equation 23). For nearly ideal solutions, this will be dominated by the ideal part which we partially
discussed in the previous section. More complete treatments include a non-ideal part through an activity
coefficient which is not equal to 1. This leads to a contribution to µi called the "excess" part. Treatment of
non-ideality is beyond the scope of this course but the interested reader can consult the paper by Stixrude et
al (2011).

Our task is now to find the ni which minimize equation 24 subject to the constraint of a fixed bulk
composition and subject to non negativity of the amounts of all species. This is a difficult numerical
problem and the paper by Stixrude gives some detail on how to solve it. The phase diagram of the upper
mantle according to this calculation is given in the following figure. This diagram forms the basis of
discussion of the upper mantle discontinuities that are observed seismically.

5



1198 L. Stixrude and C. Lithgow-Bertelloni

Figure 16. Phase diagram of a model pyrolite composition computed from our model showing phase boundaries and the zero-pressure density of the assemblage
according to the scale bar at the top. Phase boundaries are shown as thin black lines except those among the olivine polymorphs (brown lines), and the reactions
forming st and fp in the transition zone (bold black lines). Also plotted (bold red) is the 1600 K isentrope.

Figure 17. Phase proportions (as atomic fraction, blue lines, left-hand axis) and shear wave velocity (red line, right-hand axis) for pyrolite along the 1600 K
isentrope, computed with our method.

C© 2011 The Authors, GJI, 184, 1180–1213
Geophysical Journal International C© 2011 RAS

6. The Gibbs phase rule

Multicomponent systems exhibit much more complicated phase diagrams than single component systems
because of the ability of more than one phase to coexist at a variety of temperature and pressures. The Gibbs
phase rule governs this behavior and can be derived as follows.

The condition for equilibrium of different phases of different components is that the chemical potentials
of the i’th component in the α and β phases be equal:

µαi = µβi (25)

If we have k components in n phases in equilibrium, the conditions that the chemical potentials be equal give
k(n − 1) constraints on the system. The number of variables describing the system are 2 (temperature and
pressure) plus n(k − 1) numbers describing the composition of each phase. (Suppose we use mole fraction,
Xi to describe the composition of the i’th component in the n’th phase, then the composition of the phase
is determined by k Xi’s but because the sum of all the Xi’s is one, we have only k − 1 numbers describing
the composition of the n’th phase.) The number of degrees of freedom of the system is therefore

f = n(k − 1) + 2− k(n− 1) = k − n+ 2 (26)
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This is called the “variance” of the system. Suppose we have a phase change in a one component system
so that k = 1, n = 2 giving f = 1 when two phases are in equilibrium. This is called a univariant system.
If we specify one variable (e.g. pressure) then the others (e.g. temperature) are completely specified by
the condition of equilibrium. Thus, for a univariant system, there is a unique P − T curve specifying the
equilibrium condition of two phases. Now suppose we have a two component system. The number of
degrees of freedom when two phases are in equilibrium is two. This is called a divariant system. If we
specifiy temperature, there are still an infinite number of pressure-composition combinations that allow two
phases to be in equilibrium.

Suppose we consider a mixture of Forsterite and Fayalite undergoing a phase transition from phase α to
phase β (e.g. olivine to wadsleyite). At a fixed P and T we have

µαFo = µβFo and µαFa = µβFa (27)

where we can write

µαFa = µ∗αFa +RT ln aαFa and µβFa = µ∗βFa +RT ln aβFa (28)

with similar equations for Forsterite. Here, µ∗αFa is the chemical potential of Fayalite if only this component
is present. Thus, at equilibrium

RT ln

(
aβFa
aαFa

)
= µ∗αFa − µ

∗β
Fa (29)

We can consider the effect of pressure on the phase transition at constant temperature by differentiating with
respect to pressure at constant temperature and using the fact the (∂µ/∂P )T = V . This gives(

∂

∂P
ln

(
aβFa
aαFa

))
T

=
∆VFa
RT

(30)

where ∆VFa is the volume change in the pure Fayalite α → β transition. This is Vα − Vβ which is almost
always positive – the volume of the higher pressure phase is smaller. If ∆V is independent of pressure, we
can integrate this equation from PFa to P (i.e. from the pressure at which pure Fayalite transforms to the
pressure at which the Fayalite in the mixture transforms):

ln

(
aβFa
aαFa

)
=

∆VFa
RT

(P − PFa) (31)

A similar equation can be derived for Forsterite:

ln

(
aβFo
aαFo

)
=

∆VFo
RT

(P − PFo) (32)

Solid solutions are usually nearly perfect mixtures so we will take a = X. Let aβFa = Xβ and aαFa = Xα,
then aβFo = 1−Xβ and aαFo = 1−Xα. Thus

ln
(
Xβ

Xα

)
=

∆VFa
RT

(P − PFa) and ln
(

1−Xβ

1−Xα

)
=

∆VFo
RT

(P − PFo) (33)

If we know the pressures at which pure Forsterite and pure Fayalite transform and we know the volume
changes associated with these transformations, we can solve for Xα and Xβ at a particular value of P . The
result of doing this looks like:
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and we end up with a phase loop. The main point is that there is a finite range of pressure over which there
is a mixed phase region.

A way to interpret the phase loop is to consider a solid solution with composition XFo in the α phase. As
pressure in increased and the phase loop is entered we find that, at a pressure P ∗, a mixture with X1 in the α
phase is in equilibrium with a mixture with X2 in the β phase. Finally, we end up with a composition XFo

in the β phase.
When we have more than two possible phases in the system, things get a little more complicated. In

the olivine phase diagram, we have α, β, and γ phases at low pressures – see figure on next page. We
have three possible phase loops: α → β, β → γ, and α → γ but, in general, the phase loops will intersect.
At the intersection of two mixed phase regions, we have a unvariant system. Consider the intersection of
the α + γ and β + γ mixed phase regions. Now k = 2, n = 3 so f = 1. If we fix temperature then, for
equilibrium of these three phases, all other variables (including pressure) are fixed. Thus it is possible to get
a sharp univariant transition in a mixed phase region. Note how the phase diagram moves up in pressure as
temperature increases – this is because of the exothermic nature of all the end member components. Note
also that, in the Earth, we are interested in materials which are about 90% magnesium and about 10% iron
so we are on the left side of the diagram (to the left of the univariant transformation) so we might expect the
410 "discontinuity" to be distributed over a pressure range.
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Sometimes phase loops can be very narrow and a candidate transformation for the 660 km discontinuity
exhibits this (ringwoodite to perovskite plus magnesiowustite). Again we are interested in the left hand
side of the figures. Note how the diagram shifts down in pressure as temperature increases because of the
endothermic nature of the transformation in the magnesium end member. The pressure in the Earth at a
depth of 660km is about 23.45GPa (some models have the discontinuity at 670km with a pressure of about
23.84GPa) so this figure suggests the temperature in the Earth at the 660 is somewhat lower than 1870K. I
should point out that there are experimental uncertainties in both temperature and pressure in these figures.
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[The phase rule can be extended to include chemical reactions as long as we keep track of the number
of independent equilibrium conditions and we are careful by what we mean by independent components.
When r independent reactions are occurring, we have

f = (k − r)− n+ 2 (34)

A discussion of this can be found in Kern and Weisbrod (Thermodynamics for Geologists)]

7. Sharpness and shape of phase loops

Since there is no univariant phase transformation candidate for either the 410km discontinuity or the 660
km discontinuity, it is of interest to see how properties behave through a phase loop. Following Stixrude
(1997), we introduce the "partition coefficient", K, where

K =
Xα(1−Xβ)

(1−Xα)Xβ
(35)

and, using equation(33) above, we have

lnK =
∆VFo
RT

(P − PFo)−
∆VFa
RT

(P − PFa) (36)

To a reasonable approximation we can take ∆V ' ∆VFa ' ∆VFo (which is positive) and we find that K is
independent of pressure:

K = exp
(
−∆P∆V

RT

)
(37)

where ∆P = PFo − PFa and is positive. Remember that ∆V is positive so that as T increases or ∆V
decreases (or ∆P is small), K will tend to 1 and we will have a narrow phase loop. Conversely, for small T
or large ∆V , K tends to zero and we get a broad phase loop (see figure below).
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Now define the normalized pressure, Π = (P −PFa)/∆P so that Π− 1 = (P −PFo)/∆P , then equation (33)
can be written in terms of K:

Xα

Xβ
= KΠ and

1−Xα

1−Xβ
= KΠ−1

Rearranging gives

Xα =
KΠ −K
1−K

and Xβ =
1−K1−Π

1−K
(38)

The width of the phase loop at a particular value of X can now be derived. Let Pα be the pressure at the
bottom of the phase loop at compositionX and Pβ be the pressure at the top of the phase loop at composition
X. The width, W (X) = Pβ(X)−Pα(X) = (Πβ−Πα)∆P , can be written in terms ofX andK using equation
(38). Note that X = Xα at Pα so we use the first of equation 38 to compute Πα. Similarly, X = Xβ at
P = Pβ so we use the second of eq. (38) to compute Πβ . The result is

W (X) = ∆P

{
1−

ln
[
K +X(1−X)(1−K)2

]
lnK

}
(39)

Finally, we are interested in the yield of the high pressure phase for composition X as a function of pressure.
Yield is defined as

fβ =
X −Xα

Xβ −Xα
(40)
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and can be written in terms of K and X using equation (38):

fβ =
X(1−K)−KΠ +K

1−K1−Π −KΠ +K
(41)

Plotting this for various values of K and X gives the result shown in the figure above. The shape of f is
sigmoidal. For large values of X, much of the change occurs in the low pressure part of the phase loop
while, at small values of X, most of the change occurs in the high pressure part of the phase loop. This
means that the effective (as seen by seismology) width of the loop may be much less than the total width
given by equation (39). Stixrude estimates that the effective width of a phase transformation may be as little
as 1/10 of the total width when K = 0.01. This may be the case for the garnet-perovskite transformation
which is illustrated below (note that this isn’t the only phase transformation going on at the 660)

For the olivine to wadsleyite transformation, K ' 0.5 and the sigmoidal behavior is less pronounced so the
width and effective width of the transformation is similar (see figure below).
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Stixrude also considers the effect of many complications (multicomponent phase transformations, non-
ideality, etc) but we refer the reader to the original paper (JGR, 102, p14,835, 1997). There is also a
contribution to the phase loop width from latent heat which leads to a finite transition width even in single
component systems. This is discussed in Jeanloz and Thompson (1983) and is included in the calculations
of Weidner and Wang (2000).

8. Mantle discontinuities

Weidner and Wang discuss the effect of including the pyroxene component of pyrolite on the phase
transformations which dominantly occur in the olivine component of pyrolite (see accompanying ppt). It is
common for the pyroxene/garnet and olivine components of upper mantle mineralogy to be considered in
isolation – but this is not valid. The reason is that partitioning of elements such as iron is a function of the
overall mineralogy. In general terms, garnet takes Fe from olivine or wadsleyite and pyroxenes tend to give
Fe to olivine. The amount of garnet is strongly dependent on the aluminum content so, even though there is
not much Al in the mantle, it can have a big effect on the overall properties of the system. Garnet has a high
density and high seismic velocities, so a small amount of aluminum (which stabilizes garnet) can change the
seismic properties of the assemblage as well as changing the pressure and width of the olivine/wadsleyite
transition.

The 520km discontinuity is often ascribed to the wadsleyite/ringwoodite transition which is fairly broad –
so explaining why the 520 often only appears in the analysis of long period body waves. Another explanation
is that calcium-silicate perovskite begins to dissolve out of the garnet at this pressure and, in fact, garnet
is expected to be almost calcium-free by the bottom of the transition zone. This leads to the possibility
of multiple discontinuities at the 520km discontinuity which have been observed (see ppt). The clapeyron
slope for the wads/ring transition is positive while the clapeyron slope for the gt/capv transition is probably
negative. Thus, lateral changes in temperature can split the discontinuity into two.

The 660km discontinuity could be very complex. Depending on temperature (and aluminum content), the
dominant transition could be ringwoodite to perovskite + magnesiowustite or there could be an intermediate
transformation from ringwoodite to garnet + magnesiowustite then to perovskite + magnesiowustite. The
transition from ringwoodite to garnet is exothermic and has a large change in density so, if the latter
transformation occurs, the 660 might actually promote convection rather than being a barrier to convection
as would be the case in the olivine-only system. Certainly, lateral variations in aluminum content and
temperature could change the character of this seismic discontinuity substantially – possibly leading to a
double transformation in certain places as may be observed (see ppt).

The D" region at the base of the mantle may also show evidence of a phase transformation(s) which
are now thought to be due to the post-perovskite transformation. This transformation is very dependent on
chemistry and apparently has a strong effective positive clapeyron slope. This means that ppv will probably
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exist in cold parts of the lowermost mantle but may not exist in hotter regions. It is even possible that the
geotherm in the boundary layer could intersect the phase boundary twice (see ppt)

9. Melting

The review paper by Boehler discusses melting of both mantle and core materials and reviews the
experimental techniques used to study melting in the DAC. Usually, we end up extrapolating melting curves
to higher pressures and some simple melting “laws” are used to do this. Most of these are based on the
Lindemann Law of melting. This simple theory of melting views the process as an instability within a crystal
when the rms amplitude of atomic vibrations reaches some critical fraction of the interatomic spacing. A
crude derivation is as follows.

Suppose we view a solid as 3N harmonic oscillators. If we neglect anharmonic effects (!), in the high
temperature regime, the thermal energy of an oscillator is simply proportional to temperature. This will be
proportional to the kinetic energy of the oscillation:

T ∝ 1
2 mω

2(δa)2

where ω is the frequency of the oscillator, m is its mass, and δa is the amplitude of the oscillations.
Suppose melting takes place when δa is some critical fraction, f , of the interatomic spacing, a at melting.

Taking averages over all modes of vibration:

Tm = K
< δa2 >

a2
· a2 = Kf2a2

where K is a constant. Now a is proportional to volume to the one third power to

Tm = CV 2/3
m

where Vm is the volume at melting. The factor C implicitly includes an average over squared mode
frequences and so will be a function of volume. Differentiating with respect to volume gives:

dlnTm
dlnVm

=
2

3
+

dlnC
dlnVm

If C is proportional to < ω2 > then we might crudely write

dlnC
dlnVm

= 2
dln < ω >

dlnVm
= −2γ̂

(Recall that γ̂ is the average of −∂lnωi/∂lnV ). We end up with the Lindemann formula:

dlnTm
dlnVm

=
2

3
− 2γ̂

where γ̂ is the harmonic Gruneisen parameter.
This formula has been used extensively in the geophysical literature but it is not clear that it is a good

representation of melting – certainly, this formula doesn’t work particularly well for the melting of many
low pressure minerals.

Some other simple melting “laws” can be derived from the Lindemann formula. If we write it as a
difference equation:

∆Tm
T 0
m

=
Tm − T 0

m

T 0
m

= (
2

3
− 2γ̂)

∆V

V0

we get the empirical Kraut-Kennedy relation:

Tm = T 0
m

[
1 +D

∆V

V0

]
where D = (2γ̂ − 2

3
)
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(remember, ∆V is negative). The Lindemann law can also be used to derive the Simon melting equation –
yet another empirical melting law. To do this, convert to an equation for pressure:

KT
dlnTm
dP

= 2γ̂ − 2

3
= D

and approximate KT as KT = K0 +K ′0(P − P0). Rearranging and integrating gives

P − P0

a
=

(
Tm
T 0
m

)c
− 1

(the usual form for Simon’s equation) with c = K ′0/D and a = K0/K
′
0.

All of these equations have been used to extrapolate melting curves to higher pressures which, given
the approximations, is probably a dangerous thing to do. Now, there is melting data for many constituents
across the pressure range of the mantle so extrapolation is not so necessary. The same is not true for the
core (next lecture) so all of these equations are still in active use.

The data indicate that the melting temperature (solidus) of mantle material is about 4000K at the CMB
which could be close to the actual temperature. This leads to the possibility that there are partially molten
regions at the CMB. There is seismic evidence to support this (see ppt).

10. Melting temperatures of the lower mantle

See accompanying power point
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