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1. A brief look at resolution analysis

Here is some background for the Masters and Gubbins resolution paper.
Global Earth models are usually found iteratively by assuming a starting model and finding small

perturbations to it. Usually, the “smallest” or “smoothest” perturbation is found that allows the data to
be fit to some tolerance. This means that the final model can end up with features of the starting model
which are not required by the data. These notes describe one way of assessing the true “resolution” of
the data.

For concreteness, we consider the free oscillation inverse problem. Suppose we let m(r) be the true
Earth and m0(r) be a starting model where m is usually taken to be the triplet of functions:

m(r) = (ρ(r), Ks(r), µ(r))

then let

δm = m − m0

then we obtain for the free-oscillation problem

δωi = 〈Gi(m0), δm〉 + O|δm|2 (1)

where, for the i’th mode

δωi = ωiobs
− ωimodel

The braket notation is shorthand for:

〈Gi(m0), δm〉 =

R∫
0

(Gρiδρ(r) + GKiδKs(r) + Gµiδµ(r)) dr

and the Gi’s can be computed from the eigenfunctions of the i’th mode for the starting model and so
are implicitly a function of m0. Equation 1 is solved under the assumption that |δm| is small enough
so that terms of order |δm|2 can be neglected.

Equation 1 is a linearization of the problem and so, in principle, it is possible to find many different
m which satisfy the data and which may not be linearly close to one another. This occurs if the G are
rapidly changing functions of m0. For the case of free-oscillations, the linearization is probably valid
since

〈Gi, δm〉

correctly predicts the perturbation in frequency, δωi, for perturbations up to several percent. (This isn’t
true for all modes but is true for the vast majority). A few percent is the typical uncertainty in the models
of the spherically averaged Earth.

Suppose we have found a model which gives a satisfactory fit to the data, i.e. the residuals, δωi,
are normally distributed with zero mean. How do we find those features of the model which are truly
resolved by the data? This question is addressed by the paper of Backus and Gilbert (1970). For
simplicity, consider a one-dimensional model (the model consists of only one function of radius):
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δωi ± σi =

R∫
0

Gi(r)δm(r) dr

for i = 1 to N . Suppose we take a linear combination of data

N∑
i

aiδωi =

R∫
0

A(r)δm(r) dr

where A(r) =
∑

aiGi(r)

Suppose we choose the multipliers, ai so that A(r) approximates a δ-function peaked at a particular
radius, r0. If we achieved this perfectly, we would have

N∑
i

aiδωi =

R∫
0

δ(r − r0)δm(r) dr = δm(r0)

With a finite amount of data we cannot make A(r) a perfect δ-function but we can try and make it as
δ-like as possible. We then have

N∑
i

aiδωi =

R∫
0

A(r)δm(r) dr

=

R∫
0

A(r)(m(r) − m0(r)) dr = 0

where we have assumed that the model, m0(r) is linearly close to the real Earth, m(r) and that the
model fits the data so that the expected value of the residuals is zero. We thus obtain

R∫
0

A(r)m(r) dr =

R∫
0

A(r)m0(r) dr = m̄(r0) say

where m̄(r0) is an average of the real Earth (averaged with our approximation to a δ-function) and
is identical to the same average of our model. We force the average to be unbiased by making A(r)
unimodular, i.e.

R∫
0

A(r) dr = 1

The data also have errors (σi) and we suppose that the uncertainties in the data are characterized by a
covariance matrix, Eij . We usually don’t know what the covariances between our data are so we assume
that the data are independent in which case Eij is diagonal with elements along the diagonal which are
the variances of the data: σ2

i . The variance of out estimate, m̄ is then given by
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σ̄2 =
∑
ij

aiajEij

We would like this to be as small as possible. We want our multipliers to make A(r) as δ-like as possible
at a radius r0 to localize information about m(r) around r0 and at the same time we want the localized
information to be precise. Backus and Gilbert show that these aims are mutually exclusive. How do we
choose the ai’s to make A(r) peaked? Consider minimizing the form

S =

R∫
0

f(r)A2(r) dr

If f(r) is dipped near r0 then we would expect A(r) to be peaked at r0. Backus and Gilbert suggest
using a parabola:

f(r) = 12(r − r0)2

The factor of 12 is introduced to make S a measure of the peak width of A which we shall call the
“spread”. (If A(r) is a boxcar of unit area centered at r0 then S is exactly the width of the boxcar). We
now have

S =
∑
ij

aiajSij

where

Sij = 12

R∫
0

(r − r0)2Gi(r)Gj(r) dr

If we define

ui =

R∫
0

Gi(r) dr

the unimodularity constraint reads ∑
aiui = 1

Since σ̄2 and S cannot be minimized simultaneously, we consider the following combination:

Mij = Sij cos θ + wEij sin θ 0 ≤ θ ≤ π/2

and minimise M where

M =
∑

aiajMij subject to
∑

aiui = 1

θ is called a “tradeoff parameter”. When θ = 0, we choose the ai to minimize the spread. When
θ = π/2 we choose the ai to minimize σ̄2. At intermediate values we compute a compromise between
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spread and error. w is a weighting factor to make w||E|| and ||S|| to be about the same – the tradeoff
calculation will then be centered about θ � 45◦. Written in vector form, our problem is

minimize a · M · a with a · u = 1

The is a problem in calculus of variations and is solved by introducing a Lagrange multiplier, λ:

minimize a · M · a + λ(a · u − 1)

Differentiating with respect to a and setting equal to zero gives

2M · a + λu = 0

Thus

a = −λ

2
M−1 · u

We can evaluate the Lagrange multiplier by dotting the above equation with u which gives

a · u = 1 = −λ

2
u · M−1 · u

So elliminating λ/2 gives

a =
M−1 · u

u · M−1 · u
Note that a must be recalculated for each value of r0 and θ and the calulation is made much more
efficient if M is diagonal. This can be achieved (Gilbert 1971) but we don’t consider numerical niceties
any further here. Once a is computed, the spread: a · S · a; the variance: a · E · a, and the resolving
kernel: a · G(r) can all be computed.

Some results of applying this technique to the mode problem are given in the accompanying PEPI
article. In the example, we simultaneously try and peak information about density at some target radius
while removing sensitivity to the elastic moduli. Rather than computing a tradeoff curve, we choose a
specific error level (0.5% say) then adjust θ until the a that gives this error level is found.

N.B. The form chosen for Sij above is relatively arbitrary. We might decide (as is done in the PEPI
paper) that we want our resolving kernel to be a boxcar between radii r1 and r2 with unit area between
these limits:

r2∫
r1

A(r) dr = 1

If B(r) is the desired boxcar then we would minimize

R∫
0

(A(r) − B(r))2 dr

Substituting in A =
∑

aiGi and expanding the square gives
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a · S · a − 2a · u +

R∫
0

B(r)2 dr

where we have redfined S and u:

Sij =

R∫
0

Gi(r)Gj(r) dr

and

ui =

r2∫
r1

Gi(r) dr

Since a · u is forced to be one, the only part of the above equation that depends on a is a · S · a. We
now form M = S cos θ + wE sin θ and find that we get the same answer for a as before:

a =
M−1 · u

u · M−1 · u
but with the redefined M and u. This form is computationally efficient since M no longer depends on
the target depth range for the boxcar. Only u has to be recomputed for new r1, r2.
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