Tomographic Surface Wave Inversion

1. Preliminaries

After downloading the directory for this tutorial, start a terminal shell (with X11 running) — make sure
you have a cshell running (csh or tcsh). Change directory to the tutorial directory and, if you have g77
installed (and in your path) then type "makeall". If you have gfortran installed then type "makeall95". You
will need gv (ghostview) installed to make plots interactively when you run some of the scripts described
below.

If you are not sure if you have the above programs available, type *which gfortran’ etc at the prompt and
you’ll find out whether your system knows about them.

2. Background on surface wave tomography

In this tutorial, you will produce tomographic images using real data. We use phase data for fundamental
mode surface waves to construct global phase velocity maps. Such maps are typically made for periods
between 250 and about 35s. Surface waves at a particular period sense structure over a wide depth range so
we require maps for a whole suite of periods to find out details of seismic structure at depth (which we donOt
do in this tutorial). Even a map at a single period can give you a good idea of typical seismic properties of
major geologic features, such as continental shields, old oceans, mid-oceanic ridges, large back-arc basins
and, sometimes, even hotspots (thought the ability to resolve the latter is quite controversial). Traditionally,
surface spherical harmonics have been chosen as the parameterization for a phase velocity map though
spherical harmonics are somewhat impractical if we want to image small-scale features. Hence, more
recently, as the data coverage has improved, researchers have been considering alternative parameterizations
(e.g. pixels or local splines) to accomodate small-scale structure. Recently, there has also been interest
in improving the theoretical basis for the inversions so that sensitivity to off great-circle path structure
can be modeled. Here, we compare phase velocity maps made by using great-circle ray theory versus
finite frequency kernels for a parameterization in terms of equal area pixels. The data we use are minor
arc Rayleighwave phase measurements at periods of 150s (R150.raw1.sel), 100s (R100.raw1.sel), and 50s
(r050.raw1.sel). These measurements were made by Goran Ekstrom’s group while he was at Harvard.

3. Making a model

The first thing you have to do is to make the matrices which relate the phase measurements to the model
(which is in d¢/c in percent, where c is phase velocity). The script runphs makes the matrix for great circle
propagation and looks like

readphs <<!
blksw?2
outputmatrix
RO50.raw1.sel

3.952
!

‘blksw?2’ is the file that specifies the parameterization — this one is for 2 degree pixels at the equator —
changing the first number in this file changes the coarseness of the parameterization — you can try pixels of
1,2,5 or 10 degrees in size. The programs will complain if you try a block size smaller than 1 degree. The
final number in the script is the average phase velocity for this period — you should use 4.280, 4.080, and
3.952 for 150, 100 , and 50 seconds respectively.

The script that makes the finite frequency kernel matrix is called runphsff and looks like

phasematff <<!
blksw?2
outputmatrix

1

20 .25

3.952

R050.raw1.sel
!

Though the order is different, the input is the same as before except for the line "20 .25" which gives
the center frequency of the calculation in mHz (20mHz=50sec) and the frequency band over which the
measurement was made. Here, .25 means the band is 0.25 « 20 = 5mHz wide so the measurements were
made from 17.5mHz to 22.5mHz. You can use 0.25 for all bands but don’t forget to change the first number
to reflect the frequency of your data file.

Once you have computed your matrices, you might want to know how well your data sample your model.
We do this by computing a ‘hit count’ where we add 1 each time a pixel is sampled by a matrix element.
Not surprisingly, the hit count for the finite frequency matrix will be much larger than the hit count for the
great circle matrix. Use script runcount:

swraycount <<!
blksw?2

1

matrixfile

1
!

domaprayct blkcnt.out

This script produces the file ‘blkcent.out’ which is plotted by domaprayct. The only thing you change is the
matrix file name. domaprayct is set up to read 2 degree models so you will have to change some numbers
in it to handle other resolutions. The only critical line is the one that says

read 90 180 1

which would become

read 180 360 1

if a 1 degree parameterization is used. Your ability to resolve structure and to get precise models depends
mainly on data coverage so take note of what your hit count map looks like.

The next step is to make the actual model. This is done using the script runlsqr:

Isqrphs <<!
blksw?2

1

matrixfile
$1

$2

500

!

aolsqmap,gv 10 tomo.int3

$1 is the first command line argument which is the multiplier for the errors (which are typically not well-
known) — you should use 1 to start with. $2 is the second command line argument and controls the amount

2

of smoothing — try a number between 0.1 and 10. The goal is to choose these numbers so that you end up
with a reasonably smooth model that fits the data. This is where the art of inversion comes in! The final
number in the script is the maximum number of iterations to be done — 500 is usually ok but you may need
to make this larger if you are doing lightly smoothed high resolution inversions.

Some numbers are printed to the screen as the iterations proceed. The program uses convergence of the
length of the model vector to decide when to stop since convergence of the fit to the data is usually quite
rapid but the effect of smoothing will not be captured for several iterations. This script works with both
great circle and finite frequency matrices. The model is in a binary file called ‘tomo.int3’. This is plotted
by the script dolsqmap_gv10. There is a color table in this script which you can adjust if you so desire.

Some of the numbers printed by the previous script reflect the fit of the model to the data but this actually
includes how well you have satisfied the smoothing constraint. To see how well you actually fit the data,
you should use the script runchi:

chisqgphs <<!

blksw2

tomo.int3

1

matrixfile

$1

7z

2

50

!

cfilh
Here, the command line argument $1 is the multiplier you used for the errors when you made the model.
The program outputs the model roughness defined by (D - x)?2, the fit to the data as defined by y2/N, the
unnormalized variance reduction (data not divided by errors) — multiply by 100 to get percent, and the
normalized variance reduction. You want the variance reduction to be large, but more importantly, x?/N
should be close to 1. The program also computes a histogram of residuals (plotted by cfilh) and gives some
statistics of the residuals. Note that the residuals are divided by the measurement errors so the standard
deviation of the histogram should be close to 1. The program also outputs a list of outliers (defined as being
off by more than 5 standard deviations) — this is written into fort.35.

4. Resolution and error

The next step is to evaluate resolution. We do this using a checkerboard test though we actually use the
shape of a spherical harmonic with a value of 1 when the spherical harmonic is positive and a value of -1
when the spherical harmonic is negative. You are asked to input the (I,m) of the harmonic you want to
recover. Remember that 360 divided by ! roughly gives the wavelength of the harmonic — or twice the
size of an equivalent block (two blocks per wavelength). You should obviously choose I so that the implicit
block size you are solving for is bigger than your model pixel size. To get something that looks like a
checkerboard, you should choose m to be about half . The script is called runcheck:

Isqrche2 <<!
blksw?2

Im

1

matrixfile

$1

$2

500

!

éiolsqmap,gv 10 tomo.int3

The command line arguments are: $1 is the multiplier for the errors you used in the inversion and $2 is the
smoothing you used in the actual inversion. The output checkerboard goes into ‘tomo.int3’ so make sure
you don’t overwrite your actual model.

Finally, we want to make an error map and we do this using the script runlsqrerr which does multiple
inversions using data sets that differ by having random numbers with the statistical attributes of the data
errors added to the true data vector:

Isqrerr <<!
blksw?2

1
matrixfile
$1

$2

500

$3

!

errmod <<!
tomo.err3

$3
!
dolsgmap_gverr stdmodel

The command line arguments are: $1 is the multiplier for the errors you used in the inversion, $2 is the
smoothing you used in the actual inversion, and $3 is the number of realizations you actually want to do (50
to 100 is fine). This program produces a binary file called ‘tomo.err3’ which contains all your realizations.
The script next runs the program errmod which askes for the ‘tomo.err3’ file and the number of realizations
it contains. This program produces two files: ‘meanmodel’ which is the mean model, and ‘stdmodel’ which
is the error map. You can plot the mean model using dolsqmap_gv10 and the script plots the error map
using dolsqmap_gverr.

There are a couple of other programs which allow you to do a comparison of models as a function of
wavelength. blktosph takes a pixel model and produces the equivalent spherical harmonic expansion as an
ascii file. The inputs are obvious except for the maximum spherical harmonic degree. Remember, there
is no point in computing coefficients for harmonics shorter than allowed by the pixel size. For example, a
2 degree pixel model corresponds to a minimum wavelength of about 4 degrees or a maximum harmonic
degree of 360/4=90. Program Icorr takes two such spherical harmonic files and returns the correlation and
amplitudes as a function of harmonic degree. A script to make a plot of the correlation between two models
as a function of harmonic degree is provided (runcorr) though it is set up for 2 degree pixel models and a
maximum harmonic degree of 80

blktosph <<!
blksw?2

$1

coff1

80

!

blktosph <<!
blksw2

$2

coff2

80

!

Icorr <<!

coff1
coff2
1

!

cfil

The command line arguments are the two model file names. Files coffl and coff2 contain the spherical
harmonic expansion coefficients.

5. Comparison of the two theories

You may need quite different values of the smoothing and error scaling for the two inversions to get a
valid comparison. The finite frequency inversion is naturally better constrained since the matrix is fuller so
may need to use less smoothing to get models which are similar to the ray theory inversion. Questions you
might ask: if i have two models with similar spectral content, which theory do i fit the data better with?; if i
have two models with similar fit to the data, which has better resolved structure — and where is the better
resolved structure?

You might like to interpret some of the features in your maps — use the fact that the longer period surface
waves are sensitive to deeper structure to help you. Where do we find anomalously fast and anomalously
slow regions? Do the patterns have anything to do with the continent/ocean distribution? Do we see
correlation with other major tectonic features?

