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Thermal convection

1. Conservation of Mass and Momentum

We derived these earlier in class

∂ρ

∂t
+∇ · (ρv) = 0 (1)

or, equivalently

Dρ

Dt
+ ρ∇ · v = 0 (2)

Note that if ∇ · v = 0, it immediately follows that Dρ/Dt = 0 so that the density of a particle does not
change with time. This states that the medium is incompressible and is a commonly used approximation in
fluid mechanics.
Conservation of linear momentum can be written

ρ
Dv
Dt

= ∇ ·T + ρg (3)

which are Cauchy’s equations of motion and they apply to the current deformed configuration. We have
not made any approximation about the constitutive relationship or the size of the deformation. The cauchy
stress tensor is related to the surface tractions on the body by

t = n̂ ·T (4)

where t is the traction acting on the surface with normal n̂.
To discuss thermal convection in the Earth we must also use another equation which we get from

conservation of energy

2. Conservation of energy

Body forces and surface forces do work on a parcel of fluid and change the internal energy and the kinetic
energy. The rate at which work is done (the input power) is

Pinput =
∫
S

t · vdS +
∫
V

ρg · vdV (5)

This can be separated into two contributions; mechanical work performed in deforming the body and work
done in changing the kinetic energy of the body. The mathematical development is as follows (remember
that A · ·B = AijBji and A : B = AijBij in a Cartesian coordinate system):
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Pinput =
∫
S

n̂ ·T · v dS +
∫
V

ρg · v dV

=
∫
V

[∇ · (T · v) + ρg · v] dV (using Gauss’ theorem)

=
∫
V

[(∇ ·T) · v + T · ·∇v + ρg · v] dV

=
∫
V

[(∇ ·T + ρg) · v + T · ·∇v] dV

=
∫
V

[ρ
Dv
Dt
· v + T · ·∇v] dV

=
∫
V

1
2 ρ

D

Dt
(v · v) dV +

∫
V

T · ·∇v dV

=
D

Dt

∫
V

1
2 ρv · v dV +

∫
V

T · ·∇v dV

=
D

Dt

∫
V

1
2 ρv · v dV +

∫
V

T · · (ε̇εε+ Ω̇ΩΩ) dV

=
D

Dt

∫
V

1
2 ρv · v dV +

∫
V

T · · ε̇εε dV because T is symmetric
and ΩΩΩ is antisymmetric

Note that we separated the gradient of velocity tensor into a symetric and antisymmetric part: ∇v = ε̇εε+ Ω̇ΩΩ)
where ε̇εε is the symmetric strain rate tensor. Finally we get

Pinput =
D

Dt

∫
V

1
2 ρv · v dV +

∫
V

T : ε̇εε dV because T is symmetric (6)

which clearly shows the separation into mechanical work and kinetic energy. The mechanical work
contributes to the change in internal energy (from the first law of thermodynamics).

There will be other sources (and sinks) of energy input which we denote Qinput. In mantle convection,
we will have conduction and radioactive heat generation:

Qinput = −
∫
S

q · n̂ dS +
∫
V

ρh dV

where h is the rate of heat generation per unit mass, q = −k∇T is the heat flux, T is temperature, and k is
the thermal conductivity. If U is the total energy of the volume then

U̇ = Pinput +Qinput (7)

This is a statement of the first law of thermodynamics. U consists of the change of kinetic energy plus the
change of internal energy of the volume so

U̇ =
D

Dt

∫
V

[ 12 ρv · v + ρE] dV

where E is the internal energy per unit mass. As we have already separated out the change of kinetic energy
in Pinput we can get an expression for the change of internal energy. Combining 6 and 7 gives
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D

Dt

∫
V

ρE dV =
∫
V

T : ε̇εε dV −
∫
S

q · n̂ dS +
∫
V

ρh dV

or (using Gauss’ theorem and the Reynolds mass transport theorem)

ρ
DE

Dt
= ρh−∇ · q + T : ε̇εε (8)

For a homogeneous material, dE = TdS − PdV = TdS + Pdρ/ρ2 and

dS =
(
∂S

∂T

)
P

dT +
(
∂S

∂P

)
T

dP =
Cp
T
dT − α

ρ
dP

so

ρ
DE

Dt
= ρCp

DT

Dt
− αT DP

Dt
+
P

ρ

Dρ

Dt
= ρh−∇ · q + T : ε̇εε

Finally we write T as a deviatoric and isotropic part (where the isotropic part is, by definition, the pressure)

T = T′ − P I whence T : ε̇εε = T′ : ε̇εε− P∇ · v = T′ : ε̇εε+
P

ρ

Dρ

Dt

and so we end up with

ρCp
DT

Dt
− αT DP

Dt
= ρh−∇ · q + T′ : ε̇εε (9)

or equivalently

ρCp

[
DT

Dt
−
(
∂T

∂P

)
S

DP

Dt

]
= ρh−∇ · q + T′ : ε̇εε (10)

The term in square brackets is the change in temperature in excess of that which comes from adiabatic
compression.

3. Incompressible convection in the Boussinesq approximation

As noted above, in incompressible convection, ∇ · v = 0, and we have been playing with a simplified
version of the momentum equation where we have a Newtonian fluid with a constant viscosity. In the limit
of small Reynolds number, we have

0 = −∇P + η∇2v + δρg (11)

where P is the pressure due to flow. Note that we have included a source of buoyancy to drive flow where,
for thermal convection,

δρ ' −ραδT (12)

α is the coefficient of thermal volume expansion and δT is the perturbation in the temperature. Note that
assuming incompressibility but allowing a variation in density only in the terms involving gravity is called
the Boussinesq approximation.

In an incompressible material, there is no change in density due to movement in a hydrostatic pressure
gradient so the second term in the square brackets in equation (10) can be neglected (essentially we are
assuming the bulk modulus becomes infinite in which limit the adiabatic temperature gradient is zero) so
giving
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ρCp
DT

Dt
= ρh−∇ · q + T′ : ε̇εε (13)

Now divide through by ρCp and assume that the thermal conductivity in q = −k∇T is independent of
position and we end up with

DT

Dt
=

h

Cp
+ κ∇2T +

1
ρCp

T′ : ε̇εε (14)

where κ = k/(ρCp) is the thermal diffusivity. In what immediately follows, we will be ignoring radioactivity
and just consider heating from below. We will also ignore the viscous heating associated with the flow (we
will check the validity of this assumption later). We now end up with

DT

Dt
= κ∇2T (15)

4. Linear Stability Analysis

Consider a layer of fluid that has depth b and is heated from below (the Benard problem), such that the
temperatures at the top and bottom are T0 and T1, respectively. The fluid is stationary, with heat conducting
across it having established a linear temperature gradient according to the steady-state energy equation (pure
diffusion and no advection). We can assume the temperature distribution (Tc) within the fluid is

492 Fluid Mechanics

Figure 6.38 Two-dimensional cellular convection in a fluid layer heated
from below.

6.19 Linear Stability Analysis for the Onset of Thermal
Convection in a Layer of Fluid Heated from Below

The layer of fluid illustrated in Figure 6–38 is heated from below; that is,
its upper surface y = −b/2 is maintained at the relatively cold reference
temperature T0 and its lower boundary y = b/2 is kept at the relatively hot
temperature T1(T1 > T0). We assume that there are no heat sources in the
fluid. Buoyancy forces tend to drive convection in the fluid layer. Fluid near
the heated lower boundary becomes hotter and lighter than the overlying
fluid and tends to rise. Similarly, fluid near the colder, upper boundary is
denser than the fluid below and tends to sink. However, the motion does
not take place for small temperature differences across the layer because the
fluid’s viscous resistance to flow must be overcome. We use the equations of
the preceding section to determine the conditions required for convection to
occur, such as the minimum temperature difference.

In the absence of convection, that is, for T1 − T0 sufficiently small, the
fluid is stationary (u = v = 0), and we can assume that a steady (∂/∂t = 0)
conductive state with ∂/∂x = 0 exists. The energy equation (6–293) then
simplifies to

d2Tc

dy2
= 0, (6.294)

where the subscript c indicates that this is the conduction solution. The
solution of Equation (6–294) that satisfies the boundary conditions T = T0

at y = −b/2 and T = T1 at y = +b/2 is the linear temperature profile

Tc =
T1 + T0

2
+

(T1 − T0)
b

y. (6.295)

If one imagines gradually increasing the temperature difference across the
layer (T1 − T0), the stationary conductive state will persist until T1 − T0

Tc =
T1 + T0

2
+
T1 − T0

b
y (16)

However, the temperature of the bottom boundary (T1) is sufficient to drive convection, so we are actually
interested in the temperature in the fluid as it first exceeds this conductive temperature profile. This can be
considered an arbitrarily small perturbation to the background profile which will be denoted as

T ′ ≡ T − Tc = T − T1 + T0

2
− T1 − T0

b
y (17)

We begin with the conservation equations for mass, momentum, and energy in 2-D cartesian geometry
assuming buoyancy forces driven by thermal expansion but that the fluid is still incompressible (Boussinesq).
Writing the above equations incomponent form (y is downward) we have
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0 =
∂u

∂x
+
∂v

∂y

0 = −∂P
∂x

+ η

(
∂2u

∂x2
+
∂2u

∂y2

)
0 = −∂P

∂y
+ η

(
∂2v

∂x2
+
∂2v

∂y2

)
− ρ0αg∆T

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
(18)

Notice that these equations are coupled with temperature appearing in the momentum equation and velocities
appearing in the energy equation. It also has non-linear terms which contain both temperature and velocity.

When the fluid is stable it is motionless throughout, u = v = 0 everywhere. Since we are interested in
describing the system when it first begins to overturn, we would be looking at very small perturbations to
velocity, such as u′ and v′. The same is true for the pressure.

We can rewrite T as a function of T ′

T = T ′ +
T1 + T0

2
+
T1 − T0

b
y (19)

Derivatives in t, x, and y components would correspond to

∂T

∂t
=
∂T ′

∂t
(20)

∂T

∂x
=
∂T ′

∂x
(21)

∂T

∂y
=
∂T ′

∂y
+
T1 − T0

b
(22)

The equations can be recast entirely in terms of the small perturbations which gives us the equations of
convection at the first onset. We should distinguish that ∆T is substituted for T ′ as the temperature pertur-
bation is providing the driving force, however the finite temperature difference describing the background
temperature profile (T1 − T0)/b remains in the energy equation:

0 =
∂u′

∂x
+
∂v′

∂y

0 = −∂P
′

∂x
+ η

(
∂2u′

∂x2
+
∂2u′

∂y2

)
0 = −∂P

′

∂y
+ η

(
∂2v′

∂x2
+
∂2v′

∂y2

)
− ρ0αgT

′

∂T ′

∂t
+ u′

∂T ′

∂x
+ v′

(
∂T ′

∂y
+
T1 − T0

b

)
= κ

(
∂2T ′

∂x2
+
∂2T ′

∂y2

)
(23)

To linearize the system, we can assume that terms with two small perturbations multiplied can be neglected,
however we must distinguish between higher order derivatives on a perturbation variable (and keep them).
Only the energy equation is effected and reduces to:

∂T ′

∂t
+ v′

T1 − T0

b
= κ

(
∂2T ′

∂x2
+
∂2T ′

∂y2

)
(24)

The momentum equations can be combined by using the standard trick of taking the ∂/∂y on the x-
momentum equation and ∂/∂x on the y-momentum equation, then subtracting one from the other. Further,
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we can substitute in for the stream function ψ′ where possible. This gives us now just two equations since
the continuity equation is automatically satisfied with the stream function:

0 = η

(
∂4ψ′

∂x4
+ 2

∂4ψ′

∂x2∂y2
+
∂4ψ′

∂y4

)
− ρ0αgT

′ = η∇4ψ′ − ρ0αg
∂T ′

∂x
(25)

Substituting the stream function where possible into the energy equation gives:

∂T ′

∂t
+

∆T
b

∂ψ′

∂x
= κ

(
∂2T ′

∂x2
+
∂2T ′

∂y2

)
(26)

We also need to consider the new boundary conditions, as now the equations are for perturbations (u′, v′, T ′)
rather than (u, v, T ). Since the boundary conditions for the momentum equation are v = 0 on y = ±b/2,
these must also be enforced when there are only small deviations of velocity being considered. So even if
small perturbations of v can occur throughout the fluid, at the boundary there cannot be any deviations as
v = 0, so as a consequence, v′ = 0 on y = ±b/2. The same is true for the temperature boundary conditions,
so T ′ = 0 on both top and bottom boundaries as the specified temperatures at those boundaries still hold.
Because these equations are linear with constant coefficients, we can solve them with separation of variables.
The boundary conditions are automatically satisfied by solutions of the form:

ψ′ = ψ′0 cos (
πy

b
) sin (kx)eβt (27)

and

T ′ = T ′0 cos (
πy

b
) cos (kx)eβt (28)

where the wavenumber k = 2π/λ. These solutions have already taken into account the boundary conditions,
which must be symmetric about y with v′ = 0 on both top and bottom boundaries which requires a cosine.
We will refer to these equations in shorthand as ψ′ = ψ′0CSE and T ′ = T ′0CCE. These can be plugged into
the energy and momentum equations to get:

0 = η

(
ψ′0k

4CSE + 2ψ′0k
2
(π
b

)2

CSE + ψ′0

(π
b

)4

CSE

)
+ ρ0gαT

′
0kCSE (29)

T ′0βCCE + (∆T/b)kψ′0CCE = κ

(
−T ′0k2CCE − T ′0

(π
b

)2

CCE

)
(30)

After eliminating the common terms on both sides of each equations (CCE and CSE), the remaining terms
can be grouped with T ′0 and ψ′0 as follows:

−T ′0ρ0gαk = ηψ′0

(
k2 +

(π
b

)2
)2

(31)

T ′0

(
β + κ

(
k2 +

(π
b

)2
))

= −ψ′0(∆T/b)k (32)

Now T ′0 and ψ′0 can be eliminated from the equations as the amplitudes of the perturbation turn out to be
both arbitrary and unimportant to the conditions at the very onset of convection.

−
(
ψ′0
T ′0

)
=
ρ0gαk

η

1(
k2 +

(
π
b

)2)2 =
β + κ

(
k2 +

(
π
b

)2)
(∆T/b)k

(33)

The system has been reduced to a single expression, which can be rearranged into a characteristic equation
for the growth rate, β,
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β + κ

(
k2 +

(π
b

)2
)

=
ρ0gα∆Tk2

η

1

b
(
k2 +

(
π
b

)2)2 (34)

Now we will multiply both sides through by a b2 and divide both sides by κ giving

b2

κ
β + (k2b2 + π2) =

ρ0gα∆Tk2b2

ηκ

1

b
(
k2 +

(
π
b

)2)2 (35)

Multiplying the left hand side by b on the top and bottom will give first us a Rayleigh number, and then
again by b2 will give:

b2

κ
β + (k2b2 + π2) =

Rak2

b2
(
k2 +

(
π
b

)2)2 =
Ra b2k2

b4
(
k2 +

(
π
b

)2)2 (36)

where

Ra =
ρ0gα∆Tb3

ηκ
(37)

This is the appropriate form for the Rayleigh number for bottom heating and balances the buoyancy force
on the top with the dissipative forces on the bottom. We can factor the denominator on the LHS,

b2

κ
β + (k2b2 + π2) =

Rak2b2

(k2b2 + π2)2
(38)

and then substitute γ = kb,

b2

κ
β + (γ2 + π2) =

Raγ2

(γ2 + π2)2
(39)

We can isolate β onto the RHS:

b2

κ
β =

Raγ2 − (γ2 + π2
)3

(γ2 + π2)2
(40)

At the point of marginal stability, the system is neither stable nor unstable, and thus β is exactly zero. For
this to be true, it means:

Raγ2 − (γ2 + π2
)3

= 0 (41)

and solving for Ra we get the critical Rayleigh number, Rac

Rac =

(
γ2 + π2

)3
γ2

(42)

and the system will be unstable if β is positive, or if Ra > Rac. Note that the critical Rayleigh number is
dependent on frequency – see figure below

We can find the wavelength where the critical Rayleigh number is an absolute minimum by taking the
derivative with respect to γ

dRa

dγ
=

3 · 2γ
(
γ2 + π2

)2
γ2

− 2
(
γ2 + π2

)3
γ3

(43)

Setting equal to zero, we get, after a little algebra,
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6.19 Linear Stability Analysis for the Onset of Thermal Convection 497

Figure 6.39 Critical Rayleigh number Racr for the onset of convection in
a layer heated from below with stress-free boundaries as a function of di-
mensionless wave number 2πb/λ.

the point lies above the curve, the perturbation of wavelength λ is unsta-
ble; if the point lies below the curve, convection cannot occur with distur-
bances of wavelength λ. For example, if Ra = 2000, all disturbances with
0.8 ! 2πb/λ ! 5.4 are convectively unstable. However, convection cannot
occur for 2πb/λ ! 0.8 and 2πb/λ " 5.4. Figure 6–39 shows that there is a
minimum value of Racr. If Ra lies below the minimum value, all disturbances
decay, the layer is stable, and convection cannot occur.

The value of 2πb/λ at which Racr is a minimum can be obtained by setting
the derivative of the right side of Equation (6–319) with respect to 2πb/λ

equal to zero. One obtains

∂Racr

∂
(

2πb
λ

) =

⎡⎣4π2b2

λ2
3

(
π2 +

4π2b2

λ2

)2

2
(

2πb

λ

)

0 = (4γ2 − 2π2)
(
γ2 + π2

)2
(44)

which means the only real roots that exist are for when

γ2 =
π2

2
or γ = π/

√
2] (45)

This gives us a wavenumber of k = π/(b
√

2) and we get a wavelength of λ = 2
√

2bwhich is the wavelength
that will occur at the onset of convection. We can now go back and substitute the result γ2 = π2/2 into our
expression for critical Rayleigh number,

Rac =

(
3π2

2

)3

π2

2

=
27π4

4
(46)

This value is about 660. This analysis can be repeated for internal heating and a slightly different
definition of the Rayleigh number is appropriate

Rah =
ρ2
0gαhb

5

kηκ
(47)

where h is the internal heat generation per unit mass. Using reasonable values of the parameters gives a
Rayleigh number of 2× 109 for whole mantle convection. This is a large value and leads to vigorous rapidly
varying convection. Of course, the b5 term is very important and restricting convection to the upper mantle
results in a Rayleigh number of about 2× 106
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5. Boundary layer theory

These notes are based on a presentation of Bruce Buffett at a CIDER workshop. For the purposes
of this section, we continue to consider an incompressible flow in 2d geometry. The main consequence
of incompressibility is that the interior of a convective flow tends to be isothermal (when averaged over
horizontal surfaces) rather than adiabatic. We shall mainly use the energy equation (without viscous heating):

ρCp
DT

Dt
= ∇ · (k∇T ) + ρh (48)

which represents the balance between the heat released by cooling with the heat lost by conduction and the
heat input by radioactive heat generation. Assuming k is independent of position then

DT

Dt
=
∂T

∂t
+ v · ∇T = κ∇2T +

h

Cp
(49)

where κ is the thermal diffusivity. If we assume that we have a steady state so that ∂T/∂t = 0, the second
term on the left represents convection of heat, the first term on the right is conduction and the second term
on the right is heat production by radioactive elements. To keep life simple, we shall also neglect the
radioactive heat production term and just have heating from below. In this case, we expect the horizontally
averaged temperature profile to look something like:

If convection dominates, equation 49 becomes:

v · ∇T ' 0

so the interior of the flow becomes isothermal. In the boundary layers, conduction dominates, and equation
49 just becomes the diffusion equation:

∂T

∂t
= κ∇2T (50)

Let the thickness of the upper boundary layer be δ , then

∇T ' ∆T
2δ

and ∇2T = ∇ · (∇T ) ' ∆T
2δ2

Now think of fresh material coming to the surface and beginning to cool (as in a tectonic plate). What are the
characteristic times and distances for development of the boundary layer. Let us suppose the characteristic
time for conduction is τ then
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∂T

∂t
= κ∇2T → ∆T

2τ
= κ

∆T
2δ2

(51)

from which

τ =
δ2

κ
and δ =

√
κτ

We now think of the top boundary layer cooling by conduction and thickening until it reaches a critical
time, tc, at which it becomes unstable and sinks into the interior (kind of like subduction – but not quite,
since the location of subduction is not just controlled by the place where the upper boundary layer becomes
unstable). The heat conducted out of the surface as a function of time is

q(t) = k
∆T

2δ(t)
= k

∆T
2
√
κt

Now suppose we time-average to get the mean heat flux out as time evolves from t = 0 to t = tc. i.e., the
time taken for the boundary layer to evolve to instability. Integrating the above equation gives

q̄ =
1
tc

tc∫
0

q(t) dt =
k∆T√
κtc

= k
∆T
δc

(52)

Now we shall make a quick digression to discuss the Rayleigh number which, for our case of bottom-heated
convection, is

Ra =
αg∆Td3

κν
(53)

where ν = η/ρ is the kinematic viscosity. The Rayleigh number is the ratio of buoyancy forces, in this case
αg∆T , to forces that oppose convection (viscous and conductive). As shown in the previous section, if the
Rayleigh number exceeds a certain amount (the critical Rayleigh number) then the system will convect.
For spherical shells, the critical Rayleigh number (Rac) is about 1000. The larger the Rayleigh number, the
more vigorous is the convection. Note that d is the thickness of the convecting system and the Rayleigh
number for bottom heating is proportional to d3.

If the system is initially not convecting then the solution to the diffusion equation gives a linear temperature
profile across the whole layer of thickness d:

q =
k∆T
d

(54)

When the system convects, the heat flow will be larger than this. We measure this effect using the Nusselt
number which is defined as the total heat flow out of the system divided by the heat flow if only conduction
is operating. The Nusselt number plays a key role in thermal histories of the Earth.

So, why did we have this short digression on the Rayleigh number? We shall suppose that the upper
boundary layer becomes unstable when its Rayleigh number exceeds its critical value. This Rayleigh number
would be

Raδ =
αg(∆T/2)

κν
δ3(t)

The upper boundary layer will become unstable when this number exceeds Rac, ie when δ = δc. Thus

δc = Ra
1
3
c

(
2νκ
αg∆T

) 1
3

We can simplify this by noting the definition of the Rayleigh number (equation 53) so that
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δc
d

=
(

2Rac
Ra

) 1
3

(55)

Now consider the (time-averaged) Nusselt number, which, by definition, is:

Nu =
q̄

qcond

where q̄ is given by equation 52 and qcond is given by equation 54. Thus

Nu =
k∆T
δc
· d

k∆T
=

d

δc

So, from equation 55, we have

Nu =
(

Ra
2Rac

) 1
3

(56)

Note that this form is valid for vigorous convection when Ra� Rac. For low Rayleigh number, we expect
the Nusselt number to tend to one as Ra tends to Rac. Numerical calculations and lab experiments indicate
that the power in this equation should be closer to 0.3 rather than 1/3 and the relation is usually written in a
more general form:

Nu = aRaβ (57)

This form has been used for calculating thermal histories of the earth. We also note that this boundary layer
analysis can also be developed for internally heated flows where slightly different results are obtained.

Note that nothing in this development yet implies laminar flow and simple Rayleigh-Bernard convection
(as implied by the above figure) which is the usual case in the development of boundary layer theory. The
convection can be time-dependent and our heat flow estimates are time averaged over the time scale of an
instability developing in the upper boundary layer. If we want to estimate a velocity of convection from
these scaling arguments, we have to use the energy equation in approximate steady state:

v · ∇T = κ∇2T

Consider the picture above. Since we are dealing with unit aspect ratio convection, in the top boundary
layer, we have

vx
∂T

∂x
' κ∂

2T

∂z2
→ v∆T

d
= κ

∆T
2δ2

where we have used ∂T/∂x ' ∆T/d so

v =
κ

2d

(
d

δ

)2

=
κ

2d
Nu2 (58)

Equations 55, 56, and 58 are our main results though equation 58 is really a low Ra approximation. It
is instructive to consider some numbers. Rac is about 103 and using standard numbers for whole mantle
convection (d ' 3000km) gives Ra about 107. The Nusselt number is about 17 and the thickness of the
boundary layer is about 170 km. A typical velocity is only about 2mm/yr. If Ra is 108, the Nusselt number
is about 37 and the thickness of the boundary layer is about 80km and a typical velocity is 1 cm/yr. Clearly
our velocities are a little lower than plate speeds but velocities in the lower mantle may well be much slower
than the surface plate values so 1 cm/yr may not be unreasonable for an average value.
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6. Compressible convection

We have already derived the governing equations which are conservation of mass (equations 1 and 2),
conservation of momentum which we write in terms of the deviatoric stress as

ρ
Dv
Dt

= −∇P +∇ ·T′ + ρg (59)

and equation 10 which we rewrite here:

ρCp
DT

Dt
− αT DP

Dt
= ρh−∇ · q + φ (60)

where φ is the viscous dissipation. When allowing for compressibility, we need to be a little careful with
the constitutive relation. We write

T ′ij = 2η[ε̇ij − 1
3 ε̇kkδij ] (61)

where η is the effective viscosity which can be a function of stress, temperature, etc. The term in square
brackets is called the "strain rate deviator" and we use this because the deviatoric stress is trace-free by
definition. It is conventional to ignore "bulk" viscosity which could arise during compression and expansion
of a material.

In compressible convection, a background reference state needs to be chosen. A natural choice is one of
hydrostatic pressure and an adiabatic thermal state. We let

T = T̄ + θ P = P̄ + P ′, and ρ = ρ̄(T̄ , P̄ ) + ρ′ (62)

where the barred quantities are independent of time. Note that ρ′ and P ′ are small relative to the background
state but θ may not be. The background state has g = −gr r̂, and in what follows, we shall neglect the
effect of temperature variations associated with convection on g. Furthermore, we shall neglect the effect
of convection on background thermodynamic variables such as Cp and α, etc. . Consequently,

∇P̄ = ρ̄g = −ρ̄gr r̂

∇ρ̄ = ∇P̄
(
∂ρ

∂P

)
S

= ∇P̄ ρ̄

Ks

∇T̄ = ∇P̄
(
∂T

∂P

)
S

= ∇P̄ αT̄

ρ̄Cp


(63)

People who do mantle convection tend to be a little cavalier about integrating this background state. For
example, the last of these can be written

dT̄

dr
= −αgr

Cp
T̄ (64)

It is often assumed that αgr/Cp is a constant giving

T̄ (r) = T̄a exp
(
αgr
Cp

(a− r)
)

(65)

where a refers to some reference radius where T̄ = T̄a. While Cp and gr are roughly constant in the mantle,
α is not. Similarly, they are cavalier about the integration for ρ̄. Sometimes, they use the Gruneisen ratio γ
to write

ρ̄

Ks
=

α

γCp
(66)

so the second of equation 63 becomes
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dρ̄

dr
= − αgr

γCp
ρ̄ (67)

which they integrate to give

ρ̄ = ρr exp
(
αgr
γCp

(a− r)
)

(68)

where ρr is a reference density at r = a which, again,may not be the surface. This form actually has the
wrong curvature – but we will follow this convention for now. Finally, we relate the perturbation in density
ρ′ to perturbations in pressure and temperature using the following approximate equation of state:

dρ =
(
∂ρ

∂P

)
T

dP +
(
∂ρ

∂T

)
P

dT (69)

so

ρ′ =
ρ̄

KT
P ′ − αρ̄θ =

ρ̄

KS

Ks

Kt
P ′ − αρ̄θ =

Cp
Cv

α

γCp
P ′ − αρ̄θ (70)

(remember KS/KT = Cp/Cv = 1 + αTγ where the last term is on the order of 0.05). With this background
state, the momentum equation looks like

ρ
Dv
Dt

= ∇ ·T′ −∇P + ρg

= ∇ ·T′ −∇P ′ + ρ′g

= ∇ ·T′ −∇P ′ + Cp
Cv

αgP ′

Cpγ
− αρ̄gθ

 (71)

Consider the entropy equation (equation 60). Here we use the fact that P ′ � P and the local time derivatives
of T̄ and P̄ are zero, so

ρ̄Cp
Dθ

Dt
= ρ̄h+∇ · (k∇(T̄ + θ)

)
+ φ− ρCpv · ∇T̄ + α(T̄ + θ)v · ∇P̄ (72)

Using the fact that ρ̄Cpv · ∇T̄ = αT̄v · ∇P̄ , the definition of∇P̄ , and neglecting products of small quantities
gives

ρ̄Cp
Dθ

Dt
= ρ̄h+∇ · (k∇(T̄ + θ)

)
+ φ− ρ̄grαθ(v · r̂) (73)

7. Scaling the equations and the anelastic liquid approximation

We have already chosen a reference value for density (ρr) and for Cp so choosing a reference value for the
thermal conductivity kr gives us a reference value for thermal diffusivity: κr = kr/ρrCp. It is conventional
to scale time using the diffusion time: L2/κr where L is a charcteristic length scale (e.g. the depth of the
mantle). Velocity scales as κr/L and stress scales as ηrκr/L2 where ηr is a reference viscosity. We also
need to choose a reference value for thermal expansion αr and bulk modulus KTr, and finally, we normalize
temperature with a characteristic temperature difference driving convection, ∆Tr.

At this point, reconsider our "equation of state" for density, equation (70), and, using ρ = ρ̄+ ρ′ we have

ρ = ρ̄

[
1 +

P ′

KT
− αθ

]
(74)

Now non-dimensionalize and using an asterisk to denote scaled quantities gives
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ρ∗
ρ̄∗ = 1 +

P ′∗
K∗T

M2Pr − α∗θ∗ε (75)

where M is the Mach Number and Pr is the Prandtl number given by

M2 =
κ2
rρr

KTrL2
and Pr =

ηr
ρrκr

and ε = αr∆Tr (76)

The Mach number is a characteristic velocity of flow divided by the velocity of sound. To see this, recognise
that KT = ρc2 where c is a sound velocty (in this case, the bulk sound speed). The velocity scaling for
convection is κr/L and, while this is a diffusive time scale, we know from discussion of the Peclet number,
that convective time scales are ony 3 orders of magnitide larger.

The anelastic liquid approximation is valid if M2Pr � 1 and ε� 1. The Prandtl number is about 1023 in
the mantle, but the Mach number is tiny and M2 ' 10−33. Even if a typical mantle convective velocity is
used to compute the Mach number, M2Pr � 1.

This analysis tells us that ρ′/ρ̄� 1. In the limit that ε→ 0 and M2Pr → 0, the equation for conservation
of mass just reads ∂ρ/∂t = 0, (since ρ̄ is independent of time and ρ′ is small). From equation (1) we get that

∇ · (ρv) = 0 = ρ∇ · v + v · ∇ρ
Using the reference state, mass conservation becomes:

∇ · v − αgr
γCp

v · r̂ = 0 (77)

We can now non-dimensionalize equations 71, 73, and 77. First, we define the "Dissipation number"

Di =
αrgrL

Cp
(78)

and equation 77 becomes

∇ · v∗ − Di

γ
v∗ · r̂ = 0 (79)

and the Navier-Stokes equation becomes

ρ∗

Pr

Dv∗

Dt∗
= ∇ · T̄′∗ −∇P ′∗ − Di

γ

Cp
Cv

ρ∗P
′∗r̂−Raρ∗α∗θ∗r̂ (80)

Clearly the first term can be neglected: inertial terms are irrelevant which means that if we stopped driving
mantle convection the motion would stop instantaneously. Ra is the Rayleigh number, which, for this type
of temperature normalization is

Ra =
αrρ

2
rgr∆TrL

3

ηrκr
(81)

The energy equation becomes (note that φ has units of a stress times a velocity)

ρ∗
Dθ̄∗

Dt∗
+Di ρ∗α∗θ∗v∗ · r̂ = ∇ · [k∗(∇θ∗)] +

Di

Ra
φ∗ + ρ∗h∗ +Di2T̄ (82)

and the non dimensional scaling for h is given by L2hr/kr∆Tr. The second order term at the end of the
equation comes from using equation 65 in the equation ∇ · (k∇T̄ ) since ∇T̄ = −DiT̄/L.

The Boussinesq approximation (where the only place departures from the reference density state are
included is in the thermal buoyancy term and the material is otherwise deemed incompressible) is obtained
by setting Di = 0. Other slightly different forms of the equations are possible (see Tackley 1996).

A more general form for the Rayleigh number is given by
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Ra =
grαrFL

4

κ2
rνr

where νr =
ηr
ρr

(83)

where F is related to the heat flux that would be carried in the absence of heating: |q| = ρCpF . For internal
heating only

F =
|q|
ρCp

=
ρhL

ρCp
=
hL

Cp

and Ra is

Ra =
αrρ

2
rgrhrL

5

krηrκr

For bottom heating which induces a difference in "potential" temperature across the system of ∆T then
F = κ∆T/L and Ra is defined as in equation 81. (The potential temperature measures the temperature
difference available to drive convection and does not include any adiabatic temperature rise). The Rayleigh
number measures the strength of buoyancy forces relative to the strength of dissipative forces. The critical
Rayleigh number that needs to be exceeded to get convection is on the order of 1000 (see Schubert et al,
2001, Chapter 7). For whole mantle convection Ra is on the order of 109. In this case, mantle convection
is vigorous and turbulent. High viscosities at the base of the mantle may mean that the effective Rayleigh
number is depth dependent and that the critical Rayleigh number near the base of the mante is barely
exceeded. Flow in such a region may be large-scale and laminar.

8. Other approximations to the system of equations

The paper by King et al (2010) considers some other approximations to the equations. Some solvers have
difficulty with the P ′ buoyancy term in equation 80 and truncate to give

0 = ∇ · T̄′∗ −∇P ′∗ −Raρ∗α∗θ∗r̂ (84)

This is called the "truncated anelastic liquid approximation" but has some negative numerical consequences.
In particular, there are some volume-averaged quantities which should be identical (see below) but this is
not achieved in this approximation.

The extended Boussinesq approximation keeps incompressibility but includes the term in Di on the
LHS of equation 82 and the viscous dissipation term on the RHS. The reference state is changed to
ρ̄ = 1, T̄ = 0, α = 1, k = 1, and Cp = 1.

9. Convective efficiency for the mantle

A treatment of the global entropy and energy equations leads to the concept of convective efficiency. The
energy equation can be manipulated to give the desired result. For simplicity, we assume a steady state and
that the boundaries of the mantle are not moving radially (v · r̂ = 0). A steady state implies that ∂ρ/∂t = 0 so
conservation of mass gives ∇ · (ρv) = 0 – this is the same as the anelastic liquid approximation. Integrating
the energy equation over the whole mantle gives the rather obvious result (for steady state)

Q =
∫
S

q · dS =
∫
V

ρhdV (85)

where Q (the net heat flux out of the mantle) is just balanced by internal radioactive heat production. To
look at dissipation, we must use the entropy equation again

ρT
Ds

Dt
= ρCp

[
DT

Dt
−
(
∂T

∂P

)
S

DP

Dt

]
= ρh−∇ · q + T′ : ε̇εε (86)
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Integrating this equation over the mantle gives (assuming steady state)

∫
V

ρCpv · ∇TdV −
∫
V

αTv · ∇PdV +
∫
S

q · dS−
∫
V

ρhdV =
∫
V

T′ : ε̇εεdV = Φ (87)

where Φ is the global rate of viscous heating. To a good approximation, Cp is a constant in the mantle then
we can write

∫
V

ρCpv · ∇TdV =
∫
V

Cp∇ · (ρvT )dV =
∫
S

ρTCpv · dS = 0 (88)

where we have assumed the mantle is neither expanding or contracting and we have used ∇ · (ρv) = 0. If
we now use the global conservation of energy, we have

Φ = −
∫
V

αTv · ∇PdV (89)

This equation implies that the global rate of dissipative heating is exactly cancelled by the work done against
the adiabatic gradient. It turns out that the pressure gradient is dominated by the hydrostatic background
term so that ∇P ' −ρgr̂ where r̂ points in the upward radial direction. Then

Φ =
∫
V

gα

Cp
ρCpTVrdV (90)

where Vr is the radial velocity. If we average over horizontal surfaces, we see that < ρCpTVr > is the
horizontally averaged convective heat flux, and using the definition of the Dissipation number (assumed
constant) we find that

Φ = DiQconv ≤ DiQs (91)

where Qs is the total heat flux out of the top surface and Qconv is the convected heat flux. When the
convection is vigorous (i.e. large Rayleigh number), the Nusselt number is large and Qconv ' Qs so we can
define an "efficiency" as

Φ
Qs
≤ Di (92)

Clearly, when the dissipation number is small and the Boussinesq approximation is valid, the global rate
of viscous dissipation is small and can be neglected. The dissipation number depends on the depth scale
of convection and for whole-mantle convection, Di ' 0.5 so that it is possible that viscous dissipation is
important on a global scale.

For internal heating, the efficiency must be modified a bit as the convective heat flux now changes as a
function of depth and we find that viscous dissipation can be reduced.

This global analysis says nothing about the local importance of dissipative heating which can localize
deformation when one has temperature dependent viscosity.
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10. Thermal history for the mantle

The Nusselt number - Rayleigh number relationship derived above and verified in numerical experiments
on isoviscous fluids can be used in thermal history calculations:

Nu = aRaβ (93)

with β ' 0.3. One might think that assuming a constant viscosity is not a particularly good approximation
for the Earth and it is certainly true that including a temperature dependent viscosity can dramatically change
the exponent. Typically what happens is that the cold upper boundary layer becomes highly viscous and
forms a "stagnant lid" which strongly reduces the efficiency of convective heat flow and β can become 0.1
or smaller. Such a relationship would probably be appropriate to use on Venus but Earth has plate tectonics
and the upper boundary layer gets recycled in a fashion more similar to the isoviscous calculations. In fact,
numerical calculations with weak zones in the upper plate to allow initiation of subduction lead to values of
β of about 0.3.

To do thermal history calculations, we use the energy equation integrated over the volume of the mantle.
The mantle is allowed to cool and, in most cases, the adiabatic heating term and viscous heating terms are
neglected. As shown above, these terms cancel globally if the mantle neither expands or contracts though
this is unlikely to be a good approximation over the age of the Earth. We write the simplified energy equation
as ∫

V

ρCp
∂T

∂t
dV = −Qout +Qin +

∫
V

ρhdV (94)

We now write dT̄ /dt as the mean cooling rate of the mantle giving

MCp
dT̄

dt
= −Qout +Qin + E (95)

where E is the radioactive heat generation in the mantle and M is the mass of the mantle. Note that E is
a function of time and is roughly exponentially decreasing. We are going to use the form for the Nusselt
number defined above but we need to be a little careful about our definition of Rayleigh number. The usual
form is

Ra =
αgρT̄d3

κη
(96)

where we have normalized the temperature such that the surface temperature is zero and T̄ is the mean
interior temperature. The Nusselt number can be written as

Nu =
Qout

Qcond(T̄ )
(97)

where Qcond(T̄ ) is the hypothetical heat flow that would emerge with the given average temperature, T̄ and
when only conduction operates. Generally, we can write Qcond(T̄ ) = cT̄ so that

Qout = acT̄Raβ (98)

Incorporating this with the definition of the Rayleigh number and treating everything as a constant except
for η which may be a function of temperature and so will change with time, we have

MCp
dT̄

dt
= Qin(t) + E(t)− a′ T̄

1+β

[η(T̄ )]β
(99)

We now have to specify a viscosity law, e.g.

η = η0 exp (
gTm
T̄

) (100)
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This is the form we would use (or something similar) when we integrate equation 100 back in time
numerically. In order to get make some analytic progress, we can specify the viscosity relative to a reference
temperature and write an approximate form:

η = η0

(
T̄

T0

)−n
(101)

The reference temperature might be the present mean temperature and, provided T̄ doesn’t change dramati-
cally with time, this equation represents the exponential behavior reasonably well. Note that n is probably
in the range 30 to 40.

The energy equation can now be integrated backward in time (using the present conditions as initial
conditions) or forward in time using some guess of the initial conditions. The constant a′ can be estimated
from numerical calculations or it can be fudged out by normalizing Qout to be some specific value at a
particular value of T̄ . A natural choice is at t = t0 (at present time) set Qout to Q0 and T̄ = T0. Q0 is the
current day heat loss from the mantle and is thought to be about 80% of the total surface heat loss(after
correction for continental heat production). Combining these results together gives

MCp
dT̄

dt
= Qin(t) + E(t)−Q0

(
T̄

T0

)1+β+nβ

(102)

This form is convenient as it allows the thermal response of the Earth to be analytically investigated for
some simple cases. Consider the case when we have no heat sources:

MCp
dT̄

dt
= −Q0

(
T̄

T0

)m
(103)

where m = 1 + β + nβ. For n = 30 → 40 and β ' .3 we find that m = 12. If convective heat transport is
ignored and conduction dominates (β = 0) then m = 1. (Actually m might be larger than 1 for conduction
because of contributions of radiative heat transfer which would lead to a temperature dependent thermal
conductivity and could give an m of 2 to 4.) When m = 1, the solution to the above equation is

T̄ = T0 exp
[
− Q0

T0MCp
(t− t0)

]
(104)

which gives a conductive time scale of cooling of T0MCp/Q0 of approximate 8By. If m is greater than 1
then the solution looks like (

T̄

T0

)m−1

= 1 +
Q0

T0MCp
(t− t0)(m− 1) (105)

It is interesting that this equation can lead to infinite temperatures in the past – this happens in the last
4By if m is greater than 2. Both of these results suggest that the assumption of no internal heat sources is
inconsistent with the present day heat flow.

When we have internal heat sources, it is possible to ask what the thermal response time is if, at some
time, we increase stepwise the amount of heating. The solution has a decay constant τ where

τ =
MCpT0

mQ0
(106)

which is the conductive time constant divided by m. For m = 12, τ ' 700my so there is time for thermal
impulses to decay. For smaller values of β associated with stagnant lid convection, β = .1 so m ' 5 and
τ '1.5By which is a significant fraction of the age of the Earth. Numerical integration of the equations leads
to some general results which are characterized by the "Urey ratio" which is the ratio of heat produced to
heat lost as a function of time. The variation with time of heat production by radioactive elements is usually
characterized by some average half life of the major heat producing elements assuming that their relative
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abundances has remained constant over geological time. With β in the range 0.2 to 0.35, we arrive at the
following conclusions:
1) The internal heat production is severely constrained to prevent models ending up with T̄ either going

to infinity or to zero as we go back in time. The present Urey ratio is in the range 0.7 to 0.9 and stays
constant over roughly the last 2.5By. This result is consistent with the self-regulation hypothesis where,
for efficient convection, the Earth basically manages to lose all the heat that is produced and there is a
rough balance between heat loss and heat production.

2) The mantle has forgotten its initial condition, i.e., it arrives at the same temperature after about 1By
whether it has a cold or a hot origin

3) The temperature drop over the last 3By is between 150K and 250K
4) Heat flow was higher in the past so plate velocities were correspondingly higher. In a cooling plate model,

heat flow is proportional to the square root of the spreading rate so, if the heat flow is 2 to 5 times higher
in the past, spreading rates could have been 4 to 25 times higher.
There is some evidence that the mean temperature of the mantle was higher in the Archean. This comes

from the presence of komatiites which are igneous rocks with a high MgO content and require temperatures
which are 200K to 400K higher than present. On the other hand, Archean geotherms estimated from
metamorphic mineral assemblages seem to be similar to the present day geotherm. There is also little
evidence for plate rates being significantly higher than at present.

19


