
CHAPTER 1

Overview of Low Frequency data

1.1 Introduction . At long periods, it is convenient (and quite accurate) to think of a seismogram simply as
a sum of decaying cosinusoids :

u(t) =
∞∑
k=1

Ak cos (ωkt+ φk)e−αkt (1.1)

where u(t) is the observed time series, Ak and φk are the initial amplitude and phase of the k’th mode of
oscillation, and ωk and αk are the frequency and attenuation rate. The usual analogy that is made is that of a
bell. When we hit a bell, the resulting sound consists of certain discreet frequencies - the tones of the bell.
These frequencies and the rate at which the oscillations decay are properties of the structure of the bell. The
actual sound we produce depends upon how we hit the bell. Obviously, the harder we hit the bell, the larger
the initial amplitude of the oscillations. Depending upon where and how we hit the bell, we can excite some
oscillations more than others. In terms of 1.1, ωk and αk tell us about Earth structure and Ak and φk tell us
about the Earthquake source.

The attenuation rate is sometimes specified by the “quality factor” of the oscillation, Qk,where

αk = ωk/2Qk. (1.2)

If Qk is large, αk is small and the oscillation rings on for a long time. Conversely, an oscillation with a
small Qk is rapidly damped out. The low frequency oscillations which we are considering (i.e., frequency
less than 10mHz) have Qk between about 100 and 6000. Thus αk � ωk and attenuation is weak.

A seismogram is the interference pattern of a sum of many decaying sinusoids (Fig 1.1). To see the
individual modes of oscillation we work in the frequency domain by Fourier transforming. Our definition
of the forward Fourier transform (i.e., time to frequency ) is

f(ω) =

∞∫
−∞

f(t)e−iωtdt. (1.3)

f(ω) is a complex quantity called the “spectrum” of f(t).
We are interested in the spectrum of a decaying cosinusoid. Let

Ck(t) = cos (ωkt)e−αkt for t ≥ 0,
Ck(t) = 0 for t < 0.

then

Ck(ω) =

∞∫
0

cos (ωkt)e−αkte−iωtdt,

= 1
2

∞∫
0

(e(−αk+i(ωk−ω))t + e(−αk−i(ωk+ω))t)dt,

= 1
2

1
αk − i(ωk − ω)

+ 1
2

1
αk + i(ωk + ω)

.

For ω ' ωk, the first term is large whilst the second term is much smaller. Thus, if we only consider positive
frequencies in the vicinity of ωk, we have
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Figure 1a. A comparison of long period waveforms (T > 150 secs) with spherical Earth synthetic
seismograms for a large deep (450km) event (Banda Sea 1982/173). Note that fundamental mode
Rayleigh wave packets dominate even the recordings of very deep events at these periods.
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Figure 1a. A comparison of long period waveforms (T > 150 secs) with spherical Earth synthetic
seismograms for a large deep (450km) event (Banda Sea 1982/173). Note that fundamental mode Rayleigh
wave packets dominate even the recordings of very deep events at these periods.
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Figure 1b. As for fig1a except for a large shallow event (Iran 1978/259).
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Figure 1b. As for fig1a except for a large shallow event (Iran 1978/259).
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Ck(ω) ' 1
2

1
αk − i(ωk − ω)

(1.4)

or, in terms of real and imaginary parts,

Ck(ω) = 1
2

αk
α2
k + (ωk − ω)2

+ i 12
(ωk − ω)

α2
k + (ωk − ω)2

(1.5)

Ck(ω) is plotted in Fig. 1.2. Note that the real part falls off from its peak value as (ωk − ω)2 whereas the
imaginary part falls off only as (ωk−ω). This latter property means that the spectrum of a decaying sinusoid
falls off quite slowly from its peak value (≈ 6db/octave).
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For ω " ωk, the first term is large whilst the second term is much smaller. Thus, if we only consider
positive frequencies in the vicinity of ωk, we have

Ck(ω) " 1
2

1
αk − i(ωk − ω)

(1.4)

or, in terms of real and imaginary parts,

Ck(ω) = 1
2

αk

α2
k + (ωk − ω)2

+ i1
2

(ωk − ω)
α2

k + (ωk − ω)2
(1.5)

Ck(ω) is plotted in Fig. 1.2. Note that the real part falls off from its peak value as (ωk − ω)2 whereas
the imaginary part falls off only as (ωk−ω). This latter property means that the spectrum of a decaying
sinusoid falls off quite slowly from its peak value (≈ 6db/octave).

Fig 1.2 Spectrum of a decaying cosinusoid in a small frequency band
surrounding the center frequency, ωk. Frequency is in units of αk

Problem 1.1 Show that the width of the power spectrum of Ck(ω) at the half power points is 2αk.

The seismogram is a sum of such spectra all centered at different frequencies so a plot of the modulus
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Fig 1.2 Spectrum of a decaying cosinusoid in a small frequency band
surrounding the center frequency, ωk. Frequency is in units of αk

Problem 1.1 Show that the width of the power spectrum of Ck(ω) at the half power points is 2αk.

The seismogram is a sum of such spectra all centered at different frequencies so a plot of the modulus of
the spectrum of 1.1 looks something like the following sketch:

of the spectrum of 1.1 looks something like the following sketch:

You should note a couple of things. First, each spectral peak falls off quite slowly so modes of
oscillation which are close together in frequency may not be resolvable as separate peaks. Second, the
width of a spectral peak is related to αk (actually, the width of a peak at the half-power points is 2αk).
Thus, weakly attenuated modes have narrow spectral peaks while strongly attenuated modes have broad
peaks.
An application of this procedure to a real time series is shown in Fig 1.3. The only difference between

this result and our previous analysis is that, for obvious reasons, we did not use an infinite record length.
Peaks are clearly visible but their long tails overlap and the result is quite messy. The result can be
improved by using a data window (or taper). The procedure is to multiply the finite data series by
some chosen function of time before Fourier transforming. The very act of taking a finite record length
is equivalent to multiplying an infinite record by a boxcar function but such a function has very poor
spectral leakage characteristics. To illustrate what this means, consider the result of multiplying the
time series by a Hanning taper (which is illustrated in Fig 1.5) before Fourier transforming. The result,
shown in Fig 1.4, is much less jagged than before and the peaks are more clearly defined. The simplest
way to understand this result is in terms of convolution. Convolution is discussed in all text books on
time series analysis and so will only be given brief consideration here.
The convolution of two functions of time, a(t) and b(t) , is defined by:

a(t) ∗ b(t) =

∞∫
−∞

a(t− t′)b(t′) dt′. (1.6)

Then

F.T.(a ∗ b) = a(ω) · b(ω)

F.T.(a · b) = a(ω) ∗ b(ω)

where F.T. stands for “Fourier transform of”
Taking a finite record length of data is equivalent to multiplying the infinite record by a boxcar, B(t)
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You should note a couple of things. First, each spectral peak falls off quite slowly so modes of oscillation
which are close together in frequency may not be resolvable as separate peaks. Second, the width of a
spectral peak is related to αk (actually, the width of a peak at the half-power points is 2αk). Thus, weakly
attenuated modes have narrow spectral peaks while strongly attenuated modes have broad peaks.

An application of this procedure to a real time series is shown in Fig 1.3. The only difference between this
result and our previous analysis is that, for obvious reasons, we did not use an infinite record length. Peaks
are clearly visible but their long tails overlap and the result is quite messy. The result can be improved by
using a data window (or taper). The procedure is to multiply the finite data series by some chosen function
of time before Fourier transforming. The very act of taking a finite record length is equivalent to multiplying
an infinite record by a boxcar function but such a function has very poor spectral leakage characteristics.
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To illustrate what this means, consider the result of multiplying the time series by a Hanning taper (which
is illustrated in Fig 1.5) before Fourier transforming. The result, shown in Fig 1.4, is much less jagged than
before and the peaks are more clearly defined. The simplest way to understand this result is in terms of
convolution. Convolution is discussed in all text books on time series analysis and so will only be given
brief consideration here.

Figure 1.3. A spectrum between 2 and 4 mHz with no taper applied.

Figure 1.4. The same spectrum as fig 1.3 but with a Hanning taper applied.

The convolution of two functions of time, a(t) and b(t) , is defined by:
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a(t) ∗ b(t) =

∞∫
−∞

a(t− t′)b(t′) dt′. (1.6)

Then

F.T.(a ∗ b) = a(ω) · b(ω)

F.T.(a · b) = a(ω) ∗ b(ω)

where F.T. stands for “Fourier transform of”
Taking a finite record length of data is equivalent to multiplying the infinite record by a boxcar, B(t) of

length T :

Figure 1.3. A spectrum between 2 and 4 mHz with no taper applied.

of length T :

In the frequency domain, this is equivalent to convolving u(ω) with B(ω). Now

B(ω) =

∞∫
−∞

B(t)e−iωtdt =

T∫
0

e−iωtdt =
e−iωT − 1
−iω

= TeiωT/2 sin (ωT/2)
(ωT/2)

The spectrum B(ω) is a phase shift multiplied by a sinc function. If we sketch the modulus of this
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In the frequency domain, this is equivalent to convolving u(ω) with B(ω). Now

B(ω) =

∞∫
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B(t)e−iωtdt =
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e−iωtdt =
e−iωT − 1
−iω = TeiωT/2

sin (ωT/2)
(ωT/2)

The spectrum B(ω) is a phase shift multiplied by a sinc function. If we sketch the modulus of this function
it looks like

Figure 1.4. The same spectrum as fig 1.3 but with a Hanning taper applied.

function it looks like

Convolution with a peak-like function (i.e., the spectrum of a decaying sinusoid) gives a spectrum very
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Convolution with a peak-like function (i.e., the spectrum of a decaying sinusoid) gives a spectrum very
much like that of a boxcar, i.e.,
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much like that of a boxcar, i.e.,

Thus, with a finite record length, we do not see the spectrum of a resonance function, but we see a
function with sidelobes. Energy originally at a frequency ωk now appears at other frequencies, i.e.,
the frequencies of the sidelobes. This phenomenon is called spectral leakage and is responsible for
the jagged appearance of the spectrum in Figure 1.3 (and is partially responsible for the appearance of
energy between the peaks corresponding to the free oscillation frequencies).
If we do not use a data window, we are implicitly using a boxcar function but obviously we can

choose any function we like. The choice of an optimal window is quite complicated as there are trade-
offs involved. In particular, we would like to choose a data window with a spectrum which has very
small sidelobes to reduce spectral leakage. At the same time, we would like the central lobe of the
spectrum of the data window to be narrow so that we have as much frequency resolution as possible.
The log-modulus of the spectrum of several data windows are shown in Figure 1.5. (The log helps to
emphasize the size of the sidelobes.) A cosine data window suppresses the sidelobe level but broadens
the central lobe. A cos 2 data window suppresses sidelobes even more but the central peak is further
broadened. Other tapers can be devised which essentially have no sidelobes but are too broad for our
application. Harris, (1978) reviews many of the tapers in common usage. Some work has been done
on finding optimal tapers for a time series of decaying cosinusoids and a general (but difficult) review
of spectrum estimation and harmonic analysis is by Thomson (1982). Figure 1.6 shows spectra of a
time series using some of these windows. These tapers are quite difficult to compute and we content
ourselves here with choosing a compromise data window such as the Hanning window.
The desirability of using a data window is illustrated in Figure 1.7 by a synthetic example (Dahlen

1982). The top panel illustrates the spectrum of a time series consisting of ten modes of oscillation
with frequencies indicated by the vertical lines. If we were simply to estimate the mode frequencies by
picking peaks, it is clear that wewould get significantly biased estimates. The application of the Hanning
window ( cos 2) gives the result in the middle panel. The peaks are now separated and centered at their
true frequencies. Another window (Blackman-Harris 4-term, BHV) has been applied in the lower panel.
The spectral leakage is much less than for the Hanning taper but the peak widths are broader and two
closely spaced lines would not be as well resolved as with the Hanning taper. The Hanning taper is
therefore a reasonable compromise.
The application of a data window has two desirable effects. It reduces spectral leakage and it modifies

the shape of the spectrum of a decaying cosinusoid making it more concentrated in frequency. This
latter property means that individual peaks in the spectrum can be more clearly identified (though peak
widths are now no longer simply related to αk).

1.2 Estimation of peak frequencies. . To learn about Earth structure, we would like to measure ωk

and αk and similarly, to learn about the earthquake source, we would like to measure Ak and φk. An
obvious way to measure ωk is to just take the peak value of the spectrum. This is not a very good
procedure as the peak value can be biased when modes are closely spaced in frequency. Furthermore,
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Thus, with a finite record length, we do not see the spectrum of a resonance function, but we see a function
with sidelobes. Energy originally at a frequency ωk now appears at other frequencies, i.e., the frequencies
of the sidelobes. This phenomenon is called spectral leakage and is responsible for the jagged appearance
of the spectrum in Figure 1.3 (and is partially responsible for the appearance of energy between the peaks
corresponding to the free oscillation frequencies).

If we do not use a data window, we are implicitly using a boxcar function but obviously we can choose
any function we like. The choice of an optimal window is quite complicated as there are trade-offs involved.
In particular, we would like to choose a data window with a spectrum which has very small sidelobes to
reduce spectral leakage. At the same time, we would like the central lobe of the spectrum of the data
window to be narrow so that we have as much frequency resolution as possible. The log-modulus of the
spectrum of several data windows are shown in Figure 1.5. (The log helps to emphasize the size of the
sidelobes.) A cosine data window suppresses the sidelobe level but broadens the central lobe. A cos 2

data window suppresses sidelobes even more but the central peak is further broadened. Other tapers can be
devised which essentially have no sidelobes but are too broad for our application. Harris, (1978) reviews
many of the tapers in common usage. Some work has been done on finding optimal tapers for a time series
of decaying cosinusoids and a general (but difficult) review of spectrum estimation and harmonic analysis is
by Thomson (1982). Figure 1.6 shows spectra of a time series using some of these windows. These tapers
are quite difficult to compute and we content ourselves here with choosing a compromise data window such
as the Hanning window.

The desirability of using a data window is illustrated in Figure 1.7 by a synthetic example (Dahlen 1982).
The top panel illustrates the spectrum of a time series consisting of ten modes of oscillation with frequencies
indicated by the vertical lines. If we were simply to estimate the mode frequencies by picking peaks, it is
clear that we would get significantly biased estimates. The application of the Hanning window ( cos 2) gives
the result in the middle panel. The peaks are now separated and centered at their true frequencies. Another
window (Blackman-Harris 4-term, BHV) has been applied in the lower panel. The spectral leakage is much
less than for the Hanning taper but the peak widths are broader and two closely spaced lines would not be
as well resolved as with the Hanning taper. The Hanning taper is therefore a reasonable compromise.

The application of a data window has two desirable effects. It reduces spectral leakage and it modifies
the shape of the spectrum of a decaying cosinusoid making it more concentrated in frequency. This latter
property means that individual peaks in the spectrum can be more clearly identified (though peak widths are
now no longer simply related to αk).

1.2 Estimation of peak frequencies. . To learn about Earth structure, we would like to measure ωk and αk
and similarly, to learn about the earthquake source, we would like to measure Ak and φk. An obvious way
to measure ωk is to just take the peak value of the spectrum. This is not a very good procedure as the peak
value can be biased when modes are closely spaced in frequency. Furthermore, we obtain no estimate of
the uncertainty in our estimate of ωk. An obvious way to measure αk is to use a “moving window” analysis.
The amplitude of the spectrum of a segment of data is estimated and then the amplitude of a later segment of
data is estimated. The drop in amplitude is related to αk. Again, it turns out that this is not a good procedure
and our resulting estimate of αk is more uncertain than it need be.

An overview of measurement techniques can be found in Masters and Gilbert, (1983) and we briefly
describe two of these here. For simplicity, we consider a single isolated mode of oscillation though it is
desirable that any measurement technique can handle modes which overlap in frequency. We have
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Figure 1.5. Various tapers and their log amplitude spectra.
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Figure 1.5. Various tapers and their log amplitude spectra.
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Figure 1.6. Direct spectral estimates of a 35-hour time series using a boxcar taper (lower panel), a 2π
prolate taper (middle panel, and a 4π prolate (upper panel). In the lower panel, the distortion caused by
spectral leakage is so great that the spectral estimate using a boxcar taper is useless. In the top panel, the
peak widths are so broad that some multiplets are merged together. The middle panel gives a reasonable
compromise between resolution and spectral leakage.

we obtain no estimate of the uncertainty in our estimate of ωk. An obvious way to measure αk is to use
a “moving window” analysis. The amplitude of the spectrum of a segment of data is estimated and then
the amplitude of a later segment of data is estimated. The drop in amplitude is related to αk. Again, it
turns out that this is not a good procedure and our resulting estimate of αk is more uncertain than it need
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Figure 1.6. Direct spectral estimates of a 35-hour time series using a boxcar taper (lower panel), a 2π
prolate taper (middle panel, and a 4π prolate (upper panel). In the lower panel, the distortion caused by
spectral leakage is so great that the spectral estimate using a boxcar taper is useless. In the top panel, the
peak widths are so broad that some multiplets are merged together. The middle panel gives a reasonable
compromise between resolution and spectral leakage.

u(t) = Ak cos (ωkt+ φk)e−αkt

Fourier transforming gives

u(ω) = akCk(ω) (1.7)
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Figure 1.7. The effect of tapering on the spectra of synthetic seismograms which include fundamental
modes only. In the top panel, note how peaks appear to be shifted away from their true frequencies

be.
An overview of measurement techniques can be found in Masters and Gilbert, (1983) and we briefly

describe two of these here. For simplicity, we consider a single isolated mode of oscillation though it is
desirable that any measurement technique can handle modes which overlap in frequency. We have

u(t) = Ak cos (ωkt + φk)e−αkt

Fourier transforming gives

11

Figure 1.7. The effect of tapering on the spectra of synthetic seismograms which include fundamental
modes only. In the top panel, note how peaks appear to be shifted away from their true frequencies

where ak is a complex number with

Ak = |ak| and φk = tan−1

[
Im(ak)
Re(ak)

]
Ck(ω) is given approximately by 1.4.

You should note that ak is linearly related to u(ω) in 1.7 whereas ωk and αk are nonlinearly related to
u(ω). If ωk and αk are known it is therefore easy to recover ak. In practice we work with a data window,
d(t) say, such as the Hanning taper and 1.7 becomes

u(ω) ∗ d(ω) = akCk(ω) ∗ d(ω)

or
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u′(ω) = akC
′
k(ω) (1.8)

We evaluate u′(ω) and C ′k(ω) at a small number of frequencies, ωi, about the peak of interest, i.e.,

u(ω) = akCk(ω) (1.7)

where ak is a complex number with

Ak = |ak| and φk = tan−1

[
Im(ak)
Re(ak)

]
Ck(ω) is given approximately by 1.4.
You should note that ak is linearly related to u(ω) in 1.7 whereas ωk and αk are nonlinearly related

to u(ω). If ωk and αk are known it is therefore easy to recover ak. In practice we work with a data
window, d(t) say, such as the Hanning taper and 1.7 becomes

u(ω) ∗ d(ω) = akCk(ω) ∗ d(ω)

or

u′(ω) = akC ′
k(ω) (1.8)

We evaluate u′(ω) and C ′
k(ω) at a small number of frequencies, ωi, about the peak of interest, i.e.,

Let u′i = u′i(ωi) and C ′
i = C ′

k(ωi), then 1.8 can be rewritten in matrix form as
Re(u′1)
Im(u′1)
Re(u′2)
Im(u′2)

...

 =


Re(C ′

1) −Im(C ′
1)

Im(C ′
1) Re(C ′

1)
Re(C ′

2) −Im(C ′
2)

Im(C ′
2) Re(C ′

2)
...

...


[

Re(ak)
Im(ak)

]
(1.9)

Equation 1.9 is a set of simultaneous equations to be solved for ak and may be solved by any of a number
of techniques. We write 1.9 as

u′ = C′ · a
and the solution symbolically as

a = C′−1 · u′
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
[
Re(ak)
Im(ak)

]
(1.9)

Equation 1.9 is a set of simultaneous equations to be solved for ak and may be solved by any of a number
of techniques. We write 1.9 as

u′ = C′ · a
and the solution symbolically as

a = C′−1 · u′

(The least squares solution is a = (C′TC′)−1C′Tu′). Of course we need to know αk and ωk so that C′ can
be calculated but then a can easily be recovered. Equation 1.9 can also be easily modified if more than one
mode is present in the spectrum.

If we do not know αk and ωk, we can make an initial guess and solve for a first estimate of ak. Equation
1.8 can then be linearized so that a better estimate of ωk and αk can be found. We form

u′(ω) = u′0(ω) +
∂u′0(ω)
∂ωk

δωk +
∂u′0(ω)
∂αk

δαk (1.10)

where u0(ω) is formed using our initial estimates of ωk, αk and ak. In the time domain it is easy to show that

∂u′0(t)
∂ωk

= −tAk sin (ωkt+ φk)e−αktd(t)

∂u′0(t)
∂αk

= tAk cos (ωkt+ φk)e−αktd(t)

 (1.11)

Equation 1.11 can be easily Fourier transformed and 1.10 can then be cast into matrix form when all the
terms dependent upon frequency are evaluated at a few frequency points about the peak of interest, i.e., 1.10
becomes

u′ − u′0 = δu′ = D · s (1.12)

where s = [δωk, δαk]T and D is a matrix of derivatives ∂u′/∂αk, ∂u′/∂ωk evaluated at a few frequency
points.
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Solution of 1.12 follows the solution of 1.9. Once δωk and δαk have been estimated, we form new
estimates of ωk and αk (i.e., ωk → ωk + δωk and αk → αk + δαk) and repeat the whole procedure until
no improvement in fit to the data is obtained. Various tricks can be played to speed up convergence – see
Masters and Gilbert (1983) for details.

An alternative technique (the autoregressive technique) which allows the estimation of ωk and αk in a
noniterative fashion is based upon the recursion relations satisfied by a decaying cosinusoid. This method
is described in detail by Chao and Gilbert (1980). Consider a single oscillation, i.e., ,

u(t) = Ak cos (ωkt+ φk)e−αkt (1.13)

Using trigonometric identies gives

u(t+ δt) = y1u(t) + y2u(t− δt) (1.14)

where δt is a time increment and

y1 = 2 cos (ωkδt)e−αkδt

y2 = −e−2αkδt

}
(1.15)

Suppose our time series is specified at evenly spaced time points, ti, where t1 = 0, t2 = δt, t3 = 2δt etc. Then
1.14 can be written as

u(t3) = y1u(t2) + y2u(t1)
u(t4) = y1u(t3) + y2u(t2)
u(t5) = y1u(t4) + y2u(t3)

...
...

(1.16)

which again can be cast in matrix form as
u(t3)
u(t4)
u(t5)

...

 =


u(t2) u(t1)
u(t3) u(t2)
u(t4) u(t3)

...
...

[ y1y2
]

(1.17)

All the columns in 1.17 can be multiplied by a data window and Fourier transformed so that we need only
use a few frequency points about a peak. Equation 1.17 can be solved for y then ωk and αk recovered from

αk = − 1
2δt

ln (−y2)

ωk =
1
δt

cos−1

(
y1

2
√−y2

)
.

This technique can be extended to handle more than one oscillation if our frequency band contains several
modes. Both techniques described above have error analyses (Dahlen, 1982; Chao and Gilbert, 1980) so,
in the presence of noise, we can assign uncertainties to our estimates of ωk, αk, Ak and φk. These error
analyses also give an indication of the optimal record length to use for a particular data window. For a
Hanning taper, a record length of 1.1 Q cycles is optimal for the recovery of αk and ωk.

A successful application of these techniques is shown in Figure 1.8. The dashed line is the original
amplitude spectrum. The solid line is the residual after subtracting out a decaying sinusoid with the best
estimates of Ak, φk, ωk, and αk. Figure 1.9 is an example of what happens when the spectrum does not
correspond to that of a single decaying cosinusoid and the retrieved values of ωk and αk are unreliable.
Another way of diagnosing failure of the techniques is to vary the record length used in the analysis. If the
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(
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2
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)
.
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1980) so, in the presence of noise, we can assign uncertainties to our estimates of ωk, αk, Ak and φk.
These error analyses also give an indication of the optimal record length to use for a particular data
window. For a Hanning taper, a record length of 1.1 Q cycles is optimal for the recovery of αk and ωk.
A successful application of these techniques is shown in Figure 1.8. The dashed line is the original

amplitude spectrum. The solid line is the residual after subtracting out a decaying sinusoid with the best
estimates of Ak, φk, ωk, and αk. Figure 1.9 is an example of what happens when the spectrum does not
correspond to that of a single decaying cosinusoid and the retrieved values of ωk and αk are unreliable.
Another way of diagnosing failure of the techniques is to vary the record length used in the analysis. If
the retrieved values of αk and ωk vary as the record length is changed, we are probably observing an
interference effect and the spectrumagain cannot be adequatelymodeled by a single decaying cosinusoid.

Figure 1.8. Three examples of successful demoding for the mode 0S16. The original spectrum is
shown by the dashed line and the residual spectrum is shown by the solid line.
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Figure 1.8. Three examples of successful demoding for the mode 0S16. The original spectrum is shown
by the dashed line and the residual spectrum is shown by the solid line.

Figure 1.9. Three examples of unsuccessful demoding for themode 0S16. The large residual spectrum
shows that the peaks are not singlet-like.

In successful cases, all techniques give the same answers as illustrated in Figure 1.10 (in the second
panel we have plotted 1000/Q instead of αk). Each point is an estimate made from a different seismic
record of a mode of oscillation (in this case, 0S13).

Figure 1.10. Comparisons of measurements of frequency (left side) between the AR and LSmethods.
The right side shows a comparison of 1000/Q
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Figure 1.9. Three examples of unsuccessful demoding for the mode 0S16. The large residual spectrum
shows that the peaks are not singlet-like.

retrieved values of αk and ωk vary as the record length is changed, we are probably observing an interference
effect and the spectrum again cannot be adequately modeled by a single decaying cosinusoid.

In successful cases, all techniques give the same answers as illustrated in Figure 1.10 (in the second panel
we have plotted 1000/Q instead of αk). Each point is an estimate made from a different seismic record of a
mode of oscillation (in this case, 0S13).

If the Earth was truly spherically symmetric, 0S13 would have the same frequency (∼2.113 mHz) on
every recording. The resolvable variation in measured frequency of this mode (2.1095 → 2.1162 mHz)
is a consequence of the fact that the Earth is not quite spherically symmetric. Each seismic recording
dominantly gives a sampling of the Earth which corresponds to the average structure under the great circle
joining source and receiver. Thus each source-receiver pair samples a slightly different structure – faster
paths give higher frequencies. In our example of 0S13 there are 27 closely spaced modes of oscillation.
The interference between the 27 oscillations results (usually) in a single peak which looks like a single
resonance function. The peak frequency is variable (depending upon which great circle we are sampling)
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Figure 1.9. Three examples of unsuccessful demoding for themode 0S16. The large residual spectrum
shows that the peaks are not singlet-like.

In successful cases, all techniques give the same answers as illustrated in Figure 1.10 (in the second
panel we have plotted 1000/Q instead of αk). Each point is an estimate made from a different seismic
record of a mode of oscillation (in this case, 0S13).
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The right side shows a comparison of 1000/Q
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Figure 1.10. Comparisons of measurements of frequency (left side) between the AR and LS methods. The
right side shows a comparison of 1000/Q

and the apparent attenuation that we measure is a mixture of true attenuation and beating effects.
At very long periods (∼1000 seconds), the Earth’s rotation is the dominant cause of splitting. The effect

is so strong that we do not see a single peak anymore but a set of closely spaced peaks (Figure 1.11). The
exception to this is at the South Pole where a vertical component recording should still show a single peak if
rotation is the dominant cause of splitting. The lower panel in Figure 1.11 demonstrates this to be the case
(look particularly at 1S4). Unfortunately, at very low frequencies the South Pole is a noisy station so that no
modes of oscillations are visible with frequencies less then ∼.4 mHz.

Splitting can lead to very strange estimates of apparent attenuation and it makes it very difficult to learn
about the attenuative properties of the Earth.

As noted above, the techniques for measuring the properties of an oscillation of the Earth (Ak, φk, αk,
ωk) can be easily extended to simultaneously measure the properties of several oscillations. An example
of fitting two peaks is shown in Figure 1.12. Unfortunately, there are trade-offs between the parameters of
the oscillations and it is difficult to obtain reliable estimates. There are two ways of avoiding multiple-peak
estimation. One arises if the two modes have very different attenuation rates. If we choose a sample of
data which starts late in the record, the strongly attenuated mode will have decayed much more than the
weakly attenuated mode and, if we start late enough, we will effectively be left with a single mode. This
is illustrated in Figure 1.13. The spectra are of 125 hours of recording but starting 2 hours, 27 hours, and
52 hours respectively after the origin time of the event. In the last panel we have almost removed the lower
frequency, more highly attenuated mode. This is an example of the use of the Earth as an attenuation filter.

An alternative way of avoiding multi-peak estimation is to use many recordings and add them together
in such a way as to emphasize a single mode of oscillation. We shall be developing the machinery required
to perform this “array-processing” of data as the book progresses. For now, reconsider 1.8 when more than
one mode is present, i.e.,

u′(ω) =
∑
k

akC
′
k(ω)

Now ak is a function of the source-receiver geometry and the earthquake source mechanism, so for the jth
recording we can write
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Figure 1.11. Two spectra of 120hr records from the Sumbawa earthquake of 1977. The effects of
rotation and ellipticity cause obvious splitting at station BDF (Brasilia). The lower panel is a spectrum
from a station at the South Pole which shows no sign of splitting (though it is noisy at frequencies below
0.4 mHz). The lack of splitting at the pole is expected if rotation and axisymmetric structure are the
dominant perturbing influences.

degenerate multiplet. Figure 1.15 shows an application to the nine closely spaced singlets of 1S4 again
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Figure 1.11. Two spectra of 120hr records from the Sumbawa earthquake of 1977. The effects of rotation
and ellipticity cause obvious splitting at station BDF (Brasilia). The lower panel is a spectrum from a station
at the South Pole which shows no sign of splitting (though it is noisy at frequencies below 0.4 mHz). The
lack of splitting at the pole is expected if rotation and axisymmetric structure are the dominant perturbing
influences.

u′j(ω) =
∑
k

akjC
′
k(ω) (1.18)
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Figure 1.12. A simultaneous two-mode estimate for the strongly split multiplet 13S2.

showing that fine-scale isolation of singlets is possible.
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Figure 1.12. A simultaneous two-mode estimate for the strongly split multiplet 13S2.

If akj can be computed, we can solve 1.18 for C ′k(ω), i.e., the resonance function of individual modes of
oscillation. Figure 1.14 shows a plot of |C ′k(ω)| in a small frequency band where a few modes of oscillation
are present. About 800 recordings were used to solve for the C ′k(ω) and we have done a good job of isolating
individual modes. We can now measure αk and ωk from the isolated resonance functions. With some
assumptions, it is possible to compute akj for individual resonance functions within a nearly degenerate
multiplet. Figure 1.15 shows an application to the nine closely spaced singlets of 1S4 again showing that
fine-scale isolation of singlets is possible.
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Figure 1.13. Using the Earth as an attenuation filter. Starting later in the record attenuates the lower
Q mode more revealing the higher Q mode.

Figure 1.14. The result of stripping 800 recordings in a small frequency band which includes the
fundamental modes 0S27 and 0S28. Each row of the figure is the amplitude spectrumof a single Ck(ω).
Note that overtones are clearly separated from the fundamentals.
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Figure 1.13. Using the Earth as an attenuation filter. Starting later in the record attenuates the lower Q
mode more revealing the higher Q mode.

Figure 1.13. Using the Earth as an attenuation filter. Starting later in the record attenuates the lower
Q mode more revealing the higher Q mode.

Figure 1.14. The result of stripping 800 recordings in a small frequency band which includes the
fundamental modes 0S27 and 0S28. Each row of the figure is the amplitude spectrumof a single Ck(ω).
Note that overtones are clearly separated from the fundamentals.
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Figure 1.14. The result of stripping 800 recordings in a small frequency band which includes the funda-
mental modes 0S27 and 0S28. Each row of the figure is the amplitude spectrumof a single Ck(ω). Note that
overtones are clearly separated from the fundamentals.

1.4 Appendix: The general Prony’s method .
This appendix gives the generalization of Prony’s method to the case of several (complex) exponentials. Let

cj = aje
iωjt0 and vj = eiωjδt
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Figure 1.15. This figure has the same format as fig1.14 but now each row is the amplitude spectrum
of a singlet of 1S4. All nine singlets are recovered and follow a quadratic in azimuthal order close to
that predicted for a rotating hydrostatic Earth.
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Figure 1.15. This figure has the same format as fig1.14 but now each row is the amplitude spectrum of
a singlet of 1S4. All nine singlets are recovered and follow a quadratic in azimuthal order close to that
predicted for a rotating hydrostatic Earth.

where t0 is the start time if the time series and δt is the sample interval. Now suppose there are m exponentials in
the time series yi, i = 0, ...,m where y0 = y(t0), y1 = y(t0 + δt), ... etc. Then

y0 = c1 + c2 + ...+ cm

y1 = c1v1 + c2v2 + ...+ cmvm

y2 = c1v
2
1 + c2v

2
2 + ...+ cmv

2
m

:
:

ym = c1v
m
1 + c2v

m
2 + ...+ cmv

m
m

(1.19)

Now let v = exp (iωδt) and form the polynomial

(v − v1)(v − v2) · · · (v − vm) = s0v
m + s1v

m−1 + · · ·+ sm = Φ(v) (1.20)

where, obviously, s0 = 1 and the other s’s are complicated functions of the vi. Now multiply the first row of
equation 19 by sm, the second row by sm−1 and so on, then add all the rows together giving:

c1(sm + sm−1v1 + · · ·+ s0v
m
1 ) + c2(sm + sm−1v2 + · · ·+ s0v

m
2 )

+ · · ·+ cm(sm + sm−1vm + · · ·+ s0v
m
m)

= smy0 + sm−1y1 + · · ·+ s0ym = c1Φ(v1) + c2Φ(v2) + · · ·+ cmΦ(vm)
(1.21)

But when v = vi, Φ(vi) = 0 and remembering that s0 = 1 we get

smy0 + sm−1y1 + · · ·+ s1ym−1 = −ym (1.22)
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which is our recursion relationship. The important thing is that equation 20 demonstrates that the coeficients in the
recursion relation are also the coefficients in a polynomial whose roots are the vi. We would now set up the matrix
problem by taking m shifted versions of the time series as the matrix columns and a m+ 1 shifted time series as
the data column and solve equation 22 for the s’s. By equation 20, the s’s are the coefficients of a polynomial
whose roots are vn where

vn = eiωnδt

so a root finding procedure (such as Bairstow’s method) can be used to obtain the vn once the s’s are determined.
The generalization to decaying cosinusoids (ie decaying modes) can be done in a straightforward fashion if we
write the (real) time series as

y(t) =
∑
k

[
Ake

iωkt +A∗ke
−ω∗kt

]
where A and ω are now both complex. The reader is referred to Chao and Gilbert (1980) for details.
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