
CHAPTER 3

Free oscillations of a spherical Earth model

3.1 Introduction . As a first approximation, we consider a spherical, non-rotating, elastic, transversely
isotropic Earth model. (We will relax some of these simplifications later, e.g., we can allow weak anelastic
behavior but these departures from our basic model will be treated by perturbation theory.) Such a model
is specified by six functions of radius which we take to be ρ0, A, C, N, L and F which are defined in the
previous chapter. An isotropic model is specified by three functions of radius: ρ0, λ and µ and can be
recovered from the transversely isotropic model by setting A=C=λ + 2µ, N=L=µ and F=λ. These moduli
can be cast in terms of the seismic velocities, Vp and Vs by using:

µ = ρ0V
2
s

Ks = ρ0(V 2
p −

4

3
V 2
s )

λ = ρ0(V 2
p − 2V 2

s )

Some typical Earth models are plotted in Figure 3.1.
The assumptions we have made allow us to separate variables. We expand scalar fields in surface spherical

harmonics, i.e.,

φ1 =
∑

l,m

Φm1l(r)Y
m
l (θ, φ) (3.1)

Vector fields cannot be expanded in a similar way and still retain the ability to separate variables. We need
a form which is invarient to rigid rotations and do this by invoking the Helmholtz theorem on a sphere.
Backus (1986) gives a thorough discussion of this theorem and we quote his results here. If vS is a tangent
field on a spherical surface, there are unique fields vP and vT such that

vS = vP + vT and vP = ∇1g and vT = −r̂×∇1h

where

∇1 = θ̂θθ
∂

∂θ
+ φ̂φφ cosec θ

∂

∂φ

g and h are scalar fields which are unique to an additive constant. We make them completely unique by
specifying that their average values on the spherical surface be zero.

Now for any vector field, v, there is a unique scalar field, f , such that

v = r̂f + vP + vT

= r̂f +∇1g − r̂×∇1h

f, g and h may be expanded in spherical harmonics and we have a form which is invariant to rigid rotations.
This would not have been true if we had merely expanded the r̂, θ̂θθ, and φ̂φφ components of v in spherical
harmonics.

3.2 Separating the equations . We now consider equations (2.48) when f is zero and we look for solutions
of the form

s(r, t) = sk(r)eiωkt; φ1 = φ1ke
iωkt

i.e., we look at the free oscillations of the model. The equations now become
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Figure 3.1 Some 1D models of the Earth. The solid lines are (anisotropic) PREM and the dashed line
is a variant of IASP91
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−ρ0ω
2
ksk = ∇ ·T− ρ0∇φ1k + r̂g0∇ · (ρ0sk)−∇(skrg0ρ0) (3.2)

and

∇2φ1k = −4πG∇ · (ρ0sk) (3.3)

sk and φ1k are functions only of position and the equations (3.2) and (3.3) separate if we expand sk in vector
spherical harmonics and φ1k in ordinary spherical harmonics. We write

sk = r̂ kU +∇1 kV − r̂× (∇1 kW ) (3.4)

where kU , kV and kW are scalars. For reference, we note that

∇ = r̂
∂

∂r
+

1

r
∇1

∇2
1 =

∂2

∂θ2
+ cot θ

∂

∂θ
+ cosec 2θ

∂2

∂φ2

and ∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2
∇2

1





(3.5)

We now expand kU , kV and kW in ordinary spherical harmonics as well as φ1k. Each of these functions
have an expansion of the form

kU =

∞∑

l=0

l∑

m=−l
kU

m
l (r)Y ml (θ, φ) (3.6)

where the Y ml (θ, φ) are fully normalized spherical harmonics defined in appendix A. Thus sk can be written
in component form as

skr =

∞∑

l−0

l∑

m=−l
kU

m
l (r)Y ml

skθ =

∞∑

l=0

l∑

m=−l

[
kV

m
l (r)

∂Y ml
∂θ

+ im cosec θ kWm
l (r)Y ml

]

skφ =

∞∑

l=0

l∑

m=−l

[
im cosec θ kV ml (r)Y ml − kW

m
l (r)

∂Y ml
∂θ

]

and φ1k =

∞∑

l=0

l∑

m=−l
kΦm1l(r)Y

m
l





(3.7)

In a similar way, we can expand the traction vector in vector spherical harmonics:

tk = r̂ kR+∇1 kS − r̂× (∇1 kT ) (3.8)

where

kR =

∞∑

l=0

l∑

m=−l
kR

m
l (r)Y ml (θ, φ)

,
and similarly for kS and kT . In what follows, we consider only a single k, l,m component of the expansions
so that, without ambiguity, we may write
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U for kU
m
l (r), V for kV

m
l (r) etc.

We shall be interested in casting the equations in terms of U, V,W,R, S and T as this will make our boundary
conditions on the continuity of displacement and tractions easy to implement.

Now consider equation (3.3). Note that the term ∇ · (ρ0sk) can be written as

∇ · (ρ0sk) = ρ0∇ · sk + sk · ∇ρ0

and because ρ0 is only a function of r we have

∇ · (ρ0sk) = ρ0∇ · sk + skr
∂ρ0

∂r
(3.9)

where skr is the radial component of sk. The expression for a single k, l,m component of the divergence,
∇ · sk, is given by equation A26:

∇ · sk = (U ′ + F )Y ml where F =
1

r
(2U − l(l + 1)V )

and prime (′) indicates radial derivative. Thus equation (3.9) becomes

∇ · (ρ0sk) = [ρ0(U ′ + F ) + ρ′0U ]Y ml = [(ρ0U)′ + ρ0F ]Y ml (3.10)

Returning to equation (3.3) and using the expression for a single k, l,m component of the Laplacian (equation
A14) i.e.,

∇2(Φ1Y
m
l ) =

[
1

r2

(
d

dr
r2 dΦ1

dr

)
− Φ1

r2
l(l + 1)

]
Y ml

gives

1

r2

(
d

dr
r2 dΦ1

dr

)
− l(l + 1)

Φ1

r2
= −4πG

[
d

dr
(ρ0U) + ρ0F

]
(3.11)

Note that we can use ordinary derivatives because, from (3.7), U , V , W and Φ1 are functions only of radius.
We now turn to equation (3.2). Equation A43 of appendix A gives expressions for the r, θ, φ components

of ∇ ·T which we denote Pr, Pθ and Pφ. We write the three components of (3.2) out separately:

−ρ0ω
2
kUY

m
l = Pr − ρ0Φ′1Y

m
l + g0 ((ρ0U)′ + ρ0F )Y ml − (ρ0g0U)′Y ml

−ρ0ω
2
k

(
V
∂Y ml
∂θ

+ im cosec θWY ml

)
= Pθ −

ρ0Φ1

r

∂Y ml
∂θ
− ρ0g0U

r

∂Y ml
∂θ

−ρ0ω
2
k

(
im cosec θV Y ml −W

∂Y ml
∂θ

)
= Pφ − im cosec θ

ρ0Φ1

r
Y ml −

ρ0g0U

r
im cosec θY ml





(3.12)

Substituting in the expressions for Pr, Pθ, and Pφ and rearranging gives

−ρ0ω
2
kU =

d

dr
(CU ′ + FF )− 1

r
[2(F− C)U ′ + 2(A−N− F)F + l(l + 1)LX]

− ρ0Φ′1 + g0 ((ρ0U)′ + ρ0F )− (ρ0g0U)′

−ρ0ω
2
kV =

d

dr
(LX) +

1

r

[
(A−N)F + FU ′ + 3LX − NV

r
(l + 2)(l − 1)

]

− ρ0Φ1

r
− ρ0g0U

r

−ρ0ω
2
kW =

d

dr
(LZ) +

1

r

[
3LZ − NW

r
(l + 2)(l − 1)

]





(3.13)
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where

X = V ′ +
U − V
r

and Z = W ′ − W

r

Equations (3.11) and (3.13) give us four second-order coupled differential equations for U , V , W and
Φ1. If solutions to these equations can be found which satisfy the boundary conditions, we can recover the
displacement field and gravitational perturbation for the k’th solution by using equation (3.7).

The first thing to note about (3.11) and (3.13) is that the index m does not appear. This implies that for
a particular k, l all the kU

m
l are the same (the same is true for kV ml , etc. ) so that the m superscript can be

ignored.
The second thing to note is that the last of equation (3.13) is completely decoupled from the others so it

can be solved separately. From the analysis of the traction vector in appendix A (equation A46), we have
that T = LZ so that, from the definition of Z we have

dW

dr
=
T

L
+
W

r

and
dT

dr
=

N
r2

(l + 2)(l − 1)W − ρ0ω
2
kW −

3T

r

which can be written in matrix form as

d

dr

[
W
T

]
=

[
1/r 1/L

N(l + 2)(l − 1)/r2 − ρ0ω
2
k −3/r

] [
W
T

]
(3.14)

This form is convenient for numerical solution.
The other three equations require a little more algebra. First, note that outside the Earth, φ1 satisfies

Laplaces equation so that (3.11) becomes

1

r2

(
d

dr
r2 dΦ1

dr

)
− l(l + 1)

r2
Φ1 = 0

and Φ1 → 0 as r →∞. The solution to this equation has the form

Φ1 = Ar−l−1 where A is a constant

Thus, outside the Earth we have

dΦ1

dr
+

(l + 1)

r
Φ1 = 0 (3.15)

From the discussion of the boundary conditions we know that

∂φ1

∂r
+ 4πGρ0sr

must be continuous throughout the model so it follows that for a single k, l,m component

dΦ1

dr
+ 4πGρ0U is continuous

It is therefore convenient to define Ψ1 as

Ψ1 =
dΦ1

dr
+

(l + 1)

r
Φ1 + 4πGρ0U (3.16)

Because of (3.15), Ψ1 is continuous throughout the model and is zero outside the model. Ψ1 is convenient
from a computational point of view because Ψ1 is zero at the free surface. We can differentiate equation
(3.16) and, using equation (3.11) we find that
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dΨ1

dr
= −4πGρ0

(l + 1)

r
U + 4πGρ0

l(l + 1)

r
V +

(l − 1)

r
Ψ1 (3.17)

Again, from the analysis of the traction vector in appendix A (equation A46) we have

R = CU ′ + FF and S = LX (3.18)

so that using the definitions of F and X gives

dU

dr
= − 2F

Cr
U +

F
Cr

l(l + 1)V +
1

C
R

dV

dr
= −1

r
U +

1

r
V +

1

L
S





(3.19)

and the first two equations of 3.13 can be written

dR

dr
=

[
−ρ0ω

2
k +

4γ

r2
− 4g0ρ0

r

]
U +

[
g0ρ0 −

2γ

r

]
l(l + 1)

r
V − ρ0(l + 1)

r
Φ1

− 2

r

[
1− F

C

]
R+

l(l + 1)

r
S + ρ0Ψ1

dS

dr
=

[
ρ0g0

r
− 2γ

r2

]
U +

[
−ρ0ω

2
k +

l(l + 1)

r2
(γ + N)− 2N

r2

]
V +

ρ0

r
Φ1

− F
Cr

R− 3

r
S





(3.20)

where γ = A−N− F2/C.
Equations (3.16), (3.17), (3.19) and (3.20) can now be combined to form a set of six coupled ordinary

differential equations which we write in the form

dy

dr
= A y (3.21)

The 6× 6 coefficient matrix A takes on a highly symmetric form if we are careful in our definition of y. We
choose as our vector

y =




rU
rV L
rΦ1

rR
rSL

rΨ1/4πG




then the matrix, A is given by




− 2F
Cr

+ 1
r L F

Cr
0 1

C 0 0

−Lr 2
r 0 0 1

L 0

−4πGρ0 0 − l
r 0 0 4πG

−ρ0ω
2
k + 4

r2 (γ − rg0ρ0) L
r2 (rg0ρ0 − 2γ) −ρ0(l+1)

r
2F
Cr
− 1

r
L
r 4πGρ0

L
r2 (rg0ρ0 − 2γ) −ρ0ω

2
k + L2(γ+N)−2N

r2
Lρ0
r −L F

Cr
− 2
r 0

−ρ0(l+1)
r

Lρ0
r 0 0 0 l

r




(3.22)
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where L =
√
l(l + 1) and γ = A−N− F2/C. A has the symmetry

A =

[
T C
S −TT

]

where S, C and T are 3 × 3 matrices and both C and S are symmetric. We have only 14 independent
coefficients in A out of a possible 36 so this form is very advantageous from a computational point of view.
Equation (3.14) can be written with similar symmetry:

d

dr

[
rW
rT

]
=

[
2/r 1/L

N(l + 2)(l − 1)/r2 − ρ0ω
2
k −2/r

] [
rW
rT

]
(3.23)

The reason that the coefficient matrix takes on this symmetric form is discussed by Chapman and Woodhouse
(1981) who show that it arises from the quadratic form of the Lagrangian. We shall discuss this further
when we consider variational principles.

Because the equation for W,T separates from the others we can regard the free oscillations of the Earth
as being separated into two groups. The first group consists of spheroidal oscillations with displacements
of the form

r̂UY ml + θ̂θθV
∂Y ml
∂θ

+ φ̂φφ cosec θV imY ml (3.24)

and the second group consists of toroidal oscillations with displacements of the form

θ̂θθ cosec θWimY ml − φ̂φφW
∂Y ml
∂θ

(3.25)

Note that toroidal free oscillations have no vertical component of motion and no dilatation thus they do not
perturb the gravitational field and their equation of motion is very simple. The motion (3.25) can be thought
of as a twisting motion on concentric shells.

Another reason for our choice of vector in equation 3.21 is that the boundary conditions are easy to
implement. Note that the scalars U, V and W are proportional to the components of the displacement field
and so satisfy all the boundary conditions appropriate for s. Similarly, R,S and T are proportional to the
components of the traction vector and so must satisfy the boundary conditions on t. Φ1 is proportional to
the perturbation in gravitational potential, φ1 and so is continuous throughout the model and Ψ1 has been
carefully chosen to be continuous throughout the model and zero at the free surface.

Inspection of equation 3.22 shows that this form is not useful in a fluid region where L and N are zero.
Of course, the shear traction is also zero (y5), so in an isotropic fluid, 3.21 becomes

dy1

dr
= −1

r
y1 +

L
r
y2 +

y4

λ
(a)

dy3

dr
= −4πGρ0y1 −

ly3

r
+ 4πGy6 (b)

dy4

dr
= (−ρ0ω

2
k −

4g0ρ0

r
)y1 +

L
r
ρ0g0y2 − ρ0

(l + 1)

r
y3 +

y4

r
+ 4πGρ0y6 (c)

0 =
L
r
ρ0g0y1 − ρ0ω

2
ky2 +

ρ0L
r
y3 −

L
r
y4 (d)

dy6

dr
= −ρ0

(l + 1)

r
y1 +

ρ0L
r
y2 +

l

r
y6 (e)

where L =
√
l(l + 1).

Equation (d) allows y2 to be cast in terms of y1, y3, and y4. y2 can then be eliminated from (a), (b), (c),
and (e). We end up with a system of four equations to solve:
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d

dr




y1

y3

y4

y6




=




g0β − 1
r β 1

λ −
β
ρ0

0

−4πGρ0 − l
r 0 4πG

−ρ0

[
ω2
k + 4g0

r − g2
0β
]

ρ0

[
g0β − (l+1)

r

]
1
r − g0β 4πGρ0

ρ0

[
g0β − (l+1)

r

]
ρ0β −β l

r







y1

y3

y4

y6




(3.26)

where β = L2/(r2ω2
k). Equation 3.26 has the same symmetry as 3.21 and there are only 9 independent

elements of the 4× 4 coefficient matrix. There are two independent solutions which are regular at the origin
and the general solution is a linear combination of them.

Another special case of the spheroidal mode equations is when l = 0. First, we note that Y 0
0 (θ, φ) is a

constant and so

∂Y0

∂θ
=
∂Y0

∂φ
= 0

Thus, From equation 3.7 it follows that when l = 0

sk = r̂ kU0(r)Y0

i.e., these oscillations only have a radial component of motion and are therefore called radial oscillations.
Thus V and S are zero and equation 3.21 reduces to

dy1

dr
= −

(
2F
Cr
− 1

r

)
y1 +

y4

C
(a)

dy3

dr
= −4πGρ0y1 + 4πGy6 (b)

dy4

dr
=

[
−ρ0ω

2
k +

4

r2
(γ − rg0ρ0)

]
y1 −

ρ0

r
y3 +

(
2F
Cr
− 1

r

)
y4 + 4πGρ0y6 (c)

dy6

dr
= −ρ0

r
y1 (d)

Combining (b) and (d) gives

dy3

dr
= 4πGr

dy6

dr
+ 4πGy6 = 4πG

d

dr
(ry6)

and because both y3 and y6 are zero at infinity, we can integrate to give y3 = 4πGry6. This result allows us
to decouple (a) and (c) from (b) and (d) and we obtain

dy1

dr
= −

(
2F
Cr
− 1

r

)
y1 +

y4

C
dy4

dr
=

[
−ρ0ω

2
k +

4

r2
(γ − rg0ρ0)

]
y1 +

(
2F
Cr
− 1

r

)
y4





(3.27)

with
dy6

dr
= −ρ0

r
y1 and y3 = 4πGry6

where y1 = rU, y4 = rR, y3 = rΦ1, and y6 = rΨ1/4πG.
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3.3 The Cowling approximation . Solving the full spheroidal mode problem with self-gravitation is
computationally tricky and we expect that gravitational effects should become less important at high
frequencies where the elastic forces will dominate. A common approximation, therefore, is to set φ1 equal
to zero in the equations of motion. We do however keep the gravitational buoyancy and advection of stress
terms (the last two terms on the right hand side of 3.2). In this approximation, Φ1 and dΦ1/dr are both set
to zero and Ψ1 = 4πGρ0U . Equation 3.21 now reduces to a system of four equations:

y =



rU
rV L
rR
rSL




then the matrix, A is given by




− 2F
Cr

+ 1
r L F

Cr

1

C 0

−Lr 2
r 0 1

L

−ρ0ω
2
k + 4

r2 (γ − rg0ρ0) + 4πGρ0
L
r2 (rg0ρ0 − 2γ) 2F

Cr
− 1

r
L
r

L
r2 (rg0ρ0 − 2γ) −ρ0ω

2
k + L2(γ+N)−2N

r2 −L F
Cr

− 2
r




(3.28)

which has the same symmetry as before. In a fluid, 3.26 reduces to a system of two coupled equations:

d

dr



y1

y3


 =




g0β − 1
r

1
λ −

β
ρ0

−ρ0

[
ω2
k + 4g0

r − g2
0β
]

1
r − g0β






y1

y3


 (3.29)

where y1 and y3 are defined as in 3.28 and β is as defined in 3.26.
In summary, for toroidal modes, we solve the system of equations 3.23; for radial modes, we solve 3.27;

for spheroidal modes with self gravitation, we solve 3.21 (solid) and 3.26 (fluid); and for spheroidal modes
without self-gravitation, we solve 3.28 (solid) and 3.29 (fluid). In general, the parameters that describe the
properties of the spherical Earth will not be simple analytic functions and so we must solve the systems
numerically. In the following, we outline the simplest numerical algorithms for the different cases though
we shall return to spheroidal modes later on to see how to handle some numerical problems.

3.4 Numerical solution for toroidal modes . Consider toroidal oscillations in the mantle (3.22). The
traction vector is continuous at all solid/solid interfaces and is zero at the free surface or in a fluid. This is
accomplished by making T continuous at all solid/solid interfaces and vanish in a fluid or at the free surface.
Similarly, the displacement field must be continuous at all solid/solid interfaces so W must be continuous.

We can now design a solution method for equation 3.22. We choose a particular value of l and ωk and
construct the coefficient matrix in equation 3.22. We integrate from the core-mantle boundary to the ocean
floor (or the free surface if the model has no ocean). This integration over depth can be accomplished by
using a Runge-Kutta scheme for example and a good starting solution for the vector [rW, rT ] would be [1, 0]
at the core mantle boundary. rW and rT are both continuous at all solid/solid interfaces within the mantle.
At the ocean floor (or free surface) rT should be zero. If rT is not zero at the ocean floor (or free surface)
we must repeat the integration with a different value of ωk until we find a value at which rT is zero at the
surface. There are an infinite number of such ωk’s for every value of l.

A plot of acceptable ωk’s (i.e., ones for which the boundary conditions are satisfied) versus l for a typical
Earth model is shown in Figure 3.2. The lowest frequency ωk for each l is given the label n = 0 (the
fundamental mode), the next highest frequency ωk for a particular l is labelled n = 1 and so on. Each
acceptable mode of oscillation is therefore given the label

nTl
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where n is called the overtone index and l is the harmonic degree of the mode. As noted previously, m does
not appear in equation 3.22 thus for each n, l value there are 2l + 1 (−l ≤ m ≤ +l) oscillations with exactly
the same frequency. The displacement field of each of these oscillations has the form (equation 3.7)

Figure 3.2 ω/" plot for toroidal modes. Large symbols indicate modes which have been observed

wigglier and, as a rule, samples deeper into the mantle. Thus overtone toroidal modes can be used to
infer the density and shear modulus of the whole mantle.
Toroidal modes also exist in the inner core but are neither excited nor observed by sources or receivers

at or near the surface. The algorithm described above can be used to compute the toroidal modes of the
inner core except that we must use a different starting solution which is valid near the center of the Earth.
To do this, we approximate a region near the center of the Earth as a homogeneous isotropic sphere. In
this case, the third equation of 3.12 can be written as

d2W

dr2
+

2

r

dW

dr
+ W

(
ω2

k

V 2
s

− l(l + 1)

r2

)
= 0 (3.29)

This is the equation for spherical Bessel functions with solutions: jl(kr) and yl(kr) where k = ω/Vs

(Appendix B). In general,W is a linear combination of jl and yl, i.e.,

W (r) = Ajl(kr) + Byl(kr)

For our homogeneous sphere, B = 0 because the solutions must be regular at the origin. Recursion
relations for the spherical Bessel functions can be used to compute the radial derivative of W so it is
straightforward to compute T and so get a complete starting solution.

3.5 Numerical solution for radial modes . Equation 3.26 can be integrated from the center of the Earth
to the surface. Because y1 is directly related to the radial component of displacement, it is continuous
at all interfaces. Similarly y4 is directly related to τrr (equation A45) and so must be continuous at
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Figure 3.2 ω/` plot for toroidal modes. Large symbols indicate modes which have been observed

nsml =

[
θ̂θθ cosec θ nWl(r)

∂Y ml
∂φ

− φ̂φφ nWl(r)
∂Y ml
∂θ

]
ei nωlt (−l ≤ m ≤ l)

The fact that there are 2l + 1 oscillations with exactly the same frequency is the familiar phenomenon of
degeneracy and is the result of the spherical symmetry of the model. The group of 2l + 1 oscillations with
the same degenerate frequency is called a multiplet while a single oscillation is called a singlet. In the case
of toroidal modes, n is equivalent to the number of nodes in radius of the function nWl(r). Thus 0Tl modes
are called fundamental modes and have no nodes in radius. As l increases, 0Wl(r) becomes increasingly
concentrated near the surface so these modes in the typical frequency band of interest (ω > 2 mHz) sample
only the upper mantle. As n increases for a particular l, nWl(r) is progressively wigglier and, as a rule,
samples deeper into the mantle. Thus overtone toroidal modes can be used to infer the density and shear
modulus of the whole mantle.

Toroidal modes also exist in the inner core but are neither excited nor observed by sources or receivers at
or near the surface. The algorithm described above can be used to compute the toroidal modes of the inner
core except that we must use a different starting solution which is valid near the center of the Earth. To do
this, we approximate a region near the center of the Earth as a homogeneous isotropic sphere. In this case,
the third equation of 3.12 can be written as

d2W

dr2
+

2

r

dW

dr
+W

(
ω2
k

V 2
s

− l(l + 1)

r2

)
= 0 (3.30)

This is the equation for spherical Bessel functions with solutions: jl(kr) and yl(kr) where k = ω/Vs
(Appendix B). In general, W is a linear combination of jl and yl, i.e.,
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W (r) = Ajl(kr) +Byl(kr)

For our homogeneous sphere, B = 0 because the solutions must be regular at the origin. Recursion relations
for the spherical Bessel functions can be used to compute the radial derivative of W so it is straightforward
to compute T and so get a complete starting solution.

3.5 Numerical solution for radial modes . Equation 3.26 can be integrated from the center of the Earth to
the surface. Because y1 is directly related to the radial component of displacement, it is continuous at all
interfaces. Similarly y4 is directly related to τrr (equation A45) and so must be continuous at all interfaces
and zero at the free surface. The procedure for solving (3.26) is thus similar to that for solving the toroidal
mode equations. A trial value of ωk is chosen and a starting solution constructed at the center of the Earth.
The solution is integrated to the surface making y1 and y4 continuous at all interfaces and the value of y4 is
checked at the surface. ωk is varied until y4 is zero at the surface (all boundary conditions are then satisfied).
There are an infinite number of ωk’s at which y4 is zero at the free surface. The solution with the lowest
value of frequency is labeled 0S0 and higher frequency solutions are labeled nS0 with n = 1, . . . ,∞. The
displacement field of the n’th overtone has the form

ns0 = [̂r nU0(r)Y0]ei nω0t

Because l = 0, there is only one oscillation for each value of n.
As in the inner core toroidal mode case, we construct a staring solution by considering a very small

region about the center of the Earth and approximating it as a homogeneous sphere. Consider the first of
the equations in (3.12) (or we can combine equations 3.26 into a single second-order differential equation).
For simplicity, we consider an elastically isotropic sphere, then in the homogeneous case, we have

(λ+ 2µ)

[
d2U

dr2
+

2

r

dU

dr
− 2

r2
U

]
+ ρ0

[
2Ug0

r
− U dg0

dr
− dΦ1

dr
+ ω2

kU

]
= 0 (3.31)

(from equation (3.12)) and

1

r2

(
d

dr
r2 dΦ1

dr

)
= −4πGρ0

[
dU

dr
+

2U

r

]
=
−4πGρ0

r2

(
d

dr
r2U

)

(from equation (3.10)). The second of these can be integrated directly to give

dΦ1

dr
= −4πGρ0U

In a homogeneous sphere we also have that

g0(r) =
4

3
πGρ0r so

dg0

dr
=

4

3
πGρ0

Substitution into 3.30 gives

d2U

dr2
+

2

r

dU

dr
+

[
k2 − 2

r2

]
U = 0 (3.32)

where

k2 = ρ0

16
3 πGρ0 + ω2

k

λ+ 2µ
(3.33)

Equation 3.31 is the differential equation satisfied by spherical Bessel functions of the first order. Because
the solution is regular at the origin we may take

U = A

(
sin kr
k2r2

− cos kr
kr

)
= Aj1(kr) (3.34)
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where A is an arbitrary constant. This may be readily differentiated to give R and so we can easily construct
the starting solution y1, y4 which is equivalent to r0U(r0), r0R(r0) where r0 is some small distance from the
origin.

Finally, we note that the equation for k (3.32) has a gravitational term, 16/3πGρ0, which has units of a
frequency squared and corresponds to a frequency of about 0.4mHz. Clearly, when ωk is much greater than
this value, the effect of gravity will be unimportant.

3.6 Numerical solution for spheroidal modes . The case of a general spheroidal oscillation requires the
use of 3.20 and 3.25. Note that there are three solutions of these equations which are regular at the origin
and the general solution is a linear combination of these three. The most obvious method of solving the
spheroidal mode equations is as follows. Choose an l and a value for ωk.
1) Find the three independent solutions of 3.20 near r = 0 assuming that the Earth can be modelled as a

homogeneous sphere here. The details of this calculation were first given by Pekeris and Jarosch (1958)
and a surfeit of detail is given in Lapwood and Usami (1981).

2) Integrate all three solutions to the inner core boundary. Equation A45 shows that, for a spheroidal mode

τrθ =LX
∂Y ml
∂θ

= S
∂Y ml
∂θ

and τrφ =im cosec θLXY ml = cosec θS
∂Y ml
∂φ

and τrr =RY ml (as for radial modes)

Therefore, at the inner core boundary (a fluid/solid interface), R is continuous, S is zero, and U is continuous
– Φ1 and Ψ1 are continuous at every interface. It follows from the definition of y that y1, y3, y4, and y6 are
continuous and y5 is zero at a fluid/solid interface.
There are two independent linear combinations of the three solutions at the top of the inner core which
satisfy y5 = 0. We compute these two solutions and use equation 3.25 to integrate the solution through the
fluid outer core boundary.
3) At the mantle core boundary we now have two four vectors (y1

1 , y
1
3 , y

1
4 , y

1
6) and (y2

1 , y
2
3 , y

2
4 , y

2
6). We construct

three independent vectors at the base of the solid mantle.



y1
2

0
y1

3

y1
4

0
y1

6




and




y2
1

0
y2

3

y2
4

0
y2

6




and




0
1
0
0
0
0




Any combination of these three vectors satisfies the boundary condition that y5 be zero and the last vector
has been added because we do not yet know what the value of y2 is at the base of the mantle. These three
solutions can be integrated to the ocean floor or to the free surface (if there is no ocean). All the y’s are
continuous at solid/solid interfaces. If there is an ocean, we must proceed as we did at the inner core/outer
core boundary. If there is no ocean we consider a linear combination of our three vectors at the free surface.
If we have chosen ωk correctly then R, S, and Ψ1 should all be zero at the free surface or, equivalently, y4,
y5, and y6 will all be zero. Thus we require

y = a1y
1 + a2y

2 + a3y
3

where the a’s are arbitrary constants such that

a1



y1

4

y1
5

y1
6


+ a2



y2

4

y2
5

y2
6


+ a3



y3

4

y3
5

y3
6


 =




0
0
0




or equivalently
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det



y1

4 y2
4 y3

4

y1
5 y2

5 y3
5

y1
6 y2

6 y3
6


 = 0 (3.35)

If this is not true we must start again with a new value of ωk.
There are many numerical diffculties associated with this calculation and, as we shall see later, there are

better ways to compute the solution.

or equivalently

det




y1
4 y2

4 y3
4

y1
5 y2

5 y3
5

y1
6 y2

6 y3
6


 = 0 (3.34)

If this is not true we must start again with a new value of ωk.
There are many numerical diffculties associated with this calculation and, as we shall see later, there

are better ways to compute the solution.

Figure 3.3 ω/" plot for spheroidal modes. Large symbols indicate modes which have been observed

The labeling of spheroidalmodes, nSl follows that of the toroidal and radialmodes and the frequencies
of these modes for a particular Earth model are shown as a function of l in Figure 3.3. As with toroidal
modes, there are 2l + 1 free oscillations with the frequency nωl (because m does not appear in the
coefficient matrix of 3.20). Each of these oscillations has a displacement field of the form

nuSm
l =

[
r̂nUl(r)Y

m
l (θ, φ) + θ̂θθnVl(r)

∂Y m
l

∂θ
(θ, φ) + cosec θφ̂φφnVl(r)

∂Y m
l

∂φ
(θ, φ)

]
einωlt

Remember that −l ≤ m ≤ l and that the 2l + 1 degeneracy stems from the spherical symmetry of the
model.

3.7 Some Simple Solutions . We can find analytic forms for U , V , and W in 3.12 if we have some
suitably chosen form of the model parameters as a function of radius. Homogeneous shells are a
convenient approximation though physically implausible. Of course, a number of thin homogeneous
shells can be used to approximate a continuously varying structure. For simplicity we look first at
toroidal modes of an elastically isotropic body, i.e.,
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Figure 3.3 ω/` plot for spheroidal modes. Large symbols indicate modes which have been observed

The labeling of spheroidal modes, nSl follows that of the toroidal and radial modes and the frequencies
of these modes for a particular Earth model are shown as a function of l in Figure 3.3. As with toroidal
modes, there are 2l+ 1 free oscillations with the frequency nωl (because m does not appear in the coefficient
matrix of 3.20). Each of these oscillations has a displacement field of the form

nuSml =

[
r̂nUl(r)Y

m
l (θ, φ) + θ̂θθnVl(r)

∂Y ml
∂θ

(θ, φ) + cosec θφ̂φφnVl(r)
∂Y ml
∂φ

(θ, φ)

]
einωlt

Remember that −l ≤ m ≤ l and that the 2l+ 1 degeneracy stems from the spherical symmetry of the model.

3.7 Some Simple Solutions . We can find analytic forms for U , V , and W in 3.12 if we have some
suitably chosen form of the model parameters as a function of radius. Homogeneous shells are a convenient
approximation though physically implausible. Of course, a number of thin homogeneous shells can be
used to approximate a continuously varying structure. For simplicity we look first at toroidal modes of an
elastically isotropic body, i.e.,

d

dr
(µZ) =

dT

dr
= −µ

r

(
3Z − W

r
(l + 2)(l − 1)

)
− ρ0ω

2
kW

where Z =
dW

dr
− W

r

59



If µ is a constant this becomes (3.29)

d2W

dr2
+

2

r

dW

dr
+W

(
ω2
k

V 2
s

− l(l + 1)

r2

)
= 0

This is the equation for spherical Bessel functions with solutions: jl(kr) and yl(kr) where k = ω/Vs
(Appendix B). In general, W is a linear combination of jl and yl, i.e.,

W (r) = Ajl(kr) +Byl(kr)

If we consider a homogeneous sphere, B = 0 because the solutions must be regular at the origin. If the
sphere is of radius a, the boundary conditions are satisfied if T (a) = 0. Now T = µZ so equivalently we
have Z(a) = 0 or

dW

dX
(ka) =

W

X
(ka) where X = kr

Because W ∝ jl(X) we have

djl
dX

=
jl
X

at X = ka =
ω

Vs
a (3.36)

Some explicit expressions for jl(X) for low values of l are given in Appendix B. Substitution into 3.35
gives a condition for roots, i.e.,

l = 1 → tanX =
3X

3−X2

l = 2 → tanX =
X3 − 12X

5X2 − 12

Because W is proportional to jl we can also find the values of X at which W is zero. From Appendix B
we get

l = 1 → tanX = X

l = 2 → tanX =
3X

3−X2

We solve these equations graphically (Figures 3.4 and 3.5). We also indicate some calculated periods for
Vs = 3.54 km/sec and a = 1220 km which are appropriate values for the inner core. Consider the graph
for l = 1 first. The first root occurs at X ' 6 while the first zero occurs at X ' 4.5. This root has an
eigenfunction (W ) with one zero so it is labeled 1T1. The next root occurs atX ' 9 and has an eigenfunction
with 2 zeroes. This is called 2T1 and so on. As you can see, the modes are labeled nTl where n is a counting
index and, for toroidal modes, corresponds to the number of internal nodes in displacement. The situation
for l = 2 is a little different. The first root has no nodes in radius (except the origin) and is called 0T2. Note
that 0T1 corresponds to a rigid body rotation and has ω = 0. We probably won’t consider it any further
(except to note that it can couple into 0S2 through the rotation of the Earth and so can’t be completely
ignored).

Figure 3.6 shows the modes of oscillation of a homogeneous sphere where X (at a root) is plotted as a
function of l. For each l there are an infinite number of modes. Also plotted are the roots for a homogeneous
shell which is a better approximation to the mantle. If the inner radius of the shell is b and the outer radius
is a then we must have

T (a) = T (b) = 0 where T = µ

(
dW

dr
− W

r

)
and W = Ajl +Byl

Writing jl(ka) as jal , etc., we find that
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Figure 3.4 Graphical solutions for ! = 1. The frequency roots are given by the equation tanX =
3X/(3 − X2). For a mean shear velocity of 3.54 km/s and a radius of 1220 km we find that 1T1 has a
period of 375.5s; 2T1 has a period of 238.2 s and 3T1 has a period of 175 s. The equation tanX = X
gives the location of the zeroes.

probably won’t consider it any further (except to note that it can couple into 0S2 through the rotation of
the Earth and so can’t be completely ignored).
Figure 3.6 shows the modes of oscillation of a homogeneous sphere where X (at a root) is plotted

as a function of l. For each l there are an infinite number of modes. Also plotted are the roots for a
homogeneous shell which is a better approximation to the mantle. If the inner radius of the shell is b
and the outer radius is a then we must have

T (a) = T (b) = 0 where T = µ

(
dW

dr
− W

r

)
and W = Ajl + Byl

Writing jl(ka) as ja
l , etc., we find that

0 = A

(
dja

l

dr
− ja

l

a

)
+ B

(
dya

l

dr
− ya

l

a

)

and

0 = A

(
djb

l

dr
− jb

l

b

)
+ B

(
dyb

l

dr
− yb

l

b

)

Eliminating A and B gives

∆ =

(
dja

l

dr
− ja

l

a

) (
dyb

l

dr
− yb

l

b

)
−

(
djb

l

dr
− jb

l

b

) (
dya

l

dr
− ya

l

a

)

and when ∆ = 0, we have a solution which matches the boundary conditions. ∆ is obviously a
determinant and we plot it as a function of ω in Figure 3.7. We chose Vs = 6.5 km/s, a = 6371 km
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Figure 3.4 Graphical solutions for ` = 1. The frequency roots are given by the equation tanX =
3X/(3−X2). For a mean shear velocity of 3.54 km/s and a radius of 1220 km we find that 1T1 has a period
of 375.5s; 2T1 has a period of 238.2 s and 3T1 has a period of 175 s. The equation tanX = X gives the
location of the zeroes.

0 = A

(
djal
dr
− jal

a

)
+B

(
dyal
dr
− yal

a

)

and

0 = A

(
djbl
dr
− jbl

b

)
+B

(
dybl
dr
− ybl

b

)

Eliminating A and B gives

∆ =

(
djal
dr
− jal

a

)(
dybl
dr
− ybl

b

)
−
(
djbl
dr
− jbl

b

)(
dyal
dr
− yal

a

)

and when ∆ = 0, we have a solution which matches the boundary conditions. ∆ is obviously a determinant
and we plot it as a function of ω in Figure 3.7. We chose Vs = 6.5 km/s, a = 6371 km and b = 3485 km. The
roots we obtain are quite close to the roots for a realistic mantle model though we see from Figure 3.6 that
the results are quite different from the homogeneous sphere. The difference is that we now have a group
of modes (low l, high n) which have very low group velocity, (dω/dl). If we add up such modes we get a
seismogram of arrivals which correspond to rays which travel near to vertical incidence across the mantle
(ScS). We shall look at this in more detail in later sections.

As a final example for toroidal modes, we consider how we might solve the equations if we divide the
mantle up into many homogeneous shells (rather than just one, as above). Equation 3.29 is still valid but
Vs, µ and k will change from shell to shell. The solution in each shell will be of the form

W (r) = Ajl(kr) +Byl(kr)
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Figure 3.5 Graphical solutions for ! = 2. The frequency roots are given by the equation tanX =
(X3 − 12X)/(5X2 − 12). For a mean shear velocity of 3.54 km/s and a radius of 1220 km we find that
0T2 has a period of 865.5s; 1T2 has a period of 302.1 s and 2T2 has a period of 205.8 s. The equation
tanX = 3X/(3 − X2) gives the location of the zeroes.

and b = 3485 km. The roots we obtain are quite close to the roots for a realistic mantle model though
we see from Figure 3.6 that the results are quite different from the homogeneous sphere. The difference
is that we now have a group of modes (low l, high n) which have very low group velocity, (dω/dl). If
we add up such modes we get a seismogram of arrivals which correspond to rays which travel near to
vertical incidence across the mantle (ScS). We shall look at this in more detail in later sections.
As a final example for toroidal modes, we consider how we might solve the equations if we divide

the mantle up into many homogeneous shells (rather than just one, as above). Equation 3.29 is still valid
but Vs, µ and k will change from shell to shell. The solution in each shell will be of the form

W (r) = Ajl(kr) + Byl(kr)

T (r) = Aµ

(
djl(kr)

dr
− jl(kr)

r

)
+ Bµ

(
dyl(kr)

dr
− yl(kr)

r

)

Suppose rb is the radius of the bottom of the shell and rt is the radius of the top of the shell. Then we
can write




W (rb)

T (rb)


 =




jl(krb) yl(krb)

µ
(

djl(krb)
dr − jl(krb)

rb

)
µ

(
dyl(krb)

dr − yl(krb)
rb

)







A

B


 = F(rb) ·




A

B




and
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Figure 3.5 Graphical solutions for ` = 2. The frequency roots are given by the equation tanX =
(X3 − 12X)/(5X2 − 12). For a mean shear velocity of 3.54 km/s and a radius of 1220 km we find that
0T2 has a period of 865.5s; 1T2 has a period of 302.1 s and 2T2 has a period of 205.8 s. The equation
tanX = 3X/(3−X2) gives the location of the zeroes.

T (r) = Aµ

(
djl(kr)

dr
− jl(kr)

r

)
+Bµ

(
dyl(kr)

dr
− yl(kr)

r

)

Suppose rb is the radius of the bottom of the shell and rt is the radius of the top of the shell. Then we can
write



W (rb)

T (rb)


 =




jl(krb) yl(krb)

µ
(
djl(krb)
dr − jl(krb)

rb

)
µ
(
dyl(krb)
dr − yl(krb)

rb

)






A

B


 = F(rb) ·



A

B




and


W (rt)

T (rt)


 =




jl(krt) yl(krt)

µ
(
djl(krt)
dr − jl(krt)

rt

)
µ
(
dyl(krt)
dr − yl(krt)

rt

)






A

B


 = F(rt) ·



A

B




so that


W (rt)

T (rt)


 = F(rt) · F−1(rb) ·



W (rb)

T (rb)


 = P(rt, rb) ·



W (rb)

T (rb)


 (3.37)

F is called a fundamental matrix and P is called a propagator matrix because it propagates the solution
from one radius to another. If we were to divide the mantle up into many homogeneous shells, we could
start with a solution (W,T ) = (1, 0) at the core mantle boundary and a trial frequency, ωk. We then use 3.36
to propagate the solution through all the shells until we reach the surface. Once more, if T at the surface is
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Figure 3.6Non-dimensional frequency (ourX) of toroidal oscillations as a function of !. Open circles
and solid curves refer to a uniform sphere and crosses and dashed curves to a uniform shell.




W (rt)

T (rt)


 =




jl(krt) yl(krt)

µ
(

djl(krt)
dr − jl(krt)

rt

)
µ

(
dyl(krt)

dr − yl(krt)
rt

)







A

B


 = F(rt) ·




A

B




so that



W (rt)

T (rt)


 = F(rt) · F−1(rb) ·




W (rb)

T (rb)


 = P(rt, rb) ·




W (rb)

T (rb)


 (3.36)

F is called a fundamentalmatrix andP is called a propagatormatrix because it propagates the solution
from one radius to another. If we were to divide the mantle up into many homogeneous shells, we could
start with a solution (W,T ) = (1, 0) at the core mantle boundary and a trial frequency, ωk. We then
use 3.36 to propagate the solution through all the shells until we reach the surface. Once more, if T at
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Figure 3.6 Non-dimensional frequency (our X) of toroidal oscillations as a function of `. Open circles and
solid curves refer to a uniform sphere and crosses and dashed curves to a uniform shell.

zero then we have a root – otherwise we have to modify our trial frequency and propagate through all the
shells again.

As we have seen from equation 3.30, radial modes of a homogeneous sphere also have eigenfunctions
which are spherical Bessel functions (proportional to j1(kr)) which allows you to do the following problem:

Problem 3.1
What is the frequency spacing of radial mode overtones of a homogeneous sphere as n→∞ in terms of

the compressional velocity of the sphere? (Finite n of order 10 should suffice!)

The spheroidal mode frequencies of a homogeneous sphere can be found in a similar way to the toroidal
mode case but the algebra is much heavier. It turns out that g0/r appears in the equations and is a constant
for a sphere. Of course it may vary in a homogeneous shell so we cannot then get an exact analytic solution.
We do not have to restrict ourselves to homogeneous shells. You might like to try and find how the material
properties must vary as a function of radius if the eigenfunction is to be proportional to trigonometric
functions or exponentials. This is possible for toroidal modes and almost possible for spheroidal modes
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Figure 3.7 Deterinant for ! = 1 for a homogeneous shell with inner radius 3485km, outer radius
6371km and mean shear velocity of 6.5 km/s.

the surface is zero then we have a root – otherwise we have to modify our trial frequency and propagate
through all the shells again.
As we have seen from equation 3.30, radial modes of a homogeneous sphere also have eigenfunctions

which are spherical Bessel functions (proportional to j1(kr)) which allows you to do the following
problem:

Problem 3.1
What is the frequency spacing of radial mode overtones of a homogeneous sphere as n → ∞ in terms

of the compressional velocity of the sphere? (Finite n of order 10 should suffice!)

The spheroidal mode frequencies of a homogeneous sphere can be found in a similar way to the
toroidal mode case but the algebra is much heavier. It turns out that g0/r appears in the equations and
is a constant for a sphere. Of course it may vary in a homogeneous shell so we cannot then get an
exact analytic solution. We do not have to restrict ourselves to homogeneous shells. You might like to
try and find how the material properties must vary as a function of radius if the eigenfunction is to be
proportional to trigonometric functions or exponentials. This is possible for toroidal modes and almost
possible for spheroidal modes (with some assumptions about g). In any case, for a realistic Earth model,
we will probably end up resorting to numerical calculation so some points about numerical solution are
now discussed.

3.8 Numerical problems and the method of minors . Firstly, we are dealing with mixed dimensions so
it makes sense to non-dimensionalize everything. A natural set of scales is
length→ radius of the Earth, a
density→ mean density of the Earth, ρ̄
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Figure 3.7 Determinant for ` = 1 for a homogeneous shell with inner radius 3485km, outer radius 6371km
and mean shear velocity of 6.5 km/s.

(with some assumptions about g). In any case, for a realistic Earth model, we will probably end up resorting
to numerical calculation so some points about numerical solution are now discussed.

3.8 Numerical problems and the method of minors . Firstly, we are dealing with mixed dimensions so it
makes sense to non-dimensionalize everything. A natural set of scales is

length→ radius of the Earth, a
density→ mean density of the Earth, ρ̄
time→ 1/

√
πGρ̄ where G is Newton’s constant.

This time unit is about 930 seconds which is reasonable for long-period calculation. Note that g0(a) = 4/3
with these units.

We should also take care that y is chosen so that all the elements of the matrix A are similar in magnitude.
This accounts for the

√
l(l + 1) scaling in y2 and y5 in equation 3.20.

The numerical solution for the radial and toroidal modes is simple and has already been described. The
numerical solution for the spheroidal modes is complicated and suffers from some numerical instabilities.
One problem is that the three solutions y1, y2, and y3 tend to become parallel (i.e., y1 ∝ y2, etc.) thus the
determinant is singular (numerically). In fact we end up differencing large, nearly equal numbers when we
evaluate the determinant (3.34) which can end up giving us nonsense for the secular equation.

We get around this by working with the minors of the solutions. In a solid, we work with third-order
minors. In a fluid, where we have only two independent solutions, we work with second-order minors. We
illustrate the technique with a solid, but using Cowling’s approximation so that we need only work with
second-order minors. We denote the two independent solutions which are regular at the origin as y1 and y2.
Each y consists of (y1, y2, y3, y4) and the last two elements of the vector (i.e., those proportional to R and S
– see 3.27) must be zero at the free surface at a root. Thus if y1 and y2 are the two solutions we have at the
surface at a root

y3 =a1y
1
3 + a2y

2
3 = 0

y4 =a1y
1
4 + a2y

2
4 = 0
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or

det

[
y1

3 y2
3

y1
4 y2

4

]
= y1

3y
2
4 − y1

4y
2
3 = 0

This last step, the formation of the determinant, is the one that causes us numerical problems. To avoid this,
we work directly with a vector of second-order minors, i.e., let the minor vector of [y1,y2] be



y1

1 , y
2
1

y1
2 , y

2
2

y1
3 , y

2
3

y1
4 , y

2
4


 =




y1
1y

2
2 − y1

2y
2
1

y1
1y

2
3 − y1

3y
2
1

y1
1y

2
4 − y1

4y
2
1

y1
2y

2
3 − y1

3y
2
2

y1
2y

2
4 − y1

4y
2
2

y1
3y

2
4 − y1

4y
2
3




=




m1

m2

m3

m4

m5

m6




m is the vector of all independent second-order minors of y1 with y2. Now dy/dr = Ay where, from 3.25,
A can be written:

A =



T11 T12 C11 0
T21 T22 0 C22

S11 S12 −T11 −T21

S12 S22 −T12 −T22




Now differentiate m and substitute from the above equation giving

dm

dr
= Bm

where

B =




T11 + T22 0 C22 −C11 0 0
S12 0 −T21 T12 0 0
S22 −T12 T11 − T22 0 T12 C11

−S11 T21 0 −(T11 − T22) −T21 −C22

−S12 0 T21 −T12 0 0
0 −S12 S11 −S22 S12 −(T11 + T22)




This system has some interesting properties (note the peculiar symmetry about the back diagonal). In
particular we find that dm2/dr = −dm5/dr and consideration of the starting solutions indicates that m2 =
−m5 throughout the structure. We need therefore only propagate a 5-vector and vary ω until we find the
values at which m6 is zero at the surface. (Note that m6(r = a) is zero at a root.) There is an algebraic
relationship between minors valid at all depths, i.e.,

m1m6 −m2m5 +m3m4 ≡ m1m6 +m2
2 +m3m4 = 0 (3.38)

Unfortunately, this is nonlinear and so cannot be used to reduce the system of equations further. It does,
however, serve as a basis for a mode counter which we discuss later.

The numerical procedure is now almost identical to the procedure for radial and toroidal modes except
we no longer know what the eigenfunction is. In what follows we use some results from Woodhouse
(1988). Central to the theory are the "spanning" matrices, M and M̃ and Woodhouse gives a recipe for their
construction. For the second order minors they are

M =




0 m1 m2 m3

−m1 0 m4 m5

−m2 −m4 0 m6

−m3 −m5 −m6 0



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M̃ =




0 m6 −m5 m4

−m6 0 m3 −m2

m5 −m3 0 m1

−m4 m2 −m1 0




Note that MT · M̃ = 0 which leads the the quadratic identity given above. Now form N = MTΣT and
Ñ = ΣM̃ where

Σ =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




It turns out that, for the second order minors, N = Ñ where

N =



−m2 −m3 0 m1

−m4 m2 −m1 0
0 −m6 −m2 −m4

m6 0 −m3 m2




and, in general,N · Ñ = 0. Algebraically, it is easy to verify that N · y = 0 where y is an eigenfunction that
satisfies the boundary conditions. In fact, a direct way to find the expression for N is to use the fact that a1

and a2 can be eliminated in four different ways from y = a1y
1 + a2y

2 which results in N · y = 0.
We now integrate a solution to the original equations downwards with an arbitrary starting value. Label

this solution as x and let x(a) = (1, 0, 0, 0) say. At every depth form

b = N · x where
dx

dr
= Ax

Using results from Woodhouse (1988) we find that for the second order system

dN

dr
= AN−NA

so differentiating the expression for b gives

db

dr
=
dN

dr
x + N

dx

dr
= ANx−NAx + NAx = ANx = Ab

Thus b satisfies the differential equation and N · b = 0 because N · Ñ = 0. This condition means that all
boundary conditions are satisfied. b is therefore our desired eigenvector. The merit of this method is that it
is numerically stable. Since N is made up of upgoing minor vector elements, it is proportional to squares of
the original vector so the product b = N ·x has the correct numerical behavior to capture solutions which are
exponentially growing upwards at depth. Certain modes that are trapped on interfaces can be exponentially
growing downwards (Stoneley modes and inner core modes) and this algorithm can fail for these at high
enough frequency. Woodhouse (1988) gives an alternative construction of the eigenfunction which performs
better in these cases.

The calculation of minor vectors for the solid system with self gravitation is much more complicated (see
Gilbert and Backus, 1966). The m vector is now 20 elements long, i.e.,

m1 = y1
1y

2
2y

3
3 + y1

2y
2
3y

3
1 + y1

3y
2
1y

3
2 − y1

1y
2
3y

3
2 − y1

2y
2
1y

3
3 − y1

3y
2
2y

3
1

...
m20 = y1

4y
2
5y

3
6 + y1

5y
2
6y

3
4 + y1

6y
2
4y

3
5 − y1

4y
2
6y

3
5 − y1

5y
2
4y

3
6 − y1

6y
2
5y

3
4

This vector is all possible independent third-order minors of the three solutions, i.e.,
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Row1
Row2
Row3
Row4
Row5
Row6




y1
1 y2

1 y3
1

y1
2 y2

2 y3
2

y1
3 y2

3 y3
3

y1
4 y2

4 y3
4

y1
5 y2

5 y3
5

y1
6 y2

6 y3
6




Now compute third-order determinants using the following row combinations: 123, 124, 125, 126, 134,
135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456. Note that m20 is the minor vector
element that should be zero at the free surface if we are at a root. There are only 14 independent minors
because

m2 =m13

m3 =−m7

m5 =−m12

m8 =m19

m9 =−m16

and m14 =−m18

Elimination of these redundant elements gives a differential system:

m′1 =(T11 + T22 + T33)m1 + C33m4 − C22m6 + C11m11

m′2 =S13m1 + T22m2 − T21m3 − T31m4 − C22m8

m′3 =S23m1 − T12m2 + T11m3 + C11m18

m′4 =(T11 + T22 − T33)m4 + C22m10 − C11m15

m′5 =− S12m1 + T31m3 + T33m5 − T21m6 − C33m9 + T12m11

m′6 =− S22m1 − 2T12m5 + (T11 − T22 + T33)m6 − C33m10 − C11m17

m′8 =− S22m2 + S12m3 − S23m5 + S13m6 − T22m8 + T31m10 − T12m18

m′9 =− S23m2 − S13m3 + S12m4 − T33m9 − T21m10 + T12m15

m′10 =− 2S23m3 + S22m4 − 2T12m9 + (T11 − T22 − T33)m10 + C11m20

m′11 =S11m1 − 2T31m2 + 2T21m5 + (T33 + T22 − T11)m11 − C33m15 + C22m17

m′15 =2S13m2 − S11m4 + 2T21m9 + (T22 − T11 − T33)m15 − C22m20

m′17 =2S12m5 − S11m6 + 2T31m8 + S22m11 + (T33 − T11 − T22)m17 + C33m20

m′18 =− S12m2 + S11m3 + S13m5 − T21m8 + T31m9 + S23m11 − T11m18

m′20 =2S13m8 − 2S12m9 + S11m10 − S22m15 − 2S23m18 − (T11 + T22 + T33)m20

The minor vectors in a fluid must be converted to a minor vector in the solid when integrating from fluid to
solid (and vice versa). The relationships needed to do this are

Fluid → Solid
m1 → −m6

m2 → −m8

m3 → m10

m4 → −m17

m6 → m20
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Solid → Fluid
m1 → m1

m2 → m2

m4 → m3

m11 → −m4

m15 → −m6

and all others are zero. The recovery of the eigenfunction proceeds in an analogous way to the case without
self-gravitation but now the system of equations we integrate down must be second order to get the correct
numerical behavior. We work with the vector of all second order minors of two solutions:

Row1
Row2
Row3
Row4
Row5
Row6




y1
1 y2

1

y1
1 y2

2

y1
1 y2

3

y1
1 y2

4

y1
1 y2

5

y1
1 y2

6




using the row combinations: 12,13, 14, 15 16, 23, 24, 25, 26, 34, 35, 36, 45, 46, 56. Thus the x vector has
15 elements with

x1 = y1
1y

2
2 − y1

2y
2
1

...
x15 = y1

5y
2
6 − y1

6y
2
5

Differentiation gives the following system of equations:

x′1 =(T11 + T22)x1 + C22x4 − C11x7

x′2 =(T11 + T33)x2 + C33x5 + T12x6 − C11x10

x′3 =S12x1 + S13x2 − T21x4 − T31x5 + T12x7

x′4 =S22x1 + S23x2 + (T11 − T22)x4 + T12(x8 − x3) + C11x13

x′5 =S23x1 + (T11 − T33)x5 + T12x9 + C11x14

x′6 =− T31x1 + T21x2 + (T22 + T33)x6 + C33x9 − C22x11

x′7 =− S11x1 − T21(x8 − x3) + S13x6 − (T11 − T22)x7 − T31x9 − C22x13

x′8 =− S12x1 + T21x4 + S23x6 − T12x7

x′9 =− S13x1 + T21x5 + (T22 − T33)x9 + C22x15

x′10 =− S11x2 − S12x6 + (T33 − T11)x10 − T21x11 − T31(x12 − x3)− C33x14

x′11 =− S12x2 + T31x4 − S22x6 − T12x10 + (T33 − T22)x11 − C33x15

x′12 =− S13x2 + T31x5 − S23x6

x′13 =S11x4 − S22x7 + S12(x8 − x3)− S23x10 + S13x11 − (T11 + T22)x13 + T31x15

x′14 =S11x5 − S23x7 + S12x9 + S13(x12 − x3)− (T11 + T33)x14 − T21x15

x′15 =− S13x4 + S12x5 + S22x9 + S23(x12 − x8)− T12x14 − (T22 + T33)x15

Inspection of these equations shows that x3 = −x8 − x12 so a system of only 14 equations needs to be
integrated downwards. We write this system of equations as

dx

dr
= Xx

Following the recipe of Woodhouse (1988), we now construct the spanning matrices, M and M̃ where M is
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


0 0 0 0 0 m1 m2 m3 m4 m5 m6 −m3 m8 m9 m10

0 −m1 −m2 −m3 −m4 0 0 0 0 m11 −m5 m2 −m18 m15 −m9

m1 0 −m5 −m6 m3 0 −m11 m5 −m2 0 0 0 m17 m18 m8

m2 m5 0 −m8 −m9 m11 0 m18 −m15 0 −m17 −m18 0 0 m20

m3 m6 m8 0 −m10 −m5 −m18 0 m9 m17 0 −m8 0 −m20 0
m4 −m3 m9 m10 0 m2 m15 −m9 0 m18 m8 0 m20 0 0




and M̃ is




0 0 0 0 0 m20 −m8 m18 −m17 −m9 −m15 −m18 m2 m5 m11

0 −m20 m8 −m18 m17 0 0 0 0 −m10 m9 −m8 m3 m6 −m5

m20 0 m9 m15 m18 0 m10 −m9 m8 0 0 0 m4 −m3 m2

−m8 −m9 0 −m2 −m5 −m10 0 −m3 −m6 0 −m4 m3 0 0 −m1

m18 −m15 m2 0 −m11 m9 m3 0 m5 m4 0 −m2 0 m1 0
−m17 −m18 m5 m11 0 −m8 m6 −m5 0 −m3 m2 0 −m1 0 0




The relationship MT · M̃ = 0 leads to the following 24 quadratic identities

0 =m20m1 −m8m2 +m18m3 −m17m4

0 =−m8m5 +m18m6 +m17m3

0 =−m20m5 +m18m8 −m17m9

0 =−m20m6 +m2
8 −m17m10

0 =m20m3 +m8m9 −m18m10

0 =−m8m11 −m18m5 −m17m2

0 =−m20m11 −m2
18 −m17m15

0 =−m20m2 +m8m15 +m18m9

0 =−m9m2 −m15m3 −m18m4

0 =m20m1 −m9m5 −m15m6 +m18m3

0 =m20m4 +m2
9 +m15m10

0 =−m9m11 +m15m5 −m18m2

0 =m9m1 +m2m3 +m5m4

0 =−m8m1 +m2m6 −m5m3

0 =−m8m3 −m9m6 +m5m10

0 =−m8m4 +m9m3 −m2m10

0 =m15m1 −m2
2 +m11m4

0 =m18m1 −m2m5 −m11m3

0 =m18m3 −m15m6 +m2m8 +m11m10

0 =−m17m1 −m2
5 −m11m6

0 =−m17m4 +m18m3 +m5m9 +m11m10

0 =m20m1 −m10m11 −m9m5 −m8m2

0 =m10m1 +m2
3 +m6m4

0 =−m17m4 −m8m2 +m6m15 +m5m9

Now N = MTΣT is given by
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N =




m2 m3 m4 0 0 −m1

m5 m6 −m3 0 m1 0
0 m8 m9 0 m2 m5

−m8 0 m10 0 m3 m6

−m9 −m10 0 0 m4 −m3

m11 −m5 m2 −m1 0 0
0 −m18 m15 −m2 0 m11

m18 0 −m9 −m3 0 −m5

−m15 m9 0 −m4 0 m2

0 m17 m18 −m5 −m11 0
−m17 0 m8 −m6 m5 0
−m18 −m8 0 m3 −m2 0

0 0 m20 −m8 m18 −m17

0 −m20 0 −m9 −m15 −m18

m20 0 0 −m10 m9 −m8




and Ñ = ΣM̃ is




m8 m9 0 m2 m5 m10 0 m3 m6 0 m4 −m3 0 0 m1

−m18 m15 −m2 0 m11 −m9 −m3 0 −m5 −m4 0 m2 0 −m1 0
m17 m18 −m5 −m11 0 m8 −m6 m5 0 m3 −m2 0 m1 0 0

0 0 0 0 0 m20 −m8 m18 −m17 −m9 −m15 −m18 m2 m5 m11

0 −m20 m8 −m18 m17 0 0 0 0 −m10 m9 −m8 m3 m6 −m5

m20 0 m9 m15 m18 0 m10 −m9 m8 0 0 0 m4 −m3 m2




and, as before, N · y = 0 and N · Ñ = 0. Note that Σ is now

Σ =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0




Now suppose we integrate a vector x down from the surface with an arbitrary starting solution and at every
depth form

b = Ñ · x where
dx

dr
= Xx

Using results from Woodhouse (1988) we find that for the third order system

dN

dr
= XN−NA

dÑ

dr
= AÑ− ÑX

so differentiating the expression for b gives

db

dr
=
dÑ

dr
x + Ñ

dx

dr
= AÑx− ÑXx + ÑXx = AÑx = Ab

Thus b satisfies the original system of equations and, because N · Ñ = 0, it follows that N · b = 0 so b
satisfies the boundary conditions and is our eigenfunction. Since Ñ is made up of (upgoing) minor vector
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elements, it is proportional to cubes of the original vector while the x vector is made up of squares, so the
product b = Ñ · x has the correct numerical behavior to capture solutions which are exponentially growing
upwards at depth. Certain modes that are trapped on interfaces can be exponentially growing downwards
and this algorithm can fail at high enough frequency. Woodhouse (1988) gives an alternative construction
of the eigenfunction which involves integrating a third-order minor vector down which performs better in
these cases.

3.9 Properties of mode solutions . We shall now consider some general properties of mode solutions
(particularly the asymptotic forms for high frequency). First we shall consider the toroidal mode case
because this is an example of a Sturm-Liouville equation and so we can use many of the results from
Sturm-Liouville theory (cf Birkhoff and Rota, 1969, chapter 10). We define an operator L(yk) such that

L(yk) = (py′k)′ − qyk = −λρ̃yk (3.39)

where prime denotes differentiation with respect to r and p, q, and ρ̃ are functions of r. The equation
governing toroidal modes is

d

dr
T +

µ

r
(3Z − W

r
(l + 2)(l − 1)) + ρ0ω

2
kW = 0 (3.40)

If we let yk = W/r, p = µr4, q = µr2(l+ 2)(l− 1), ρ̃ = ρ0r
4 and λ = ω2

k, we obtain the Sturm-Liouville form.
The boundary condition that T = 0 becomes dy/dr = 0.

The operator is self-adjoint which allows us to prove that the eigenvalues (ω2
k) are real and the eigen-

functions orthogonal (in a well-defined way). We postpone discussion of these results to a later section.
The Sturm-Liouville system can be further transformed to a form which is suitable for analysis in the high
frequency limit. Let

s =

r∫

b

dr

Vs
so

d

dr
=

1

Vs

d

ds

and let M = r2
√
ρVs and X = My = MW/r. The toroidal mode equation becomes

d2X

ds2
+ [ω2 − q̃(s)]X = 0 (3.41)

where q̃(s) =
1

M

d2M

ds2
+

(l + 2)(l − 1)

r2
V 2
s

and the boundary conditions are

dX

ds
M − dM

ds
X = 0 at s = 0 and s = γ =

a∫

b

dr

Vs

When l is small and the model varies smoothly with radius, the equation for large ω becomes

d2X

ds2
+ ω2X ' 0

The solution is X = C sin (ωs + χ) where C and χ are constants. Application of the boundary conditions
give

tan (ωs+ χ) =
ωM(s)

M ′(s)
at s = 0 and s = γ

When s = 0 and for large ω we have
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tanχ =
ωM(0)

M ′(0)
→∞ hence χ→ π

2

When s = γ and for large ω we have

tan (ωγ +
π

2
) =

ωM(γ)

M ′(γ)
→∞ hence ω → nπ

γ

where n is an integer. The frequency separation between modes then becomes

δω =
2π

2γ
=

2π

TScS

where TScS is the two-way travel time for vertically incident shear waves across the mantle. This result is
valid for large ω and small l and assumes that ρ and Vs vary smoothly with radius. We can generalize this
result to allow large l as well as large ω. First we need the behavior of Pml ’s in the large l limit. From
appendix B we find that, when m� l and l→∞

Pml ( cos θ) = (−l)m
(

2

πl sin θ

) 1
2

cos [(l + 1
2 )θ − π

4
+
mπ

2
]

If we put the source at the pole of the coordinate system then θ is just the angular epicentral distance. It
turns out that a localized source is incapable of exciting large m modes (we shall show that a point source
excites only modes with |m| ≤ 2) so the restriction to small m is valid. Inspection of the asymptotic form
for the Pml indicates that we have a traveling wave with a phase factor (ignoring some multiple of π/2) of

e±ikX = e±i(l+
1
2 )θ where X is range. If a is the radius of the Earth then aθ = X so

ka = l + 1
2

Now k = ω/c where c is the horizontal phase velocity and a/c = p is the horizontal angular phase slowness.
Thus

l + 1
2 = ωp

We shall also see that p can also be interpreted in terms of a “ray parameter.” The solutions to the Sturm-
Liouville problem, 3.38, are “exponential” in behavior if −q + λρ̃ < 0 and the solutions are oscillatory if
−q + λρ̃ > 0. The point at which λρ̃ = q is called a “turning point.” Substituting in the forms for q and ρ̃ for
toroidal modes gives

ρ0ω
2
kr

2 − µ(l + 2)(l − 1) = 0 at the turning point

For large l, (l + 2)(l − 1) ' (l + 1
2 )2 so

ρ0ω
2
kr

2 − µω2
kp

2 = 0 hence p =
r

Vs
at the turning point

This is also the value of the ray parameter in the ray equation at the turning point. The interpretation of this
result is that, if we add up all modes with similar p we will construct body waves with a turning point at
the depth at which the turning point occurs in the Sturm-Liouville equation. This result also implies that we
have an exponentially decreasing function beneath the turning point so body waves can be slightly sensitive
to structure just below the turning point.

Now, for large l the value of q̃ defined in 3.40 becomes

q̃(s) =
(l + 2)(l − 1)V 2

s

r2
' ω2p2V 2

s

r2

and the equation for X becomes

72



d2X

ds2
+ ω2V 2

s

(
1

V 2
s

− p2

r2

)
X = 0

or
d2X

dr2
+ ω2g2X = 0

where g =
√

1/V 2
s − p2/r2. We now have the equation in the standard form for WKB analysis (see e.g.,

Bender and Orzag, p. 490). X can be approximated by sines and cosines above the turning point, by
exponentials below the turning point, and by an Airy function around the turning point (the traditional
WKB analysis is invalid at the turning point). The eigenvalues, ω2

k, can be found by matching the boundary
conditions on X. The solution above the turning point is of the form

1√
g


A sin


ω

r∫

b

g(r) dr


+B cos


ω

r∫

b

g(r) dr




 (3.42)

where b is the turning point. [Note the similarity to the solution we would have had if g had been a constant.
The effect of slowly varying g is to vary the argument to the trig functions as a function of radius.] To make
life simple, we consider those modes which are oscillatory throughout the mantle so that b can be interpreted
as the radius of the core-mantle boundary. For a slowly varying medium, the boundary conditions are that
X ′ = 0 on both boundaries. These are satisfied when

ωn =
nπ
a∫
b

g dr

Thus, at fixed p, the spacing between modes is given by

δω(p) =
2π

2
a∫
b

g dr

=
2π

τ(p)

where τ(p) is the delay time. On an ω/l diagram (e.g., fig 3.2), modes with the same p lie on lines emanating
from the origin, i.e., ω/l+ 1

2 = constant. In the limit that we have ScS-equivalent modes (ScS rays are close
to vertical incidence), we find that p→ 0 and δω(0) = 2π/TScS as before.

Our analysis has assumed that the model parameters are slowly varying with radius (i.e., d2M/ds2 is small)
and so is invalid when there are first-order discontinuities such as the 670-km or 400-km discontinuities.
The analysis proceeds as above except we find WKB solutions for each layer between discontinuities and
match boundary conditions at the interface. The result is that the asymptotic spacing of modes is no longer
constant but oscillates about a mean spacing. This effect is called the “solotone” effect (see Lapwood and
Usami, chapter 8 for more details).

We can apply the same kind of analysis to the equations governing radial and spheroidal mode oscillation.
Consider first the radial mode equation, 3.26. The trick is to realize that the tractions are of order ω times the
displacements so that y4 is of order ωy1. (The tractions are proportional to derivatives of the displacement
and it is easy to see that differentiation of a form such as equation 3.41 will bring out a factor of ω.)
Consequently, for large ω and slowly varying material properties we obtain

dy1

dr
' y4

σ
and

dy4

dr
' −ρ0ω

2
ky1

(σ = λ+ 2µ = ρ0V
2
p ). Combining these gives

d2y1

dr2
+
ω2
k

V 2
p

y1 = 0

Now define
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γ =

a∫

0

dr

Vp
and s =

1

γ

r∫

0

dr

Vp
so

d

dr
=

1

Vpγ

d

ds

and let y1 = (Vp/ω)
1
2 X and assume that Vp is slowly varying finally giving

d2X

ds2
+ ω2γ2X ' 0

The solution of this is

X = B sin (γsω + χ)

whereB andχ are constants. The boundary condition (y4 = 0 at the surface) is satisfied when cos (ωγ+χ) = 0
so ωn = ((n+ 1

2 )π + χ)/γ and the asymptotic frequency separation between radial modes is given by

δω =
π

γ
=

2π

TPKIKP

where TPKIKP is the diametrical travel time for a P -wave crossing the Earth. We can apply a similar kind of
analysis to the spheroidal mode equations. First, you will have noticed that the effect of gravity gives terms
in the equation of motion with a characteristic squared frequency of ∼ 4πGρ0. This corresponds to a period
of about 3000 seconds so we anticipate that the effects of gravity can be ignored for periods much shorter
than this. (For example, see the argument to the spherical Bessel function for the radial mode problem,
3.32, where gravity can clearly be ignored if ω2

k � 16/3πGρ0). This means that we can neglect terms in φ1

and dφ1/dr and 3.20 reduces to a fourth-order system. If we futher note that y4 and y5 are of order ω times
y1 and y2, we obtain (for the isotropic case and for large ω)

dy1

dr
'y4

σ
dy2

dr
'y5

µ

dy4

dr
'− ρ0ω

2
ky1

dy5

dr
'− ρ0ω

2
ky2

Note that the equations for (y1, y4) have now decoupled from the equations for (y2, y5). The equations for
(y1, y4) are exactly the same as for radial modes and clearly have something to do with P -equivalent modes.
The equations for (y2, y5) differ only in that the shear velocity, Vs, appears instead of Vp. Thus we find shear
dominated modes with frequency spacing δω = 2π/TJ and δω = 2π/TScS where TJ is the diametrical travel
time of shear waves in the inner core.

3.10 The oscillation theorem . Much of the original research by Sturm was devoted to counting the number
of zeroes in the eigenfunction yk for a particular eigenvalue, λk. This has application in seismology because
it allows us to count how many modes exist between two frequencies at fixed l. For the toroidal mode case,
we can show that the zeroes of W and T must interlace. A simple way of looking at this feature of the
solution is by making a Prüfer substitution (Birkoff and Rota, 1969 p288). Our original equation can be
written

(py′k)′ + (λρ̃− q)yk = 0

The Prüfer substitution is

p(r)y′k = A(r) cos θ(r) and yk(r) = A(r) sin θ(r)
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After some algebra, we obtain two first order differential equations: one for θ(r) and one for A(r):

dθ

dr
= (λρ̃− q) sin 2θ +

1

p
cos 2θ (3.43)

and

1

A

dA

dr
=

[
1

p
− λρ̃+ q

]
sin θ cos θ

The most interesting of these is the equation for θ. Once we are above the turning point, all terms on the
right hand side of 3.42 are positive so θ always increases as r increases. In terms of our original variables
for the toroidal mode equation (T and W ) we have

tan θ =
W

r4T

so the boundary conditions for mantle toroidal modes are tan θ(r) =∞ at r = a and b. The surface condition
is satisfied when θ(a) = π

2 + nπ and θ(a) is a monotonic function of ω. Suppose at each radius we plot r4T
as a function of W , i.e.,

modes. The equations for (y2, y5) differ only in that the shear velocity, Vs, appears instead of Vp. Thus
we find shear dominated modes with frequency spacing δω = 2π/TJ and δω = 2π/TScS where TJ is
the diametrical travel time of shear waves in the inner core.

3.10 The oscillation theorem . Much of the original research by Sturm was devoted to counting the
number of zeroes in the eigenfunction yk for a particular eigenvalue, λk. This has application in
seismology because it allows us to count how many modes exist between two frequencies at fixed l.
For the toroidal mode case, we can show that the zeroes of W and T must interlace. A simple way of
looking at this feature of the solution is by making a Prüfer substitution (Birkoff and Rota, 1969 p288).
Our original equation can be written

(py′
k)′ + (λρ̃ − q)yk = 0

The Prüfer substitution is

p(r)y′
k = A(r) cos θ(r) and yk(r) = A(r) sin θ(r)

After some algebra, we obtain two first order differential equations: one for θ(r) and one for A(r):

dθ

dr
= (λρ̃ − q) sin 2θ +

1

p
cos 2θ (3.42)

and

1

A

dA

dr
=

[
1

p
− λρ̃ + q

]
sin θ cos θ

The most interesting of these is the equation for θ. Once we are above the turning point, all terms on
the right hand side of 3.42 are positive so θ always increases as r increases. In terms of our original
variables for the toroidal mode equation (T andW ) we have

tan θ =
W

r4T

so the boundary conditions for mantle toroidal modes are tan θ(r) = ∞ at r = a and b. The surface
condition is satisfied when θ(a) = π

2 + nπ and θ(a) is a monotonic function of ω. Suppose at each
radius we plot r4T as a function ofW , i.e.,

Fig 3.8

As r increases, θ increases. Thus, the zeroes of T andW interlace and the number of times we go round
the spiral as we integrate up in radius determines the mode count. Alternatively, we can integrate the
equation for θ numerically and use the result for θ(a) to determine the overtone number, n, directly.
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Fig 3.8

As r increases, θ increases. Thus, the zeroes of T and W interlace and the number of times we go round the
spiral as we integrate up in radius determines the mode count. Alternatively, we can integrate the equation
for θ numerically and use the result for θ(a) to determine the overtone number, n, directly.
[A similar result is desirable for spheroidal modes and is based upon the interlacing properties of combina-
tions of minor vectors. In a self-gravitating fluid, the roles of T and W above are taken by m6 and m3 −m4.
From equation 3.37, we infer that m3 −m4 and m6 cannot simultaneously be zero without generating a null
solution (actually, this is not strictly true) so the interlacing behavior is reasonable and a counter can be
constructed.]

3.11 Variational Principles . By virtue of Poisson’s equation, we can regard φ1 as a function of the
displacement field s, i.e., φ1 = φ1(s). We can then write our basic equations 2.53 as

ρ0
∂2s

∂t2
= L(s) + f (3.44)

where

L(s) = ∇ ·T−∇(srρ0g0)− ρ0∇φ1 + r̂g0∇ · (ρ0s)

For a solution of the form s = sk(r)eiωkt when f = 0, we have

L(sk) + ρ0ω
2
ksk = 0 (3.45)

We show in the appendix to this chapter that L is self-adjoint. We obtain for two differentiable fields, s and
s′ (which don’t necessarily satisfy the boundary conditions) the following result:
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∫

V

s′ · L(s) dV +

∫

Σ

[s′ ·T · r̂]+− dΣ =

∫

V

s · L(s′) dV +

∫

Σ

[s ·T′ · r̂]+− dΣ (3.46)

The surface integral is over all discontinuities and [ ]+− indicates the difference in the bracketed quantity
across a discontinuity found by subtracting the value on the lower (smaller radius) side from that on the
upper side. For displacement fields which satisfy the boundary conditions, s and T · r̂ are continuous so we
get

∫

V

s′ · L(s) dV =

∫

V

s · L(s′) dV (3.47)

i.e., L is self-adjoint. Let sk and sj be two solutions with associated eigenvalues ω2
k and ω2

j . Then

L(sk) =− ρ0ω
2
ksk

L(s?j ) =− ρ0ω
?2
j s?j

where ? denotes complex conjugation. (Note that L is a real operator.) Thus

−ω2
k

∫

V

ρ0s
?
j · sk dV = −ω?2j

∫

V

ρ0s
?
j · sk dV

or (ω2
k − ω?2j )

∫

V

ρ0s
?
j · sk dV = 0

so if k = j, ω2
k = ω?2j (i.e., the eigenvalues are real) and if k 6= j

∫

V

ρ0s
?
j · skdV = 0 (3.48)

(assuming no degeneracy). In fact we usually normalize the solutions so that
∫

V

ρ0s
?
j · skdV = δjk (3.49)

which is a statement of orthogonality. Suppose now we define the function ω2(s) by

−ω2(s)

∫

V

ρ0s
? · s dV =

∫

V

s? · L(s) dV +

∫

Σ

[s? ·T · r̂]+− dΣ (3.50)

If s = sk (an eigenfunction) then ω2(sk) = ω2
k (an eigenvalue) and

ω2
k

∫

V

ρ0s
? · s dV = −

∫

V

s? · L(s) dV

An important property of ω2(s) is that ω2(sk) is stationary to small perturbations in sk. To illustrate this, we
let s→ s + δs and define

δω2 = ω2(s + δs)− ω2(s)

Substitution into equation 3.49 and keeping terms up to first order gives
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δω2

∫

V

ρ0s
? · s dV+ω2

∫

V

ρ0δs
? · s dV + ω2

∫

V

ρ0s
? · δs dV

=−
∫

V

δs? · L(s) dV −
∫

V

s? · L(δs) dV

−
∫

Σ

[s? · δT · r̂]+− dΣ−
∫

Σ

[δs? ·T · r̂]+− dΣ

Using equation 3.46 gives

δω2

∫

V

ρ0s · s? dV = −
∫

V

δs? ·
(
L(s) + ρ0ω

2s
)
dV −

∫

Σ

[δs? ·T · r̂]+− dΣ

−
∫

V

δs ·
(
L(s?) + ρ0ω

2s?
)
dV −

∫

Σ

[δs ·T? · r̂]+− dΣ

Now, if s? is an eigenfunction and ω2 is an eigenvalue and δs is continuous at interfaces we have

δω2

∫

V

ρ0s
? · s dV = 0

i.e., δω2 = 0 so ω2 is stationary. (This result is only true if both s and s+ δs satisfy the boundary conditions).
This result is sometimes called “Rayleigh’s Principle” and is extremely useful as we shall see below. When
we have an eigenvalue and eigenvector, we have

ω2
k

∫

V

ρ0s
?
k · sk dV = −

∫

V

s? · L(s) dV

The term on the left-hand side clearly has something to do with kinetic energy. The total kinetic energy is

KE = 1
2

∫

V

ρ0v · v dV

where v is velocity. For an oscillator with sinusoidal behavior [s ∝ sk sin (ωkt)] we have

KE = 1
2 ω

2
k cos 2(ωkt)

∫

V

ρ0s
?
k · sk dV

and if we average over a cycle (the mean value of cos 2(ωkt) over a cycle is 1
2 ) we get

KE = 1
4 ω

2
k

∫

V

ρ0s
?
k · sk dV = ω2

kT say

In a similar way, the mean potential energy is

V = − 1
4

∫

V

s? · L(s) dV

and can be thought of as being made up of elastic potential energy and gravitational potential energy. We
can write the potential energy in many ways using equation 3.43 for L and Poisson’s equation. From the
appendix, we note that one way to write it is
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V = 1
4

∫

V

{∇s? · ·C : ∇s + 1
2 ρ0∇φ · [s? · ∇s− s?(∇ · s) + s · ∇s? − s(∇ · s?)]

+ρ0[s?∇φ1 + s∇φ?1 + s? · s∇(∇φ1)] +
1

4πG
∇φ1 · ∇φ?1 } dV

where φ?1 = φ1(s?) and φ1 = φ1(s). The first term on the right-hand side is clearly the elastic work (C
is the fourth-order elastic tensor) while the rest of the right-hand side is “gravitational”. This form of V
emphasizes the quadratic form of the potential energy. If we now form the “Lagrangian”, L, where

L = ω2T − V (3.51)

we find that L is minimized at an eigensolution and its value is zero because of the quadratic form of both
T and V. This means that there is equality of the time-averaged kinetic and potential energies.

Rayleigh’s principle states that ω2(s) = V(s)/T (s) is stationary if s is an eigenvector and is the basis of
the Rayleigh-Ritz method for computing eigenfrequencies and eigenfunctions. Suppose we expand s in a
set of known basis functions, Ψi(r), e.g.,

s =
∑

i

aiΨi(r)

Then T , the time-averaged kinetic energy becomes

T = 1
4

∫

V

ρ0s
? · s dV = aT ·Υ · a

where Υij = 1
4

∫

V

ρ0Ψ?
i ·Ψj dV

and can be computed. Similarly, V can be written as

V = aT ·V · a

where V has complicated (but computable) matrix elements. We now have

ω2aT ·Υ · a = aT ·V · a

ω2 can be regarded as a function of a and is stationary with respect to small perturbations in a at an
eigensolution. Differentiation with respect to a gives

V · a = ω2Υ · a

which is a generalized eigenvalue problem for the eigenvalues, ω2, and the eigenvectors, a. In practice, we
apply the Rayleigh-Ritz technique to the separated equations. We substitute the vector spherical harmonic
form for s and do the integral over θ and φ analytically. We then get forms for the kinetic and potential
energy integrals which are integrals over r alone and are independent of the azimuthal order number, m.
For example, if we substitute in the form for s for toroidal motion and we look at a single l,m component:

nsml = −r̂×∇1[Wm
l (r)Y ml (θ, φ)]

we find that

ω2

a∫

b

ρ0W
2r2 dr =

a∫

b

[
Lr2

(
dW

dr
− W

r

)2

+ N(l + 2)(l − 1)W 2

]
dr
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which is independent of m. We now let

W =
∑

i

aiΨi(r)

and get

B · a = ω2A · a
where

Aij =

a∫

b

ρ0ΨiΨjr
2 dr

Bij =

a∫

b

[
Lr2

(
dΨi

dr
− Ψi

r

)(
dΨj

dr
− Ψj

r

)
+ N(l + 2)(l − 1)ΨiΨj

]
dr

It is sensible to choose the Ψi so that they individually match the boundary conditions on W so that any
linear combination of them will also match the boundary conditions. It is also sensible to choose the Ψi so
that they are localized polynomials in radius with limited overlap. Inspection of the above equations shows
that if Ψi and Ψj don’t overlap except when i ' j then both A and B will be banded matrices. There are
very fast algorithms for solving the generalized eigenvalue problem with banded matrices and we have all
the machinery for isolating eigenvalues so ensuring that we compute a complete set of modes.

There are some disadvantages to this scheme. There are classes of oscillations which are low-frequency
gravitational oscillations in the fluid core and ocean. A choice of basis functions which can model elastic-
gravitational seismic modes is incapable of modelling these modes. Their eigenfunctions are therefore
poorly represented and the corresponding eigenvalues are badly wrong. Unfortunately, the eigenvalues,
which should be close to zero frequency, are now distributed through the seismic band and the algorithm
will compute all these spurious modes as well as the real seismic modes. The method of choice for computing
eigenvalues and eigenvectors remains the method of minors which we described in section 3.6.

12. Appendix: Self-adjointness of the operator L(s)

This appendix follows a derivation first given by John Woodhouse. By virtue of Poisson’s equation,
we can regard φ1 as a function of the displacement field s, i.e., φ1 = φ1(s). We can then write our basic
equations 2.45 as

ρ0
∂2s

∂t2
= L(s) + f (3.52)

where

L(s) = ∇ ·TE −∇ · (s · ∇T0)− ρ0∇φ1 − ρ1∇φ0 (3.53)

which, for an isotropic prestress (T0 = −p0I) and subtituting for ρ1[= −∇ · (ρ0s)] becomes

L(s) = ∇ ·TE − ρ0∇φ1 +∇ · (ρ0s)∇φ0 +∇(s · ∇p0) (3.54)

We show in this appendix that L is self-adjoint. To do this, it turns out to be more convenient to write L(s)
in terms of the Piola-Kirchoff incremental tensor, T̃, introduced in chapter 2 (equation 2.94):

T0 + T̃ =
[
I + (∇ · s)I− (∇s)T

]
[TE + T0]

Hence, to first order
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T̃ = TE + (∇ · s)T0 − (∇s)T ·T0 (3.55)

which, for an isotropic prestress, becomes

T̃ = TE − p0(∇ · s)I + p0(∇s)T (3.56)

Taking the divergence gives

∇ · T̃ = ∇ ·TE −∇p0(∇ · s)− p0∇(∇ · s) +∇p0(∇s)T + p0∇ · (∇s)T (3.57)

It is easy to verify that ∇ · (∇s)T = ∇(∇ · s) so

∇ · T̃ = ∇ ·TE −∇p0 ·
[
(∇ · s)I− (∇s)T

]
(3.58)

Thus, after some manipulation, 3.54 becomes

L(s) = ∇ · T̃− ρ0∇φ1 − ρ0s · ∇(∇φ0) (3.59)

Now consider two displacement fields, s and s′ so

s′ · L(s) = s′ · ∇ · T̃− ρ0s
′ · ∇φ1 − ρ0s

′ · s · ∇(∇φ0)

= ∇ · (s′T̃)−∇s′ · ·T̃− ρ0s
′ · ∇φ1 − ρ0s

′ · s · ∇(∇φ0)

+ ρ0s · ∇φ′1 − ρ0s · ∇φ′1
(3.60)

where φ′1 ≡ φ1(s′). Adding and subtracting ρ0s · ∇φ′1 is the first step in getting a symmetric form. Now

ρ0s · ∇φ′1 = ∇ · (ρ0sφ
′
1)− φ′1∇ · (ρ0s)

= ∇ · (ρ0sφ
′
1) + ρ1φ

′
1

= ∇ · (ρ0sφ
′
1) +

φ′1∇2φ1

4πG
(∇2φ1 = 4πGρ1)

= ∇ · (ρ0sφ
′
1) +

φ′1∇ · ∇φ1

4πG

= ∇ ·
[
ρ0sφ

′
1 +

φ′1∇φ1

4πG

]
− ∇φ

′
1 · ∇φ1

4πG

Substituting into eqn 3.60 gives

s′L(s) = ∇ ·
[
s′ · T̃ + φ′1(ρ0s +

∇φ1

4πG
)

]

−
[
∇s′ · ·T̃ + ρ0s

′∇φ1 + ρ0s∇φ′1 + ρ0s
′ · s · ∇(∇φ0) +

∇φ′1 · ∇φ1

4πG

] (3.61)

Now T̃ = ΛΛΛ : ∇s so

∇s′ · ·T̃ = ∇s′ · ·ΛΛΛ : ∇s

but Λijkl = Λklij so

∇s′ · ·ΛΛΛ : ∇s = ∇s · ·ΛΛΛ : ∇s′

thus

∇s′ · ·T̃ = ∇s · ·T̃′

It therefore follows that the second term in equation 3.61 is unchanged if s and s′ are swapped. Thus
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s′L(s)− sL(s′) = ∇ ·
[
s′ · T̃− s · T̃′ + φ′1(ρ0s +

∇φ1

4πG
)− φ1(ρ0s

′ +
∇φ′1
4πG

)

]
(3.62)

If we integrate over the volume of the Earth and apply Gauss’ theorem, we must remember that there are
internal surfaces on which properties may be discontinuous. We therefore write:

∫

V

∇ · u dV =

∫

S

n̂ · u dS = −
∫

Σ

[̂r · u]+− dΣ (3.63)

where the last term is the sum of contributions from all interfaces (including the surface) and is evaluated by
finding the difference in the bracketed quantity across a discontinuity (by subtracting the value on the lower
(smaller radius) side from that on the upper side). The value of the quantity outside the Earth is taken to be
zero.
Thus

∫

V

[s′L(s)− sL(s′)] dV = −
∫

Σ

[
s′ · T̃− s · T̃′ + φ′1(ρ0s +

∇φ1

4πG
)− φ1(ρ0s

′ +
∇φ′1
4πG

)

]+

−
· r̂ dΣ

From the boundary conditions on φ1, i.e., φ1 is continuous everywhere and (∇φ1 + 4πGρ0s) · r̂ is continuous
at the undeformed boundary (for any s) then

∫

V

[s′L(s)− sL(s′)] dV = −
∫

Σ

[
s′ · T̃ · r̂− s · T̃′ · r̂

]+
−
dΣ (3.64)

For a welded boundary, T̃ · r̂ is continuous and s is continuous so the term on the right is zero if s and s′

satisfy the boundary conditions. Substituting in the form for the Piola-Kirchoff tensor (3.56) gives
∫

V

[s′L(s)− sL(s′)] dV = −
∫

Σ

[s′ ·TE · r̂− s ·T′E · r̂]
+
− dΣ

−
∫

Σ

p0

[
s′(∇s)T − s′ · (∇ · s)I− s(∇s′)T + s · (∇ · s′)I

]+
− · r̂ dΣ

The last term can be shown to vanish using Gauss’ theorem (3.63) and the fact that ∇ · (∇s)T = ∇(∇ · s) so
finally we obtain:

∫

V

[s′ · L(s)− s · L(s′)] dV = −
∫

Σ

[s′ ·TE · r̂− s ·T′E · r̂]+− dΣ (3.65)

We can get an explicit expression for
∫

s′ · L(s)dV by using equation 3.61. We integrate this equation over
volume and use Gauss’ theorem to get

∫

V

s′ · L(s) dV +

∫

Σ

[s′ ·TE · r̂]+− dΣ =

∫

V

s · L(s′) dV +

∫

Σ

[s ·T′E · r̂]+− dΣ

=−
∫

V

{∇s′ · ·C : ∇s + 1
2 ρ0∇φ0 · [s′ · ∇s− s′(∇ · s) + s · ∇s′ − s(∇ · s′)]

+ ρ0[s′∇φ1 + s∇φ′1 + s′ · s∇(∇φ1)] +
1

4πG
∇φ1 · ∇φ′1 } dV

(3.66)

This particular algebraic form emphasizes the quadratic nature of the right hand side.

81


