Data assimilation and inverse problems - Homework Set 1

Problem 1

Is the probability measure $P(H)=1 / 2, P(T)=1 / 2$ a good model for a coin toss? How often do you observe H (or T) when you toss a coin 10, 50, 100 or 500 times?

Problem 2

Let x and x be two random variables. Show that if x and y are independent, then x and y are uncorrelated. Find (or read about) a counter example that shows that if x and y are uncorrelated, they might not be independent. Show that if x and y are jointly Gaussian, then x and y are uncorrelated if and only if x and y are independent.

Problem 3

Let x be a multivariate random variable with probability density function $p(x) \propto \exp (-F(x))$, where $F(x)$ is a quadratic function with positive definite Hessian. Show that x is Gaussian with mean $\mu=\arg \min F(x)$ and that the covariance matrix is the inverse of the Hessian of F evaluated at its minimizer.

Problem 4

(Box-Muller algorithm). Let x and y be two independent uniform random variables on $[0,1]$. Show that $\eta_{1}=\sqrt{-2 \sigma^{2} \log x} \cos (2 \pi y)$ and $\eta_{2}=\sqrt{-2 \sigma^{2} \log x} \sin (2 \pi y)$ are independent Gaussians with mean zero and variance σ^{2}.

