The Local Ensemble Transform Kalman Filter

Travis Harty
Program in Applied Mathematics
University of Arizona

Ensemble Kalman Filter (EnKF)

Model produces a new background from previous analysis

$$
\begin{gathered}
\mathbf{X}^{b}=\mathbf{M} \mathbf{X}^{a} \\
\mathbf{P}^{b}=\tilde{\mathbf{X}}^{b}\left(\tilde{\mathbf{X}}^{b}\right)^{T}
\end{gathered}
$$

Data

Assimilation produces a new analysis from the background

$$
\begin{gathered}
\mathbf{K}=\mathbf{P}^{b} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{T}+\mathbf{R}\right)^{-1} \\
\mathbf{X}^{a}=\mathbf{X}^{b}+\mathbf{K}\left(\mathbf{Y}-\mathbf{H} \mathbf{X}^{b}\right) \\
\mathbf{P}^{a}=\tilde{\mathbf{X}}^{a}\left(\tilde{\mathbf{X}}^{a}\right)^{T}
\end{gathered}
$$

Square Root Filters

- No longer apply assimilation to each member individually
- Instead update ensemble mean and covariance
- Then update entire ensemble to have analysis mean and covariance

$$
\mathbf{P}^{a}=(\mathbf{I}-\mathbf{K} \mathbf{H}) \mathbf{P}^{b} \quad \mid\left(\mathbf{P}^{a}\right)^{1 / 2}=\tilde{\mathbf{X}}^{b}\left(\mathbf{I}-\tilde{\mathbf{H}}^{T}\left(\tilde{\mathbf{H}} \tilde{\mathbf{H}}^{T}+\mathbf{R}\right)^{-1} \tilde{\mathbf{H}}\right)^{1 / 2}
$$

$$
\mathbf{P}^{a}=\tilde{\mathbf{X}}^{b}\left(\mathbf{I}-\tilde{\mathbf{H}}^{T}\left(\tilde{\mathbf{H}} \tilde{\mathbf{H}}^{T}+\mathbf{R}\right)^{-1} \tilde{\mathbf{H}}\right)\left(\tilde{\mathbf{X}}^{b}\right)^{T}
$$

$$
\mathbf{P}^{a}=\tilde{\mathbf{X}}^{a}\left(\tilde{\mathbf{X}}^{a}\right)^{T}
$$

$$
\tilde{\mathbf{H}}=\mathbf{H} \tilde{\mathbf{X}}^{b}
$$

$$
\tilde{\mathbf{X}}^{a}=\tilde{\mathbf{X}}^{b}\left(\mathbf{I}-\tilde{\mathbf{H}}^{T}\left(\tilde{\mathbf{H}} \tilde{\mathbf{H}}^{T}+\mathbf{R}\right)^{-1} \tilde{\mathbf{H}}\right)^{1 / 2}
$$

Note: $\mathbf{P}^{a}=\tilde{\mathbf{X}}^{a}\left(\tilde{\mathbf{X}}^{a}\right)^{T}=\tilde{\mathbf{X}}^{a} \mathbf{U U}^{T}\left(\tilde{\mathbf{X}}^{a}\right)^{T}=\tilde{\mathbf{X}}^{a} \mathbf{U}\left(\tilde{\mathbf{X}}^{a} \mathbf{U}\right)^{T}$
(Tippett et al., 2002)

Square Root Filters

- Using Woodbury Identity, change the form of the square root
- This removes the need to calculate $\widetilde{H} \widetilde{H}^{T}$ which can be expensive

$$
\begin{gathered}
(\mathbf{A}+\mathbf{U C V})^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1} \\
\tilde{\mathbf{X}}^{a}=\tilde{\mathbf{X}}^{b}\left(\mathbf{I}-\tilde{\mathbf{H}}^{T}\left(\tilde{\mathbf{H}} \tilde{\mathbf{H}}^{T}+\mathbf{R}\right)^{-1} \tilde{\mathbf{H}}\right)^{1 / 2} \\
\tilde{\mathbf{X}}^{a}=\tilde{\mathbf{X}}^{b}\left(\mathbf{I}+\tilde{\mathbf{H}}^{T} \mathbf{R}^{-1} \tilde{\mathbf{H}}\right)^{-1 / 2}
\end{gathered}
$$

Ensemble Transform Kalman Filter (ETKF)

$$
\begin{gathered}
\text { Recast state space in } \\
\text { terms of ensemble } \\
\begin{array}{c}
\mathbf{x}^{b}=\overline{\mathbf{x}}^{b}+\tilde{\mathbf{X}}^{b} \mathbf{w}^{b} \\
\mathbf{w}^{b} \sim N(0, \mathbf{I}) \\
\text { Dimension is greatly } \\
\quad \text { reduced } \\
\operatorname{dim}(\mathbf{x}) \sim 10^{4} \\
\operatorname{dim}(\mathbf{w}) \sim 10
\end{array}
\end{gathered}
$$

$$
\tilde{\mathbf{H}}=\mathbf{H} \tilde{\mathbf{X}}^{b}
$$

Recast the Kalman Gain in terms of $\widetilde{\mathbf{P}}^{\mathbf{a}}$

$$
\begin{gathered}
\mathbf{K}=\mathbf{P}^{b} \mathbf{H}^{T}\left(\mathbf{R}+\mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T}\right)^{-1} \\
\mathbf{K}=\mathbf{P}^{b} \mathbf{H}^{T}\left(\mathbf{R}^{-1}+\mathbf{R}^{-1} \mathbf{H}\left(\left(\mathbf{P}^{b}\right)^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{R}^{-1}\right) \\
\mathbf{K}=\mathbf{P}^{b} \mathbf{H}^{T}\left(\mathbf{R}^{-1}+\mathbf{R}^{-1} \mathbf{H} \mathbf{P}^{a} \mathbf{H}^{T} \mathbf{R}^{-1}\right) \\
\mathbf{K}=\mathbf{P}^{b}\left(\left(\mathbf{P}^{a}\right)^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right) \mathbf{P}^{a} \mathbf{H}^{T} \mathbf{R}^{-1} \\
\mathbf{K}=\mathbf{P}^{b}\left(\mathbf{P}^{b}\right)^{-1} \mathbf{P}^{a} \mathbf{H}^{T} \mathbf{R}^{-1} \\
\mathbf{K}=\mathbf{P}^{a} \mathbf{H}^{T} \mathbf{R}^{-1} \\
\tilde{\mathbf{P}}^{a}=\left(\mathbf{I}+\tilde{\mathbf{H}}^{T} \mathbf{R}^{-1} \tilde{\mathbf{H}}\right)^{-1} \\
\mathbf{K}=\tilde{\mathbf{X}}^{b} \tilde{\mathbf{P}}^{a}\left(\tilde{\mathbf{X}}^{b}\right)^{T} \mathbf{H}^{T} \mathbf{R}^{-1} \\
\mathbf{K}=\tilde{\mathbf{X}}^{b} \tilde{\mathbf{P}}^{a} \tilde{\mathbf{H}}^{T} \mathbf{R}^{-1}
\end{gathered}
$$

Ensemble Transform Kalman Filter (ETKF)

Recast state space in terms of ensemble

$$
\begin{gathered}
\mathbf{x}^{b}=\overline{\mathbf{x}}^{b}+\tilde{\mathbf{X}}^{b} \mathbf{w}^{b} \\
\mathbf{w}^{b} \sim N(0, \mathbf{I})
\end{gathered}
$$

Perform assimilation in ensemble space

$$
\begin{gathered}
\tilde{\mathbf{P}}^{a}=\left(\mathbf{I}+\tilde{\mathbf{H}}^{T} \mathbf{R}^{-1} \tilde{\mathbf{H}}\right)^{-1} \\
\overline{\mathbf{w}}^{a}=\tilde{\mathbf{P}}^{a} \mathbf{H}^{T} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{H} \overline{\mathbf{x}}^{b}\right) \\
\overline{\mathbf{x}}^{a}=\overline{\mathbf{x}}^{b}+\tilde{\mathbf{X}}^{b} \overline{\mathbf{w}}^{a}
\end{gathered}
$$

Dimension is greatly reduced

$$
\begin{aligned}
& \operatorname{dim}(\mathbf{x}) \sim 10^{4} \\
& \operatorname{dim}(\mathbf{w}) \sim 10
\end{aligned}
$$

$$
\begin{gathered}
\tilde{\mathbf{P}}^{a}=\mathbf{C}(\boldsymbol{\Lambda}+\mathbf{I})^{-1} \mathbf{C}^{T} \\
\mathbf{W}^{a}=\mathbf{C}(\boldsymbol{\Lambda}+\mathbf{I})^{-1 / 2} \mathbf{C}^{T}+\overline{\mathbf{w}}^{a} \\
\overline{\mathbf{X}}^{a}=\overline{\mathbf{x}}^{b}+\tilde{\mathbf{X}}^{b} \mathbf{W}^{a}
\end{gathered}
$$

$$
\begin{gathered}
\text { KF } \\
\mathbf{P}^{a}=\left(\left(\mathbf{P}^{b}\right)^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \\
\overline{\mathbf{x}}^{a}=\overline{\mathbf{x}}^{f}+\mathbf{P}^{a} \mathbf{H}^{T} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{H} \overline{\mathbf{x}}^{f}\right)
\end{gathered}
$$

ETKF

$$
\tilde{\mathbf{P}}^{a}=\left(\mathbf{I}+\tilde{\mathbf{H}}^{T} \mathbf{R}^{-1} \tilde{\mathbf{H}}\right)^{-1}
$$

$$
\overline{\mathbf{w}}^{a}=\tilde{\mathbf{P}}^{a} \tilde{\mathbf{H}}^{T} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{H} \overline{\mathbf{x}}^{f}\right)
$$

Localization in ETKF (LETKF)

- Rank of P is equal to the ensemble size - 1
- The assimilation step will be performed in a lower dimensional space
- Spurious correlations exist over long distances
- Apply localization through domain and observation localization
- Truncate state and observation vector to include 'nearby' points.

Domain localization

$$
\mathbf{x}_{l}=\mathbf{x}_{[-l: l]}
$$

$$
\mathbf{y}_{l}=\mathbf{y}_{[-l: l]}
$$

Observation localization

$$
\mathbf{R}_{l}=\tilde{\mathbf{L}} \circ \mathbf{R}
$$

- Assimilate data for each point in our state individually
- Only include those elements of our state vector and observation vector that ought to correlate with the assimilation point in question

Inflation

- Model, representation, and sampling errors result in state error underestimation
- Error in ensemble mean is too low compared to observation error
- Observations are under valued in assimilation step
- Inflation allows us to increase ensemble error covariance each step

$$
\begin{gathered}
\tilde{\mathbf{P}}^{a}=\left((\mathbf{I})^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \\
\tilde{\mathbf{P}}_{i}^{a}=\left((\mathbf{I} \rho)^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \\
\rho>1
\end{gathered}
$$

Inflation

- Model, representation, and sampling errors result in state error underestimation
- Error in ensemble mean is too low compared to observation error
- Observations are under valued in assimilation step
- Inflation allows us to increase ensemble error covariance each step

$$
\begin{gathered}
\tilde{\mathbf{P}}^{a}=\left((\mathbf{I})^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \\
\tilde{\mathbf{P}}_{i}^{a}=\left((\mathbf{I} \rho)^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \\
\rho>1
\end{gathered}
$$

