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Ensemble Kalman Filter (EnKF)
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Model

Assimilation

Current Estimate

Background

Analysis

Data

Model produces a new background 
from previous analysis

Assimilation produces a new 
analysis from the background

Xb = MXa

Pb = X̃b(X̃b)T

K = PbHT (HPbHT +R)�1

Xa = Xb +K(Y �HXb)

Pa = X̃a(X̃a)T

(Bergers et al., 1998)



Pa = (I�KH)Pb

Pa = X̃b(I� H̃T (H̃H̃T +R)�1H̃)(X̃b)T

H̃ = HX̃b

Square Root Filters
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Note:

• No longer apply assimilation to each member individually
• Instead update ensemble mean and covariance
• Then update entire ensemble to have analysis mean and covariance

(Pa)1/2 = X̃b(I� H̃T (H̃H̃T +R)�1H̃)1/2

Pa = X̃a(X̃a)T

X̃a = X̃b(I� H̃T (H̃H̃T +R)�1H̃)1/2

(Tippett et al., 2002)



Square Root Filters
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• Using Woodbury Identity, change the form of the square root
• This removes the need to calculate 𝐻"𝐻"#	which can be expensive

(A+UCV)�1 = A�1 �A�1U(C�1 +VA�1U)�1VA�1

X̃a = X̃b(I� H̃T (H̃H̃T +R)�1H̃)1/2

X̃a = X̃b(I+ H̃TR�1H̃)�1/2



State
space

Ensemble Transform Kalman Filter (ETKF)
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Ensemble 
space

Recast state space in 
terms of ensemble

Dimension is greatly 
reduced

Observation 
space
y

x

w

H̃ = HX̃b

x

b = x̄

b + X̃

b
w

b

w

b ⇠ N(0, I)

dim(x) ⇠ 104

dim(w) ⇠ 10

(Hunt et al., 2007)(Bishop et al. 2001)



Recast the Kalman Gain in terms of 𝐏"𝐚
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K = PbHT (R+HPfHT )�1

K = PbHT (R�1 +R�1H((Pb)�1 +HTR�1H)�1HTR�1)

K = PbHT (R�1 +R�1HPaHTR�1)

K = Pb((Pa)�1 +HTR�1H)PaHTR�1

K = Pb(Pb)�1PaHTR�1

K = PaHTR�1

P̃a = (I+ H̃TR�1H̃)�1

K = X̃bP̃a(X̃b)THTR�1

K = X̃bP̃aH̃TR�1



ETKF

Perform assimilation in ensemble space

Ensemble Transform Kalman Filter (ETKF)
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Recast state space in 
terms of ensemble

Dimension is greatly 
reduced

KF

x

b = x̄

b + X̃

b
w

b

w

b ⇠ N(0, I)

dim(x) ⇠ 104

dim(w) ⇠ 10

Pa = ((Pb)�1 +HTR�1H)�1

x̄a = x̄f +PaHTR�1(y �Hx̄f )

(Hunt et al., 2007)(Bishop et al. 2001)

P̃a = (I+ H̃TR�1H̃)�1

w̄a = P̃aHTR�1(y �Hx̄b)

x̄a = x̄b + X̃bw̄a

P̃a = C(⇤+ I)�1CT

Wa = C(⇤+ I)�1/2CT + w̄a

X̄a = x̄b + X̃bWa



Localization in ETKF (LETKF)
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• Rank of P is equal to the ensemble size - 1
• The assimilation step will be performed in a lower dimensional space
• Spurious correlations exist over long distances
• Apply localization through domain and observation localization
• Truncate state and observation vector to include ‘nearby’ points.

Domain localization Observation localization

• Assimilate data for each point in 
our state individually

• Only include those elements of 
our state vector and observation 
vector that ought to correlate 
with the assimilation point in 
question

Rl = L̃ �R

(Hunt et al., 2007)



Inflation

Inflation
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• Model, representation, and sampling errors result in state error underestimation
• Error in ensemble mean is too low compared to observation error
• Observations are under valued in assimilation step
• Inflation allows us to increase ensemble error covariance each step

(Hunt et al., 2007)

P̃a = ((I)�1 +HTR�1H)�1

P̃a
i = ((I⇢)�1 +HTR�1H)�1

⇢ > 1
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