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SUMMARY

We present a method for computing a meaningful uncertainty quantification (UQ)

for regularized inversion of electromagnetic (EM) geophysical data that combines

the machineries of regularized inversion and Bayesian sampling with a “randomize-

then-optimize” (RTO) approach. The RTO procedure is to perturb the canonical

objective function in such a way that the minimizers of the perturbations closely

follow a Bayesian posterior distribution. In practice, this means that we can com-

pute UQ for a regularized inversion by running standard inversion/optimization

algorithms in a parallel for-loop with only minor modification of existing codes. Our

work is split into two parts. In Part I we review RTO and extend the methodology

to estimate the regularization penalty weight on the fly, not unlike in the Occam

inversion. We call the resulting algorithm the RTO-TKO and explain that it sam-

ples from a biased distribution which we numerically demonstrate to be nearby the

Bayesian posterior distribution. In return for accepting this small bias, the advan-
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tage of RTO-TKO over asymptotically unbiased samplers is that it significantly

accelerates convergence and leverages computational parallelism, which makes it

highly scalable to 2D and 3D EM problems. In Part II, we showcase the versatility

and computational efficiency of RTO-TKO and apply it to a variety of EM inver-

sions in 1D and 2D, carefully comparing the RTO-TKO results to established UQ

estimates using other methods. We further investigate scalability to 3D, and discuss

the influence of prior assumptions and model parameterizations on the UQ.

1 INTRODUCTION

Regularized inversion is well-established and remains to this day the “workhorse” algorithm

in geophysics. The result of a regularized inversion is a single model that minimizes data

misfit while simultaneously satisfying regularization constraints (see, e.g., Constable et al.

1987; Parker 1994; Newman & Alumbaugh 2000; Aster et al. 2011; Fournier & Oldenburg

2019). Uncertainty quantification (UQ) is an important aspect of geophysical inversion and

is essential to constraining Earth properties like temperature, melt fraction, or pore fluid

content, from the physical properties directly sensed by geophysical methods, such as electrical

resistivity and seismic velocity.

Presently, there is no satisfactory avenue to computing a UQ for a regularized inversion,

especially for inversions of electromagnetic (EM) data in 2D or 3D. Linearization (see, e.g.,

Tarantola 2005), for example, is computationally feasible, but it is problematic because it

is only valid in the immediate vicinity of a reference model and can greatly under- or over-

estimate uncertainty (Dettmer & Dosso 2013). Bayesian sampling goes beyond linearization

and seeks to place probabilistic bounds on the acceptable model space by finding the range

of models that fit the data and prior assumptions (or, equivalently, satisfy regularization

constraints). However, Bayesian sampling is typically implemented via a Markov chain Monte

Carlo (MCMC) approach which, due to extremely slow convergence, limits applicability to 1D

EM and some 2D problems (Blatter et al. 2021, see below for more detail on the limitations

of MCMC).

In this work we describe the mathematical and computational framework for how to

compute and interpret uncertainty in regularized inversion, starting from a well-defined, non-

trivial model class—similar in spirit to the Occam inversion (Constable et al. 1987), but with

a Bayesian twist. To achieve our goal, we indeed combine regularized inversion with Bayesian
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sampling, resulting in an algorithm that we call the “RTO-TKO.” The RTO-TKO is designed

to be computationally efficient, grid invariant (see below for explanations), and scalable to

2D (shown here), and probably 3D (left for future work). Moreover, RTO-TKO is easy to use

because it repurposes regularized inversion codes and does not require much further tuning.

The computational advantages of the RTO-TKO come about because it does not sam-

ple the Bayesian posterior distribution, but a “biased” distribution that is often nearby. We

demonstrate numerically that this bias is small in EM problems compared to other sources

of error/bias, such as assumptions about model errors, model error covariances, or the errors

introduced by an asymptotically unbiased sampler at finite chain length. The (small) bias of

the RTO-TKO is also the inspiration for its abbreviation: TKO stands for “technical knock-

out,” where a true “knock out” would be reserved for an unbiased method that can still be

scaled to very large problems.

Our work is split into two parts. Part I focuses on the mathematical foundations of the

RTO-TKO method. Specifically, we explain the sampling algorithm, its advantages and short-

comings, and we present how to automatically adjust the regularization strength—again, simi-

lar in spirit to the Occam inversion (Constable et al. 1987). We illustrate the use of RTO-TKO

on simplified toy problems and on a 1D DC resistivity problem (field-data). Part II showcases

the RTO-TKO applied to a large number of EM problems, including the magnetotelluric

(MT) method, controlled source EM, and joint inversions. We demonstrate its computational

efficiency by using the RTO-TKO to invert 2D MT field-data and by comparing the com-

putational costs of RTO-TKO and a recently developed trans-dimensional MCMC sampler

(Blatter et al. 2021). Part II also details the (large) effect of prior assumptions (regularization

and model parameterization) on the UQ and discusses the practical consequences of these

mathematical facts.

2 MOTIVATION, OVERVIEW AND CONTEXT

Before getting into the details of the RTO-TKO, we motivate our thinking and provide an

informal overview of how the algorithm works and how it achieves computational efficiency. We

also explain how our work fits into the current literature on Bayesian sampling in geophysics.

2.1 RTO basics

“Randomize-then-optimize” (RTO) has been studied in applied mathematics (Bardsley et al.

2014, 2015; Wang et al. 2017; Bardsley et al. 2020; Bardsley & Cui 2021), and variations
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of the idea are used in applications ranging from numerical weather prediction (where it is

called “ensemble of data assimilation,” Bonavita et al. (2012)) to reservoir modeling/history

matching, (where variations of RTO are called “randomized-maximum likelihood,” Gu &

Oliver (2007); Chen & Oliver (2012); Oliver (2017); Stordal & Nævdal (2018)). The key

insight behind RTO is that the canonical objective function of regularized inversion can be

recast in terms of a Bayesian posterior distribution where the data misfit term corresponds to

the likelihood and the model regularization term corresponds to the prior (see also Calvetti

& Somersalo 2018; Vignoli et al. 2021).

The basic ideas behind RTO are as follows. The deterministic solution to the regularized

inverse problem has a high posterior probability because it fits the data (high likelihood)

and satisfies the regularization constraints (high prior probability). In fact, the regularized

inverse solution maximizes the posterior probability (Stewart 2010). To explore the full range

of models that satisfy the data and regularization constraints (rather than sampling only the

maximum probability model), RTO perturbs the objective function so that the minimizers

of the perturbations closely follow an associated Bayesian posterior distribution. In practice,

this means that RTO allows us to compute a nonlinear UQ by repurposing the machinery of

regularized inversion within a Bayesian framework. The samples that are generated by solving

(perturbed) optimization problems can be viewed as proposals for a Markov chain Monte Carlo

(MCMC) sampler and are accepted/rejected using the typical Metropolis-Hastings machinery

(Metropolis et al. 1953; Hastings 1970).

The main goal of this paper series is to demonstrate that the accept/reject step (i) slows

down convergence and prevents effective use of parallel computing; and (ii) is unnecessary

because the bias caused by omitting the accept/reject step is small. The latter is a delicate

issue, in particular because a mathematical theory for when the bias is small is missing.

We take a pragmatic approach and demonstrate, numerically, that RTO (and our extension

called the RTO-TKO) yields useful UQ for regularized inversion in EM geophysics. We cannot

guarantee, however, that our method would achieve a similarly small bias if applied to other

geophysical methods. On the other hand, RTO ideas have been used widely and with great

success in Earth science (Bonavita et al. 2012; Gu & Oliver 2007; Chen & Oliver 2012; Oliver

2017; Stordal & Nævdal 2018) suggesting the ideas may be broadly applicable. It remains

for the applied mathematics community to develop the theory to robustly quantify the bias

resulting from neglecting the Metropolis-Hastings machinery.
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2.2 Limitations of MCMC

There exists a large number of MCMC methods that can sample a Bayesian posterior dis-

tribution, e.g., Random Walk Metropolis (RWM), Metropolis adjusted Langevin algorithm

(MALA), Hamiltonian Monte Carlo (HMC, Neal 2011; Duane et al. 1987), or ensemble sam-

plers (Goodman & Weare 2010; Christen & Fox 2010). Unfortunately, none of these samplers

scale well with the dimension of the problem, limiting the use of MCMC in EM geophysics to

1D problems and some 2D problems (e.g., Chen et al. 2012; Rosas-Carbajal et al. 2014), and

more broadly to problems with only a handful of unknowns.

The reasons for this unfortunate fact are well known. An MCMC sampler must be “tuned”

to keep the step size small enough for optimal acceptance probability, yet large enough to

explore the space in a reasonable amount of time. For RWM, this means the step size is

inversely proportional to the dimension of the problem, n (Beskos et al. 2009; Roberts et al.

1997; Roberts & Rosenthal 1998). Moreover, the “optimal” acceptance rate is 0.234 (Roberts

et al. 1997), meaning that even an optimally-tuned RWM algorithm is quite inefficient, with

about three quarters of all proposed models ultimately wasted. Similarly, the optimal step

size for MALA is O(n−1/3) (Robert & Rosenthal 2001) and for HMC it is O(n−1/4) (Beskos

et al. 2013). We note that for other samplers (e.g., the ensemble samplers of Goodman &

Weare 2010; Christen & Fox 2010), such scalings are unknown but are likely no better (see

also Morzfeld et al. 2019).

The inverse scaling of step size with dimension implies that an MCMC sampler needs

draw a very large number of samples in order to give reliable results in high dimensional

problems—even when setting issues of reaching stationarity (the infamous ’burn-in’ period)

to the side. Drawing this many samples can quickly become impractical if each step in the

Markov chain requires running a computationally demanding numerical model, as in EM

geophysics. To put things simply, MCMC explores the model space sequentially and slowly, so

that convergence is usually too slow for problems of significant size. Moreover, whether or not

an MCMC sampler has converged is difficult to assess because it is challenging to say whether,

after n iterations, the algorithm has drawn samples from all the high probability regions of

model space. Even more generally, a direct consequence of the Metropolis-Hastings accept/

reject step is that MCMC is fundamentally serial: model mi+1 in the chain depends upon

model mi. For this reason, MCMC cannot leverage HPC resources efficiently (besides running

chains independently and in parallel, which does not address issues of reaching stationarity,

see below for more detail). For all these reasons, the practical applications of MCMC have

been limited to 1D and some lightweight 2D problems in EM geophysics.
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While the focus of this paper series is on regularized models, many recent geophysical works

on Bayesian sampling use trans-dimensional (trans-D) Bayesian sampling (Green 1995). Trans-

D sampling, introduced to geophysics by Malinverno (2002), makes use of Bayesian parsimony

as an implicit form of regularizaton, but trans-D samplers typically do not include additional

(explicit) regularization. The implicit regularization induced by the parsimony is such that

trans-D samplers prefer simpler models with fewer parameters to more complex models with

more parameters (MacKay 2003; Schoniger et al. 2015). Trans-D sampling methods have been

successfully used in geophysics in 1D (e.g. Minsley 2011; Ray et al. 2014; Dettmer et al. 2015;

Blatter et al. 2018) and 2D (e.g. Bodin & Sambridge 2009; Hawkins & Sambridge 2015; Galetti

& Curtis 2018; Blatter et al. 2021), though most 2D examples are in seismology rather than

EM geophysics. And while there has been some recent success with applying trans-D sampling

to 3D geophysics problems (Brett et al. 2021), the high cost of 3D forward modeling, the large

number of forward evaluations needed for MCMC algorithms to converge (Agostinetti & Bodin

2018), and the fundamentally serial nature of MCMC make application of these methods to

high-dimensional models difficult.

2.3 Trading computational efficiency for a small bias

Our main motivation is to overcome the computational bottleneck associated with MCMC

and we do so by using RTO to sample a “biased” distribution, which is not equal to the

(desired) Bayesian posterior distribution, but which is often a good approximation of it. We

do this by simply omitting the Metropolis-Hasting accept/reject step – all RTO proposals are

accepted. We propose biased sampling for the following reasons:

(i) The bias is often small and we numerically demonstrate that this is so in a large number

of EM problems (see also Part II of this series). This means in particular that one obtains

essentially the same UQ under biased sampling and under asymptotically exact sampling.

(ii) Accepting a small bias brings about significant computational advantages and allows us to

use RTO at scale on 2D (and perhaps even 3D) EM geophysics problems.

(iii) RTO, with a small bias, has proven successful in other applications, see, e.g., Emerick &

Reynolds (2013); Gao et al. (2006), but also the original RTO paper of Bardsley et al. (2014),

as well as the literature on randomized-maximum likelihood, e.g., Wang et al. (2018); Oliver

(2017). More generally, biased sampling, e.g., via an ensemble Kalman filter, has proven very

effective in (global) numerical weather prediction and in physical oceanography.

Indeed, RTO drastically changes how the sampling is done: Rather than making small
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local changes, RTO generates global samples via optimization of a perturbed objective function

and, since the accept/reject step is omitted, RTO exhibits rapid convergence because it avoids

largely unnecessary rejections and being forced to take small, local steps. The computational

efficiency of RTO – both in terms of the total flops required and the total run time of the

algorithm – is due to two key facts. First, each sample has, by construction, a high posterior

probability. While the computational resources that go into the construction of a single sample

are high (compared to, say RWM), this investment pays off because no samples are wasted

so that one only needs a small number of samples for an approximate UQ (see below and

Part II for more details). Second, the samples are independent of each other and, due their

independence, RTO can leverage high performance computing (HPC) more effectively than

MCMC samplers.

We emphasize that we do not carelessly trade bias for efficiency. Indeed, we verify nu-

merically that the bias is small in a large number of test problems (toy and field data) by

comparing to established UQ algorithms and, whenever possible, to unbiased MCMC. Finally,

we note that even an asymptotically exact MCMC sampler is “biased” in practical applica-

tion, since the number of MCMC steps is by necessity finite. Indeed, we show that the bias

introduced by running an asymptotically unbiased MCMC sampler with finite chain length

can exceed the bias introduced by the RTO. Additionally, statistical assumptions about errors

in the data, e.g., Gaussian errors with known variances/covariances, are often hard to justify

from first principles, calling into question why the precise Bayesian posterior distribution is

the gold standard.

In summary, our main motivation for omitting the accept/reject step in RTO is that we

cannot have everything – computational efficiency and asymptotic (infinite number of samples)

convergence. In view of the bias being negligibly small in many practical situations (such as

inversion of EM geophysical data, as demonstrated here), trading bias for efficiency seems to

be a pragmatic way forward for pushing UQ beyond simplified or 1D inverse problems.

2.4 The RTO-TKO

We extend the well-known RTO method to sample the regularization penalty weight (see

Section 3.3), letting the data and the prior determine the appropriate range of values for

this important parameter – much in the spirit of an Occam inversion. We call this extension

the RTO-TKO, because it essentially amounts to using an RTO step twice within a Gibbs

sampler (see also Bardsley & Cui 2021). We design the RTO-TKO to be invariant under grid

refinement (Stewart 2010; Chen et al. 2018; Dunlop et al. 2020). This means the UQ remains
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unchanged if the underlying parameter grid is made finer, i.e., the choice of the number of

model parameters does not influence the UQ (so long as the grid is sufficiently fine to capture

model structure resolvable by the data). Grid invariance is an important property, because

without grid invariance, the results are “biased” by the choice of grid. Within RTO-TKO,

grid invariance is surprisingly easy to implement via a clever change of variables (see below

for more detail).

2.5 Which UQ do you want?

Finally, we note that geophysical data rarely can constrain all aspects of the model. For this

reason, the prior has a large effect on the posterior distribution and, therefore, on the resulting

UQ. Throughout this two-part article, we carefully investigate the practical consequences of

these important issues (for the first time, as far as we know). For example, the mathemat-

ical and computational framework we describe relies heavily on well-established regularized

inversion and computes a UQ for such models. We contrast this ‘regularized’ UQ with results

obtained by state-of-the art trans-D Bayesian samplers, which are not regularized, besides

the implicit regularization induced by Bayesian parsimony. As we will demonstrate, the two

UQs are not the same, but this fact should not be used to say that one UQ is “better” than

another. Instead, we need to be aware that UQ is always “local” not “global,”—prior assump-

tions, including regularization (implicit or explicit) and model parameterization, will always

have a profound influence on posterior uncertainty (see Part II for more details).

3 METHODS

3.1 Randomize-then-optimize: Transforming regularized inversion codes into

parallel samplers

Regularized inversion finds an optimal model by minimizing an objective function that has

the following canonical form:

min
m

f(m) =
1

2

∥∥∥C−1/2
d

(
F (m)− d

) ∥∥∥2 + µ

2

∣∣∣∣Lm ∣∣∣∣2 (1)

In the above, f is the objective function, m is a vector of model parameters, d is a vector

of data, F is a forward modeling operator, F (m) is a vector of modeled data, Cd is the

measurement noise covariance matrix, L is a regularization operator (often a first or second

derivative), and µ is the regularization penalty weight. Throughout this paper, we use vertical
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bars to denote the 2-norm, i.e., ||x|| =
√
xTx, where x is a vector and superscript T denotes

the transpose.

Nonlinear uncertainty estimates can be obtained by realizing that the objective function

has a probabilistic interpretation. Taking the negative exponential of the objective function

defines a probability density function (pdf):

p(m|d) ∝ exp (−f(m)) ∝ exp

(
−1

2

∥∥∥∥C−1/2
d

(
F (m)− d

)∥∥∥∥2 − µ

2

∣∣∣∣∣∣∣∣Lm ∣∣∣∣∣∣∣∣2
)
. (2)

This pdf can be identified as a Bayesian posterior distribution, p(m|d) ∝ p(d|m)p(m), where

the data misfit term defines the likelihood, and the regularization term defines the prior:

p(d|m) = exp

(
−1

2

∥∥∥∥C−1/2
d

(
F (m)− d

)∥∥∥∥2
)
, p(m) = exp

(
−µ

2

∣∣∣∣∣∣∣∣Lm ∣∣∣∣∣∣∣∣2
)
. (3)

In fact, the minimizer of the optimization problem in Eq. 1 maximizes the posterior probabil-

ity. More generally, models that have a high posterior probability result from the product of a

low data misfit and/or low regularization term, with the regularization strength ensuring that

highly regularized models that don’t fit the data are not permitted. To quantify uncertainty

in the solution of an inverse problem, one can thus compute all models that have a large

posterior probability.

Efficient sampling of the space of all high posterior probability models is possible by

transforming the deterministic optimization problem in Eq. 1 into a stochastic optimization

problem. This requires making two simple adjustments. The first change is to perturb the

data, so that the uncertainty in the data is reflected in the solutions to Eq. 1. The second

change is to regularize against a random model that satisfies the regularization constraint (but

which does not necessarily have a small data misfit). This second change allows uncertainty

in the regularization (the prior model covariance) to be reflected in the range of models that

solve Eq. 1. With these two changes, Eq. 1 becomes

min
m

f(m) =
1

2

∥∥∥∥C−1/2
d

(
F (m)− d̃

)∥∥∥∥2 + µ

2

∣∣∣∣∣∣∣∣L(m− m̃)

∣∣∣∣∣∣∣∣2 (4)

where

d̃ ∼ N (d, Cd), m̃ ∼ N (0,
1

µ
(LTL)−1) (5)

are the perturbed data and prior model; we use the common notation that N ∼ (a, B) is the

Gaussian distribution with mean a and covariance matrix B. Note that the perturbations are

in line with the prior and assumptions about measurement noise. The perturbed data d̃ are

Gaussian with mean equal to the data d and covariance Cd. The perturbed model m̃, which
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we call the “prior model,” is Gaussian with mean zero and covariance matrix 1
µ(L

TL)−1,

which is the prior covariance matrix implied by Eq. 3. Throughout Part I, we assume that the

prior covariance is symmetric positive definite and, hence invertible. This is often not true in

practice, where L is a (discretized) derivative, leading to non-invertible prior covariances. We

discuss these practical issues in Part II of this paper series.

Because the optimization problem in Eq. 4 is stochastic, its solution, which we call the

RTO solution, is also stochastic. It can be shown that if the modeling function F (m) is

linear, then the distribution of the RTO solutions is equal to the posterior distribution, see

Bardsley et al. (2014), or the Appendix A, where we also show that both perturbations, to

the data and the prior, are indeed required (which may be surprising, but also familiar from

ensemble Kalman filtering). If the model is nonlinear, the distribution of the RTO solutions

is not equal to the posterior distribution and we refer to the discrepancy between the RTO

sampling distribution and the targeted posterior distribution (Eq. 2) as a “bias.”

This bias can be removed by introducing an accept/reject step. There are strong compu-

tational reasons not to do this, however. First, even an optimally tuned accept/reject criterion

inevitably rejects a significant portion of proposed models. But the most important issue here

is parallelism. The accept/reject process turns RTO into a serial algorithm, because mi+1 is

accepted or rejected by comparing its posterior probability relative to that of mi. This makes

each step dependent on the previous step. If instead the accept/reject step is omitted and

every RTO model is accepted into the ensemble, each sample is independent of the others,

and the algorithm becomes truly parallel – any number of CPUs can be utilized to draw RTO

samples independently of one another. Because the algorithm is scalable in this way, the run

time required to obtain a number of samples sufficient to adequately estimate the model pa-

rameter uncertainty can be reduced to the degree desired or to the limit of the HPC resources

available. This means that, in theory, UQ can be obtained for problems of arbitrary size so

long as the solution to (4) can be obtained. In this case, the limiting factor is the amount of

HPC resources available, not a prohibitively long run time.

While there is no theory for the conditions under which the bias should be small, a small

bias has been observed in very different applications, ranging from numerical weather predic-

tion to reservoir management (Bonavita et al. 2012; Oliver 2017). Here, we follow this lead

and verify a small bias in toy problems and in 1D field data inversions, where we can compare

to an unbiased solution produced using traditional MCMC. In Part II, we demonstrate the

usefulness of the RTO solution in 2D by solving a 2D magnetotelluric (MT) problem. In these

cases, the computational limitations of traditional MCMC are such that the RTO solutions
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for i = 1 : Nsamples do

Draw perturbed data set: d̃ ∼ N (d, Cd)

Draw prior model: m̃ ∼ N (0, 1
µ(L

TL)−1)

Solve Eq. 4 to get the model mi

end

Algorithm 1: The RTO algorithm is remarkably simple: repeatedly minimize a perturbed

objective function. Since all perturbed data and prior models are independent, computing

the models mi is embarrassingly parallel (executing the for loop in parallel, using as many

cores as are available)

cannot be compared to the unbiased, target Bayesian posterior. We can, however, compare

the RTO solution to regularized inversions and (computationally challenging, but feasible)

trans-D MCMC inversions.

The RTO algorithm described above (and summarized in pseudo-code in Algorithm 1) is

delightfully simple. The simplicity of RTO is such that only minor modifications are needed

to turn an existing regularized inversion code into a RTO sampler. This means that nonlinear

uncertainty estimation should be easily accessible wherever robust and efficient regularized

inversions are available, such as in EM inversion where tools such as MARE2DEM (Key 2016)

and ModEM (Kelbert et al. 2014) have found wide use. We also emphasize that RTO does

not require any tuning beyond what is needed to perform a single, deterministic inversion.

Generating perturbed data and prior models within the RTO is straightforward. With

respect to the perturbed data, we note that Cd is often diagonal so that generating perturbed

data, d̃, is trivial. Generating a prior model, m̃, is only slightly more complicated and amounts

to a linear solve:

√
µLm̃ = η, η ∼ N (0, I) (6)

where I is the identity matrix with the same size as L. If desired, one can also incorporate

bounds on the model parameters and deal with singular L by solving Eq. 6 with a constrained

least-squares solver (see Part II for more details).

3.2 Numerical illustrations of RTO on toy problems

To illustrate RTO and to give insight into how RTO produces an ensemble of high probability

models, we consider several simplified, one- or two-parameter toy problems. The toy problems

are nonlinear and most are characterized by more than one mode. This demonstrates, among

other things, that RTO is not a linear (or nearly linear) method and that it is capable of
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Figure 1. RTO generates samples of high posterior probability by repeatedly perturbing and opti-

mizing an objective function. (a-b) The minimizers of perturbed objective functions (dashed lines) in

the case of linear and nonlinear modeling functions, respectively, are clustered around the minimizer

of the unperturbed objective function (solid line). (c-d) The ensemble of RTO samples is distributed

according to the Bayesian posterior (solid line) in the linear case, while in the nonlinear case there is

a small bias.

accurately sampling from complex posterior probability landscapes. Readers familiar with

RTO or the RTO literature can safely skip this section as it largely serves as an RTO tutorial

for geophysics.

3.2.1 Linear and mildly nonlinear problems

We first consider a linear and a nonlinear model

Fl(m) = m+
1

2
, Fnl(m) =

1

2
m2 +m. (7)

For both models, we chose d̃ ∼ N (−1, 1) and m̃ ∼ N (0, 1). Consider first the linear model.

Fig. 1a shows the unperturbed objective function (Eq. 1, solid red line) and several examples

of randomly perturbed objective functions (Eq. 4, dashed lines). The solutions m of the

perturbed objective functions are shown as colored dots. Their relative cost in terms of the

unperturbed objective function is also shown. RTO makes use of deterministic inversion to
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estimate model parameter uncertainty by sampling models away from the minimum of the

canonical, unperturbed objective function, but that are still compatible with the data and

prior model assumptions, expressed through regularization. Fig. 1c shows a histogram of

5,000 RTO samples along with the Bayesian posterior distribution (in red). The distribution

of models generated by RTO matches the Bayesian posterior in the linear case, as it should.

Fig. 1b shows perturbed objective functions corresponding to the nonlinear model. The

objective functions are not parabolas (as in the linear case), but the same principles apply.

In Fig. 1d we show a histogram of 5,000 RTO samples along with the true Bayesian posterior

distribution (in red). We see that RTO is sampling from a distribution very similar, but not

exactly equal, to the Bayesian posterior, which means that the bias introduced by neglecting

the accept/reject step is small in this example.

3.2.2 Bimodal and multi-modal posterior distributions

The next example is adapted from Wang et al. (2018) and demonstrates that RTO (without

an accept/reject step) can handle bimodal distributions. Specifically, we consider the posterior

distribution defined by

p(m|d) = exp

(
−1

2

(
d−m2

σ

)2

− 1

2
(m−M)2

)
, (8)

where the datum is d = 1, the data variance is σ2 = 0.42 and the prior mean is M = −1 (the

prior variance is set to one). We apply RTO, initializing each optimization by drawing from

the prior (N (−1, 1)), and compare the results to those from two different MCMC samplers—

an RWM sampler (tuned) and the “emcee” ensemble sampler of Goodman & Weare (2010),

an affine invariant sampler.

We run all samplers at “constant cost.” We estimate the cost of one RTO sample by

the number of iterations needed during the associated optimization. The cost of an RWM

step is taken to be that of a single function evaluation (thus not accounting for the cost of

initial tuning, which is irrelevant in this toy problem, but which is substantial in applications).

The cost of the ensemble sampler is estimated as a single function evaluation per “walker”

(ensemble member) and we set the number of walkers to four. (The number of walkers for

emcee must be larger than the number of parameters, which means that this algorithm does

not scale to high-dimensional problems, but emcee is an effective method for low-dimensional

problems).

Figure 2 summarizes our numerical experiments and shows histograms of the samples the

three algorithms produced (all samplers are run at an equal computational cost). Panels (a)-
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Figure 2. RTO (a,d), emcee (b,e) and RWM (c,f) applied to a bimodal posterior distribution (red).

All samplers are run at constant cost. (a)-(c) simulate a resource-constrained scenario, while (d)-(f)

simulate the case where samples can be easily drawn. The bias introduced by RTO is comparable to

the bias introduced by running asymptotically unbiased samplers (RWM and emcee) at finite chain

length.

(c) simulate a computationally resource-constrained situation, where due to the size of the

problem the number of samples drawn was insufficient to achieve asymptotic convergence of

MCMC. Panels (d)-(f) simulate a scenario where far more samples can be drawn.

Examining panels (a)-(c), we note three important points. First, RTO succeeds in sam-

pling a bimodal distribution, demonstrating that the algorithm can handle strongly nonlinear

problems. Second, comparing RTO to MCMC (emcee and RWM) we note that RTO achieves

a comparable solution with significantly fewer samples. In particular, the bias between the

sampling distribution (blue histograms) and the target distribution (red lines) is no worse for

RTO than for MCMC. Third, the bias between the MCMC sampling distribution (which is

guaranteed to converge to the correct solution as the number of samples becomes infinite) is

significant for finite length chains. We point out here the obvious constraint that, in practice,

MCMC samplers will always be run at finite chain lengths, and that this unavoidable bias in

the MCMC posterior is difficult to estimate, especially for large problems where the practical

limitations in chain length are most severe (panel (b) shows this clearly).

In panels (d)-(f), where computational constraints are less severe, the MCMC bias is

reduced. But so is the RTO bias, which despite drawing fewer samples is no worse than that
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Figure 3. RTO (a,d), emcee (b,e) and RWM (c,f) applied to a multi-modal posterior distribution (red).

All samplers are run at constant cost. (a)-(c) simulate a resource-constrained scenario, while (d)-(f)

simulate the case where samples can be easily drawn. The bias introduced by RTO is comparable to

the bias introduced by running asymptotically unbiased samplers (RWM and emcee) at finite chain

length. As sample size grows, the MCMC bias narrows while a small RTO bias remains

of finite length MCMC chains. Panel (d) in particular demonstrates that RTO can converge to

a distribution that is very similar to the target posterior, even for strongly nonlinear problems.

We further consider a problem with an even more complex and multi-modal posterior

distribution defined by

p(m|d) = exp

(
−1

2
(d− F (m))2 − 1

2
m2

)
, (9)

where the data are d = 1 and the model is f(m) = m2−sin(5m). We apply the same numerical

experiments as above, simulating a computationally-constrained scenario and a scenario where

computational constraints are less severe (Figure 3).

The first point to note from panels (a) and (d) of Figure 3 is that RTO succeeds in sampling

from a strongly nonlinear target distribution. In the resource-constrained scenario—panels

(a)-(c)—we again see that the bias is significant in the sampling distributions obtained via

MCMC methods as well as in the RTO sampling distribution, but that the RTO bias is no

worse than that obtained via MCMC.

In the resource-unconstrained scenario—panels (d)-(f)—we see the MCMC bias dimin-

ishing as the number of samples grows. This is expected, since MCMC enjoys guarantees

of asymptotic convergence, while some finite RTO bias always remains. These toy examples

illustrate that if a problem is small enough for MCMC to handle, it remains the preferred
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method. If, however, the number of parameters to be sampled is large and the cost of the

forward problem is high, as is frequently the case in typical EM geophysics problems, RTO

may be the only feasible option. Importantly, this conclusion remains true even for strongly

nonlinear problems. The RTO distribution shown in panel (d), while biased, is without a

doubt a large improvement over a single point estimate, which is standard procedure in EM

geophysics today.

3.2.3 Two-parameter toy problem

The computational advantages of RTO become more apparent in high dimensional problems

(which is what this paper is about), and can be illustrated even by a two-parameter problem,

adapted from Bardsley et al. (2014). Here, the model is

F (m) = m1 (1− exp(−m2x)) . (10)

where m1, m2 are the components of the model parameter vector m, and where x =

[1, 3, 5, 7, 9]T are “locations.” The symbol 1 denotes a 5 × 1 vector whose elements are all

equal to one; the exponential function is applied element-wise to a vector. The data are

d = [0.076, 0.258, 0.369, 0.492, 0.559]T and the data variance is σ2 = 0.0142 (Bardsley et al.

2014). The posterior distribution is

p(m|d) ∝ exp

(
− 1

2σ2
∥F (m)− d∥2 − 1

2
∥m∥2

)
. (11)

We again run the same numerical experiments as before on this two-parameter problem and

compare RTO to emcee and RWM. As a reference solution (which is not as easy to compute

as in the one-parameter problems), we show the result of the emcee sampler with 106 steps

(for each of the four walkers, resulting in 4 · 106 overall samples – we carefully verified that

this sampler is close to convergence with this large number of samples). The results of the

numerical experiments are summarized in Figure 4, where we show the approximations of

one-dimensional marginal distributions (p(m1|d) and p(m2|d)).

The same conclusions as before are again apparent. In the resource-constrained scenario,

RTO provides a reliable—if biased—estimate of uncertainty with relatively few samples while

the MCMC sampling distributions exhibit strong bias when estimated with finite length

chains. In the resource-unconstrained scenario, the MCMC samplers slowly converge to a

low-bias solution while the RTO uncertainty estimate remains biased (although not beyond

usefulness). Again, we conclude that if the size of the problem is amenable to MCMC sampling,

this methods is preferable. RTO, however, has an edge on unbiased samplers if the number of
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Figure 4. RTO (a,d), emcee (b,e) and RWM (c,f) applied to a two-parameter posterior distribution.

The reference solutions (red and blue lines) are obtained by running the emcee sampler for 106 steps

per walker. The blue histograms are approximations of the marginal p(m1|d), and the red histograms

are approximations of p(m2|d). All samplers are run at constant cost. In the resource-constrained

scenario,(a)-(c), the bias introduced by RTO is smaller that the bias introduced by running asymptot-

ically unbiased samplers (RWM and emcee) at finite chain length. With far more samples, the bias in

the MCMC sampling distributions diminishes, as expected, while the RTO bias remains.

samples is severely limited—which is nearly always the case in the high-dimensional problems

that are relevant to EM geophysics and many other fields of earth science.

3.3 RTO-TKO: Hierarchically sampling the regularization penalty weight

So far, we have assumed that an appropriate regularization penalty weight µ is known a priori

(see equation 1) or can be reliably determined. In practice, however, this is challenging. One

solution is to use the well known trade-off between data fit and model regularization to find

the maximum value of µ consistent with a specified/desired level of data misfit (e.g., RMS

1.0). This, indeed, is how the Occam inversion determines the regularization strength. Using

data misfit to determine a minimum optimal value for µ, however, is not possible since there

is always room to improve the data fit by further reducing the regularization strength. Even-

tually, however, this will cause the optimization to start fitting the data noise, resulting in

spurious models. In addition, as the regularization strength decreases the objective function

becomes very complex with many shallow local minima that make finding a solution chal-

lenging. As a result, the maximum µ consistent with a specified RMS is a common choice for
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the regularization strength. This amounts to a prior bias toward highly regularized (smooth)

models, however, which has a corresponding effect on the posterior (it tends to lower the

posterior variance).

An alternative strategy is to use a hierarchical Bayesian framework where µ is treated as

an unknown and a posterior distribution is defined over the model m and the regularization

penalty µ:

p(m, µ|d) ∝ p(d|m, µ)p(m|µ)p(µ). (12)

Here, p(µ) is a prior on µ and the remaining terms are as before, but now conditional on µ.

To avoid guiding the inversion towards a (somehow) pre-determined µ, the prior for µ should

be chosen to be “wide,” e.g., a uniform distribution over a large interval, or other distributions

with a large support (see also Part II of this paper series).

Writing the “hierarchical” posterior in terms of the model and regularization, we get

p(m, µ|d) ∝ µn/2 exp

(
−1

2

∥∥∥∥C−1/2
d

(
F (m)− d

)∥∥∥∥2 − µ

2

∣∣∣∣∣∣∣∣Lm ∣∣∣∣∣∣∣∣2
)
p(µ) (13)

where n is the number of model parameters (e.g. the number of layers in a 1D parametriza-

tion). We note that the discretization of the forward model appears explicitly in the posterior

distribution via the factor µn/2. This means that the discretization of the model has a di-

rect influence on the posterior uncertainty. This dependence of the solution on the number of

model parameters is particularly strong in 2D and 3D geometries where n is very large.

To avoid this issue, we formulate the problem to be grid invariant, so that the discretization

becomes irrelevant to the solution. This is achieved by a nonlinear change of variables

ξ =
√
µLm, (14)

so that the posterior distribution becomes

p(ξ, µ|d) ∝ exp

(
−1

2

∥∥∥C−1/2
d

(
F̃ (ξ, µ)− d

)∥∥∥2 − 1

2
∥ξ∥2

)
p(µ), (15)

where

F̃ (ξ, µ) = F

(
1
√
µ
L−1ξ

)
. (16)

The change of variables, first described in (Stewart 2010; Chen et al. 2018; Dunlop et al. 2020),

thus “normalizes” the model prior to be the standard Gaussian distribution, independent

of µ. This comes at the expense of making the modified forward model, F̃ , a function of the

regularization parameter. Most importantly, however, the dependence on the number of model

parameters n disappears after changing variables.

The numerical solution of the hierarchical problem consists of drawing samples mi, µi,
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i = 1, . . . , Nsamples, from the hierarchical posterior in Eq. 15. We do this via Gibbs sampling,

i.e., we sample, in sequence, the conditionals

p(ξi+1|d, µi) ∝ exp

(
−1

2

∥∥∥C−1/2
d

(
F̃ (ξi+1, µi)− d

)∥∥∥2 − 1

2

∣∣∣∣∣∣ξi+1
∣∣∣∣∣∣2) , (17)

p(µi+1|d, ξi+1) ∝ exp

(
−1

2

∥∥∥C−1/2
d

(
F̃ (ξi+1, µi+1)− d

)∥∥∥2) p(µi+1), (18)

where i is the iteration number in the Markov chain. It can be shown (and it is well-known),

that a Gibbs sampler accepts every sample by design so that there is no need to evaluate

an accept/reject probability. One iteration of a Gibbs sampler, which generates one pair of

samples (mi+1, µi+1), amounts to:

(i) compute ξi+1, for a fixed regularization weight µi, by sampling from p(ξi+1|d, µi);

(ii) compute µi+1, using ξi+1 from step (i), by sampling p(µi+1|d, ξi+1)

We apply the RTO idea to both of these steps. For step (i), we note that because µ is

constant in Eq. 17, the first step of the Gibbs sampler, sampling from p(ξi+1|d, µi) can be done

by optimizing Eq. 4. Step (i) thus amounts to performing one RTO step as in the previous

section.

For step (ii), we recognize that, following the core idea behind RTO, sampling from

Eq. 18 can be done by optimizing the objective function defined by the negative logarithm of

p(µ|d, ξ):

min
µ

1

2

∥∥∥C−1/2
d

(
F̃ (ξi+1, µ)− d̃

)∥∥∥2 − log (p(µ)) , (19)

where the data perturbation d̃ is drawn from the same distribution as before (note that for

steps (i) and (ii) separate instances of d̃ must be drawn), and where the perturbation applied

to the prior for µ depends on the choice of prior. To keep things simple, we now choose a

uniform prior for µ, which implies that the optimization problem becomes

min
µ

1
2

∥∥∥C−1/2
d

(
F̃ (ξi+1, µ)− d̃

)∥∥∥2
s.t. µl ≤ µ ≤ µu

(20)

where µl and µu are lower and upper (prior) bounds for µ.

In order to optimize Eq. 20, we need to express F̃ (ξi+1, µ) in terms of F (mi+1, µ). This

can be done via the change of variables in Eq. 16 and by recognizing that, in step (ii), ξi+1 is
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for i = 0 : Nsamples do

1. Solve stochastic optimization problem for mi+1 at constant µi

Draw perturbed data set: d̃ ∼ N (d, Cd)

Draw prior model: m̃ ∼ N (0, 1
µ(L

TL)−1)

Solve Eq. 4 to get mi+1

2. Solve stochastic optimization problem for µi+1 at constant mi+1

Draw another perturbed data set: d̃ ∼ N (d, Cd)

Draw a prior µ (depends on p(µ))

Solve Eq. 19 to get µi+1

end

Algorithm 2: The RTO-TKO algorithm consists of two RTO steps, one for sampling the

model parameters at fixed µ, the other for sampling µ for a fixed model.

held constant. Thus, we have

F̃
(
ξi+1, µi+1

)
= F

(
1√
µi+1

L−1ξi+1

)
(21)

= F

√ µi

µi+1
mi+1

 (22)

where we have used L−1ξ =
√
µm and the fact that, in step (i), mi+1 was determined for

fixed µi. As a result, step (ii), the ‘TKO’ step of RTO-TKO, amounts to solving (for a uniform

prior on µ)

min
µ

1
2

∥∥∥C−1/2
d

(
F
(√

µref

µ m
)
− d̃

)∥∥∥2
s.t. µl ≤ µ ≤ µu

(23)

where µref is the value of the regularization penalty used in step (i), the ‘RTO’ step. In Eq. 23,

µ plays the role of a ‘stretch factor’, stretching (for small values of µ) or compressing (for large

values of µ) a constant model m. The optimization problem in the ‘TKO’ step (Eq. 23) seeks

the value of the regularization penalty weight (stretch factor) that minimizes the misfit to the

perturbed data set, d̃. The Gibbs iterations can repeat until the desired number of samples

(mi and µi) is generated. The sampling algorithm, which we call RTO-TKO, is summarized

in pseudo-code in Algorithm 2.

In summary, we use RTO twice within a hierarchical Gibbs sampling framework. This

“one-two punch” generates samples mi and then µi at each step of the algorithm. Since we

use RTO without an accept/reject criterion, we introduce bias during both steps. We have

already argued that the bias in step (i), the fixed-µ RTO step, can be expected to be small.
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[H]

Figure 5. DC apparent resistivity as a function of electrode spacing halfwidth (Constable et al. 1984).

The model responses of 200 randomly-selected models from an RTO-generated model ensemble with

a fixed regularization penalty weight are shown in blue.

We show that this is indeed the case for a 1D DC resistivity data problem, and that the

bias introduced by step (ii) (the one for sampling the regularization penalty µ) is also small.

As before, we obtain large computational gains because we accept a small bias—the same

reasoning as above applies, with a caveat for parallelism, which we discuss in Section 5. The

small bias is why we call the sampler RTO-TKO, ‘TKO’ standing for “technical knock-out,”

rather than a “knock-out,” which we reserve for an algorithm (as yet undiscovered) that can

achieve large computational gains without bias.

4 RESULTS

In what follows, we demonstrate several desirable attributes of RTO-TKO by inverting DC

resistivity data (Constable et al. 1984) for 1D models of subsurface electrical resistivity. Each

subsurface model consists of a fixed grid of layers, each of which is assigned a resistivity value

that is constant across the layer. The DC resistivity data and data uncertainty are shown in

Fig. 5. The data covariance is assumed to be diagonal.

First, we demonstrate that the bias in RTO and RTO-TKO is small. We then demonstrate
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Figure 6. Distribution of model parameter uncertainty as a function of depth estimated using the

RTO ensemble (left) and the RWM ensemble (right) at fixed µ = 3.2. Warmer colors indicated regions

of higher probability. The left and right red lines are the 5th and 95th percentiles of the distribution at

each depth, respectively, and the black line is the Occam inversion result (Constable et al. 1987). While

only the RWM distribution is guaranteed to converge to the target Bayesian posterior (for infinitely

many samples), in practice the distribution of uncertainty produced from RTO models is often very

similar.

the impact of µ on parameter uncertainty and how RTO-TKO makes an a priori choice of µ

unnecessary (much in the spirit of an Occam inversion). In the final portion of this section,

we show that the uncertainty estimated by RTO-TKO is unaffected as the parameter grid is

successively refined.

4.1 Small RTO and RTO-TKO bias

We argue above that the distribution sampled by RTO is not the same as the Bayesian

posterior (see toy problems in Section 3.2), but that the difference between the RTO solution
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and the target posterior is often negligibly small. To demonstrate this on field data, we invert

the DC resistivity data in Fig. 5 using RTO and we compare the result to the reference, target

Bayesian posterior distribution produced by inverting the field data using traditional MCMC.

We first consider the case where the regularization parameter µ is fixed at 3.2 and ap-

proximate the Bayesian posterior distribution by applying RWM. RWM is asymptotically

unbiased (as Nsamples → ∞) and we produce a large number of samples, since computational

constraints are not an issue in this 1D example.

Fig. 6 shows the marginal distributions of posterior probability for electrical resistivity as

a function of depth for both RTO and RWM (left and right plots, respectively). The RTO

posterior uncertainty was estimated using 10,000 RTO samples, while the RWM posterior

uncertainty results from five million RWM samples, of which every 500th sample was used to

estimate the posterior. The differences between the posterior uncertainties estimated via RTO

and RWM are small. In both panels of Fig. 6 the black line can be used as a reference since it

represents the same inversion result—obtained using the Occam inversion method (Constable

et al. 1987), which automatically selected a final regularization penalty weight of 19.8. We

note that the Occam solution is well within the confidence intervals of the (approximately)

Bayesian solution, but that it is not “centered” within the uncertainty of the Bayesian solution.

We discuss this observation, and what it means for UQ via RTO and RTO-TKO in Part II of

this paper series.

Fig. 6 represents a qualitative comparision of RTO with an unbiased technique. To quanti-

tatively assess how similar the two posterior distributions of RTO and RWM are, we compute

the Kullback-Leibler (KL) divergence. The KL divergence measures the dissimilarity between

two probability distributions and is defined by (see, e.g., MacKay 2003)

DKL(P ||Q) =
∑
i

P (xi)log

(
P (xi)

Q(xi)

)
(24)

where DKL is the KL divergence, P and Q are the distributions being compared, and i

denotes the discrete bins in a numerically estimated distribution. If P represents an estimate

of the posterior distribution made using RTO and Q the estimate made using RWM, then

DKL(P ||Q) is a quantitative measure of how dissimilar the two distributions in Fig. 6 are.

For more on the use of the KL divergence in a Bayesian setting see, inter alia, Pinski et al.

(2015); Blatter et al. (2018).

For each subsurface layer, we computed the KL divergence between the marginal RTO

and RWM distributions. The median result was 0.63, while the sum over all 30 layers was 27.3.

Because the KL divergence is unitless, for comparison we also computed the KL divergence
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Figure 7. The posterior model parameter uncertainty estimated from the field DC resistivity data

using RTO-TKO (left) is highly similar to that estimated using RTO-RWM (center). The regularization

penalty weight distributions for RTO-TKO and RTO-RWM (right) are likewise very similar. Once

again, the red lines delineate the 90% credible interval and the black line is the Occam inversion result

(identical in both panels).

between the RWM distribution and a uniform distribution (using the same histogram binning).

The median and sum over all the layers were 87.3 and 2,631, respectively. The two orders of

magnitude lower KL divergence between the RTO and RWM results show these distributions

are quite similar.

We now consider a hierarchical setup in which the regularization penalty µ is not fixed

and show that RTO-TKO introduces only a small bias in the DC resistivity field problem.

As before, we need to compute a reference solution to which the RTO-TKO solution can

be compared. We found it difficult to compute a truly unbiased Bayesian solution. Using a

RWM algorithm to sample the hiearchical posterior distribution over both the model and

regularization weight is extremely slow to converge and convergence is very difficult to assess,

even in this relatively simple problem. Likewise, affine invariant MCMC (the emcee algorithm)

proved impractical due to the need for a very large number of walkers. We thus decided to

use a “proxy” as a reference solution, which mimics the setup of the RTO-TKO. Specifically,

we use a Gibbs sampling framework and use RTO for step (i) to sample the model (which
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we just showed has small bias). For step (ii) of the Gibbs sampler, we us an (asymptotically

unbiased) RWM method to sample the regularization penalty µ. The proxy, which we refer to

as RTO-RWM, thus exposes additional bias due to the second RTO step when sampling the

regularization penalty µ.

The posterior probability distributions obtained via RTO-TKO and RTO-RWM are shown

in Fig. 7. By visual inspection, the differences between them are difficult to detect. The

quantitative KL divergence tests likewise reveal that the distributions obtained via RTO-TKO

and RTO-RWM are very similar. The median KL divergence between the two distributions

over all 30 layers was 0.2 while the sum over all layers was 6.6. The median KL divergence

between the RTO-RWM distribution and a uniform distribution, meanwhile, was 83.5, while

its sum over all layers was 2,521.7.

We have shown that the RTO-TKO ‘bias’ is small (both qualitatively and quantitatively)

for highly nonlinear, multimodal one- and two-parameter problems, as well as for the 1D DC

resistivity method. We caution, however, that this does not necessarily guarantee that the

RTO-TKO bias will be acceptably small for all other methods, since RTO still lacks a general

mathematical theory describing the size of the bias. As such, we assert that RTO-TKO works

well for EM geophysics problems and suggest that further work needs to be done to verify

this for other methods.

Finally, we demonstrate the need for a hierarchical formulation by showing the large im-

pact an a priori choice of µ has on uncertainty estimates. To this effect, we invert the DC

resistivity data using the RTO algorithm (fixed µ) for three different choices of the regular-

ization penalty weight: µ = 1, µ = 3.2, and µ = 10. Fig. 8 shows the posterior uncertainty

estimates for these three inversions. All other inversion parameters were held constant. The

largest value of the regularization penalty weight yields the tightest posterior uncertainty,

as expected, while the smaller value permits much more model variability and hence larger

variance. Put simply: nearly any level of posterior uncertainty can be achieved by chosing

µ accordingly. The hierarchical setup, in which the regularization penalty µ is treated as an

unknown, and which can be efficiently implemented via RTO-TKO, does away with a priori

choice of regularization and, much in the spirit of an Occam inversion, determines the appro-

priate level of regularization during the inversion. It is of course also possible to determine

the regularization parameter µ in some other way (e.g., via Occam) and then use the RTO

(without TKO). The RTO-TKO is an alternative method that also reveals uncertainty in the

regularization parameter which could be useful in practice.
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Figure 8. Model parameter uncertainty for the DC resistivity data estimated using RTO for three

different choices of regularization penalty weight: 1, 3.2, and 10 (left, center, right, respectively). Similar

to Fig 6, warmer colors indicate regions of higher probability, the left and right red lines are the 5th

and 95th percentiles of the distribution at each depth, respectively, and the black line is the Occam

inversion result. Smaller µ leads to larger posterior variance.

4.2 Grid invariance of RTO-TKO

RTO-TKO is designed to be grid invariant. This means that, so long as the number of model

parameters is large enough to accommodate the structural features required to fit the data,

increasing the number of parameters will not affect the overall solution, sampling efficiency, or

posterior uncertainty. To demonstrate grid invariance, we inverted the DC resistivity data us-

ing RTO-TKO with 30, 60, and 120 layers. Fig. 9 shows the estimated posterior uncertainties,

which do not exhibit significant differences in variance.

In fact, grid invariance has connections with trans-D MCMC algorithms that do not

make use of any explicit model regularization. Instead, they rely on Bayesian parsimony

(Malinverno 2002; MacKay 2003) as an implicit form of regularization: all else being equal,

trans-D inversion prefers models with fewer parameters. Guided by this principle, trans-D

MCMC algorithms allow the data (and model prior) to select the appropriate degree of model

complexity (regularization). While RTO-TKO requires that a grid be specified and that a

regularization term be present, it hierarchically samples the strength of the regularization.

Guided by the principle of model smoothness (a form of parsimony), RTO-TKO similarly
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Figure 9. The posterior model parameter uncertainty estimated from the DC resistivity data using

RTO-TKO is invariant under grid refinement. Inversions using 30, 60, and 120 layers do not exhibit

significant differences in posterior variance. As usual, the black lines represent the respective Occam

inversions.

lets the data and and model prior determine the appropriate degree of model complexity.

And since adding additional model parameters through a refining of the parameter grid does

not affect the RTO-TKO solution, the sampling distribution of µ does not affect the RTO-

TKO estimate of the posterior uncertainty (provided the grid is fine enough to resolve all

relevant scales needed to fit the data). RTO-TKO is computationally more efficient than

trans-D MCMC, however, which suffers from long burn-in times and very long correlation

times within the chain. We disuss these issue further in Part II of this paper series, where we

also show a comparison of trans-D MCMC and RTO-TKO on 2D field data inversions.

4.3 Applicability of RTO-TKO

We have demonstrated that RTO-TKO produces meaningful UQ for the DC resistivity prob-

lem. In particular, we have shown that the RTO-TKO ‘bias’ is negligibly small for this problem

by direct comparison to MCMC methods that were able to sample long enough (five million

samples) that we could be reasonably certain they had asymptotically converged. In Part II

of this series, we demonstrate a meaningful UQ for individual and joint inversion of MT and

CSEM data, including a 2D MT problem. This represents a significant advancement in ca-
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Figure 10. A randomly chosen sequence of 200 consecutive models drawn from hierarchical RWM

(a) and RTO-TKO (c) model ensembles. Color indicates position in the sequence, with earlier models

plotted in cooler colors while later models are shown in warmer colors. (b) The sequence from (a) is

shown in greater detail. Note the slow, gradual shift in color in (a-b), indicating strong correlation,

contrasted with the lack of correlation in (c).

pability for the EM geophysics community where to date the standard practice is to perform

regularized inversions without UQ analysis.

We stress, however, that because no rigorous mathematical theory exists to stipulate

the conditions under which the RTO-TKO bias is acceptably small, we cannot guarantee

similar results for methods other than the ones we consider here—namely, those that belong

to diffusive EM geophysics. Further careful analysis is needed to determine the breadth of

geophysical methods to which RTO-TKO can usefully be applied.

5 COMPUTATIONAL ADVANTAGES OF RTO-TKO

One crucial advantage of RTO-TKO over serial MCMC samplers is that the RTO-TKO sam-

ples are (nearly) independent of one another while those drawn by MCMC samplers are

not. The near-independence (rather than complete independence) is due to the hierarchical

sampling over the scalar regularization parameter, µ. In fact, RWM (see above), has a low ac-

ceptance rate even after fine-tuning the method (about 0.234 for optimal tuning, see Roberts

et al. 1997). For this reason, the models in the RWM Markov chain are highly correlated with



RTO-TKO: Part I 29

Figure 11. (a) Integrated autocorrelation time estimated for 10,000 RTO-TKO samples (blue) and

4 million RWM samples (orange) using the Gamma method of Wolff (2004). While the RTO-TKO

samples are more or less independent (median IACT of 1.3), the RWM samples are highly correlated

(median of 3,200). (b) Normalized KL divergence between partial and converged estimates of marginal

posterior uncertainty as a function of the number of samples used to make the estimate, for both

RTO-TKO (blue) and RWM (orange) model ensembles. The plotted values are averages over all model

parameters. To achieve a similar level of divergence from the converged posterior estimate, RWM

requires roughly 100x more samples.

one another. Fig. 10a-b shows a randomly chosen model sequence taken from a hierarchical

RWM inversion of the DC resistivity data. The cooler colors indicate models taken at the be-

ginning of the sequence while models at the end of the sequence are plotted in warmer colors.

The color patterns slowly shift from blue to red, clearly showing a high degree of correlation

between successive models. Over this 200 iteration sequence, the range of models sampled by

the RWM is limited to a small neighborhood of the first model in the sequence. In addition,

strong trade-offs are noticeable, evidenced by some layers smoothly transitioning from high

to low resistivity while others do the opposite. The overall posterior uncertainty is not clearly

visible in the range of models plotted in Fig. 10a-b.

By contrast, the overall posterior uncertainty is noticeable in Fig. 10c (compare with Fig.

7), which shows a 200 model sequence from an RTO-TKO inversion of the DC resistivity

data. As before, color here also indicates relative position in that sequence, with cooler colors

coming earlier and warmer colors later. The lack of any coherent color transition at any depth

indicates that the RTO-TKO samples are (nearly) independent of one another (and that the

hierarchical sampling over µ does little to disturb this independence). As such, RTO-TKO

requires only a few samples to obtain a reasonable estimate of the posterior uncertainty (we

investigate this in greater detail in Part II of this paper series).
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To quantify the degree of correlation between models in both of these methods, we com-

puted the integrated autocorrelation time (IACT) for a 10,000 model RTO-TKO ensemble and

a four million model hierarchical RWM ensemble, both obtained by inverting the DC resistiv-

ity data. The IACT is a measure of the time (in algorithm steps) it takes for an algorithm to

‘forget’ where it started. In our case, it is a measure of the distance between independent sam-

ples in the ensemble. We computed the IACT using the Gamma method described in Wolff

(2004). (Recall that IACT measures correlation between successive samples in the Markov

chain, but not correlations within the model parameters, see, e.g., Sokal (1997)).

Fig. 11a shows the estimated IACT for RTO-TKO (blue) and RWM (orange) ensembles.

It is not obvious how to interpret IACT in a multivariate setting, but while there is some

fluctuation the RTO-TKO ensemble IACT hovers around 1, with a median of 1.3, meaning

that for the most part the RTO-TKO samples are independent of one another. We emphasize

that any degree of correlation between the models is introduced by the hierarchical problem

formulation, in which we estimate the regularization penalty µ simultaneously with the model

parameters (for a fixed regularization, RTO samples are provably independent). Notably, the

model parameters for which the RTO-TKO IACT is greatest are located where the model is

changing most rapidly, but even here the estimated RTO-TKO IACT (∼ 100) is much less

than the RWM IACT (∼ 5, 000). In summary, the RWM samples exhibit an IACT roughly

three orders of magnitude larger than RTO-TKO, with a median value around 3,200. While

IACT is an imperfect measure of each sample’s unique information content, it is clear that

the RWM samples are more strongly correlated than the RTO-TKO samples, and, therefore,

a large fraction of them are redundant. In the foregoing analysis, we are, of course, discussing

the correlation across consecutive models generated using each algorithm, not the correlation

within individual models produced by regularization.

Another measure of this redundancy is how fast (in terms of number of samples) it takes

for a Bayesian sampling algorithm to converge to its target distribution. This can be measured

using the KL divergence, where P now represents an estimate of the posterior distribution

made using n consecutive samples of a model ensemble and Q represents another estimate of

the same distribution made using N > n samples sufficient to have converged. In this way,

DKL(P ||Q) is a measure of the remaining divergence between the partial estimate and the

converged estimate.

To measure the number of samples required by RTO-TKO and hierarchical RWM to

achieve an equivalent degree of convergence to their respective target distributions, we gen-

erated a second model ensemble of the same size as before (10,000 RTO-TKO samples and 4
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million RWM samples) using each of these algorithms. We estimated the marginal distribution

of probability density for each subsurface layer resistivity using the first n samples from these

new model ensembles (P ). We then computed the KL divergence between these distributions

and the posterior estimated using the entirety of the respective first model ensembles (Q). All

posterior distributions were estimated using the same binning. For each value of n, we then

averaged the KL divergence over all the model parameters.

Fig. 11b shows the results. For a given level of divergence from the converged posterior

estimate, RWM requires roughly two orders of magnitude more model samples. By this mea-

sure, each RTO-TKO sample contributes roughly 100x more unique information about model

parameter uncertainty than each RWM sample.

Computationally speaking, the independence of its samples represents a major advantage

of RTO-TKO over RWM. At first glance, RTO-TKO would seem to be considerably more

expensive, since each sample requires solving an expensive optimization problem while RWM

only requires a single forward computation per sample drawn. Yet Figs. 10 and 11 indicate

that the information about model parameter uncertainty contributed by each additional RWM

sample is largely redundant, while the independence of the RTO-TKO samples means each of

its samples contributes new, independent information. As such, far fewer RTO-TKO samples

need to be drawn, leading to a significant reduction in computational cost. Fig. 11 loosely

suggests that so long as solving each stochastic optimization problem takes fewer than 100

forward computations, RTO-TKO should be faster to converge than MCMC in terms of total

flops. This is explored in greater detail using a 2D MT field data set in Part II.

Yet efficiency in terms of total flops is not RTO-TKO’s only advantage. The (near) inde-

pendence of RTO-TKO samples means that we can leverage parallelism by running several

RTO-TKO chains on different sets of CPUs. Further, there is no need for intercommunication

between processors executing RTO sampling, so the RTO approach could run in parallel with-

out any special parallel programming constructs or a fast network for CPU interconnections;

the only necessary criterion is that the random number generators used for the data and

model perturbations need to start with different seeds on each parallel process. Only when

samples are (nearly) independent, can the result of several short chains run in parallel be

comparable to the result of a single, long chain. Moreover, RTO-TKO does not suffer from a

burn-in period as MCMC does. This means that the total run time required to draw a given

number of samples can be reduced linearly with the number of CPUs simultaneously drawing

RTO samples. Being able to efficiently leverage parallelism is increasingly important as HPC
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resources are becoming less expensive but the speed of individual CPUs is no longer rapidly

increasing.

Suppose a given problem requires 1 s for a forward evaluation and about 60 s for an

RTO-TKO iteration (e.g., Occam + TKO) for a single compute node on a cluster. If 10,000

samples must be drawn to accurately approximate the parameter uncertainty, then a single

compute node would take roughly 7 days to obtain the desired uncertainty estimate. If 100

compute nodes are available, however, the model parameter uncertainty could be obtained in

less than two hours. On the other hand, if one RWM sample can be drawn in 1 s (the cost of

a forward evaluation), but one million samples are required to ensure convergence, then the

time required to invert the data using RWM would be approximately 12 days. We present

these ideas in more detail in Part II where we show that 2D Bayesian sampling is indeed

feasible to do in a single day with RTO-TKO and a (modest) computer cluster.

In making this computational comparison, it is not our intent to suggest that RTO-TKO

should replace MCMC where it is computationally practical to use the latter. Rather, we are

suggesting that RTO-TKO can be used to provide meaningful UQ where MCMC cannot, for

practical reasons, be used at all. We have shown (and will further demonstrate in Part II)

that RTO-TKO works well in efficiently obtaining meaningful UQ for models obtained from

regularized inversion of EM geophysical data, and that it does so at reasonable cost, even for

problems of significant size.

6 CONCLUSIONS

This work describes a sampling algorithm, the RTO-TKO, that can compute a meaningful

UQ for regularized models at a reasonable computational cost, thus enabling UQ in 2D (and

possibly 3D) EM inverse problems. The mathematics behind RTO-TKO make it remarkably

simple to turn regularized inversion algorithms into UQ algortihms.

In this paper, Part I of a two part series, we introduce the basic ideas and algorithms, and

describe important mathematical aspects of RTO-TKO. Specifically, we argue that immense

computational advantages are obtained when accepting a small ‘bias’ between an RTO-TKO

sampling distribution and a targeted Bayesian posterior distribution. From a practical per-

spective, our work implies that one can obtain uncertainty estimates by running existing

inversion machinery in a parallel for-loop. We illustrated these ideas in simplified toy prob-

lems and in a 1D DC resistivity problem with field-data. Our work is of great relevance to

the geophysics community because obtaining quantitative uncertainty for inverted model pa-

rameters is increasingly important to advancing our understanding of the Earth—but the
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currently available algorithms for doing so either neglect nonlinearity or are prohibitively ex-

pensive. We caution, however, that while we demonstrate in this paper (and in Part II) that

RTO provides meaningful UQ for various diffusive EM geophysical methods, we cannot guar-

antee it will prove as useful for other methods. Further work is required to test the breadth

of RTO-TKO’s applicability beyond EM geophysics.

In Part II of this two-part series, we focus on practical aspects of RTO-TKO in geophys-

ical inversions, in particular in EM geophysical methods. Most importantly, we verify our

speculations about the computational efficiency of RTO-TKO by solving a 2D MT problem

via RTO-TKO. Part II also addresses issues of UQ related to prior assumptions and model

parameterizations. We compare and contrast uncertainty estimates obtained by a variety of

methods, including the RTO-TKO and trans-D MCMC, and discuss the practical implications.
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APPENDIX A: POSTERIOR COVARIANCE FOR LINEAR INVERSIONS

AND THE RTO SOLUTION

If the likelihood and prior are given by

p(d|m) ∝ exp

(
−1

2

∥∥∥∥C−1/2
d

(
F (m)− d

)∥∥∥∥2
)
. (A.1)

and

p(m) ∝ exp

(
−1

2

∣∣∣∣∣∣∣∣C−1/2
m (m−m)

∣∣∣∣∣∣∣∣2
)

(A.2)

respectively, and F (m) = Gm is linear, it can be shown that the posterior mean and

covariance are given by

m̂ = m+K(d−Gm) (A.3)

Ĉm = (I −KG)Cm (A.4)

where Cm is the prior model covariance (e.g. Cm = 1
µ(L

TL)−1) and K = CmGT (GCmGT +

Cd)
−1. In this appendix, the various variables are the same as defined in the main text of the

paper.

We wish to show that choosing d̃ ∼ N (d, Cd) and m̃ ∼ N (m, Cm) yields solutions m of

(4) that have mean m̂ and covariance Ĉm.

To do so, we recall that RTO minimizes (see Equation (4))

f(m) =
1

2

∣∣∣∣∣∣∣∣C−1/2
m (m− m̃)

∣∣∣∣∣∣∣∣2 + 1

2

∣∣∣∣∣∣∣∣C−1/2
m (m− m̃)

∣∣∣∣∣∣∣∣2. (A.5)

The minimizer of f , make the gradient of f vanish and thus can be obtained by solving

∇f = GTC−1
d (Gm− d̃) + C−1

m (m− m̃) = 0.
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Thus,

m = (GTC−1
d G+ C−1

m )−1(GTC−1
d d̃− C−1

m m̃)

= (I −KG)Cm(GTC−1
d d̃− C−1

m m̃)

= m̃+K(d̃−Gm̃).

By choosing E[m̃] = m and E[d̃] = d, we obtain the desired expected value of m:

E[m] = E[m̃] +K(E[d̃]−GE[m̃])

= m+K(d−Gm).

Likewise, picking Cov(m̃) = Cm and Cov(d̃) = Cd yields the desired covariance for m:

m = m̃+K(d̃−Gm̃)

= (I −KG)m̃+Kd̃

Cov(m) = (I −KG)Cm(I −KG)T +KCdK
T

= Ĉm − ĈmGTKT +KCdK
T

= Ĉm − (I −KG)BGTKT +KCdK
T

= Ĉm −BGTKT +KGBGTKT +KCdK
T

= Ĉm −BGTKT +K(GBGT + Cd)K
T

= Ĉm −BGTKT +BGTKT

= Ĉm

Intuitively, RTO draws samples that explore the posterior uncertainty by perturbing the

minimum of a conventional, deterministic objective function according to the uncertainties

described by the likelihood and the prior. More concretely, perturbing the data by Cd explores

the range of models that are compatible with the measured data and data uncertainty. In a

similar though perhaps less obvious way, the model must be perturbed according to Cm in

order to explore the full range of models compatible with the prior. If only the data are

perturbed, the resulting model covariance is

Cov(m) = KCdK
T

̸= Ĉm

which is not the correct covariance. The result of correctly perturbing both the data and

the model regularization is an exploration, one optimization problem at at time, of the full



RTO-TKO: Part I 39

range of models compatible with the measured data and prior assumptions about the model

encoded in the regularization term.


