
Math 128b – Spring 2014 – Homework set 10

Due Tuesday 4/15 before the lecture starts.

Problem 1
Download the image “Snowboarder.tiff” from the class website and construct a low rank approxi-
mation of the image.

Hints. You can read a tiff file into matlab using the command

X=imread(’Snowboarder.tiff’)

and you can look at it using the command

imagesc(X)

X is an object that contains the three channels (red, blue and green) of the image. You can get to
each channel by using the commands

Red = double(X(:,:,1));

Green = double(X(:,:,2));

Blue = double(X(:,:,3));

Now Red, Green and Blue are matrices. Compute the SVD of each matrix so that A = USV T ,
and compute a rank p approximation for each one using

Â =

p∑
i=1

siuiv
T
i . (1)

You can either use your SVD code from homework 9 or Matlab’s svd command to compute the
SVD. You can figure out how to choose p by looking at the singular values of A (neglect small
singular values). You can then assemble the low rank approximations of the color image from the
low rank approximations of the three channels using the commands

Xlr(:,:,1) = RedLr;

Xlr(:,:,2) = GreenLr;

Xlr(:,:,3) = BlueLr;

Xlr = uint8(Xlr);

where BlueLr, RedLr and GreenLr are the low rank approximations of Blue, Red and Green. Then
you can look at your low rank approximation using

imagesc(Xlr)

You should hand in: your code, the low rank approximation of the image (it is fine if you do not
have a color printer) and an answer to the question: what rank did you choose in each channel and
why?



Problem 2

(a) Show (using integration by parts) that if u(x, t) solves the heat equation

ut =uxx,

u(x, 0) = f(x) for 0 ≤ x ≤ 1,

ux(0, t) = 0 for t ≥ 0,

ux(1, t) = 0 for t ≥ 0,

where f(x) is a smooth function, then

d

dt

∫ 1

0
u2(x, t)dx ≤ 0.

This implies that u(x, t)→ 0 as t→∞.

(b) Show that the heat equation with Neumann boundary conditions

ut =uxx,

u(x, 0) = f(x) for 0 ≤ x ≤ 1,

ux(0, t) = a for t ≥ 0,

ux(1, t) = b for t ≥ 0,

where f(x) is a smooth function, has a unique solution.

Hints. Suppose u and ũ are both solutions of the heat equation, and define w = u− ũ, which
also solves the above heat equation, but with slightly different Neumann boundary conditions
and zero initial conditions. Then use the results from (a).

(c) Show that that the solution u(x, t) of the heat equation

ut =uxx,

u(x, 0) = f(x) for 0 ≤ x ≤ 1,

ux(0, t) =ux(1, t) = a for t ≥ 0,

approaches a steady state, i.e.

u(x, t)→ v(x) = ax, as t→∞.

Hint: try a solution of the form u(x, t) = v(x) + w(x, t) and use the results from (a) and (b).

Problem 3
Write a program to solve the heat equation

ut =uxx,

u(x, 0) =x6 + x for 0 ≤ x ≤ 1,

u(0, t) = 0 for t ≥ 0,

u(1, t) = 2 for t ≥ 0,

with the forward finite difference method.



(a) What do you expect the solution to look like for large t? What is the “steady state solution”?

(b) Choose h = 0.1, σ = 0.6 and k = σh2. Make a plot of the solution after 20 time steps.

(c) Choose h = 0.1, σ = 0.4 and k = σh2. How many time steps are needed so that the solution
you find via finite differences is “close” to the steady state solution? Plot the approximate
solution and the steady state solution into the same figure.

Hints. You can define “close” by computing the 2-norm of the difference of your approximate
solution and the steady state solution evaluated on the (space) grid. You can use the command
“hold on” to plot more than one graph on one figure. For example:

plot(x,us,’b’,’LineWidth’,2)

hold on, plot(x,u,’r--’,’LineWidth’,2)


