Math 128b - Spring 2014 - Homework set 4

Due Tuesday $2 / 18$ in class before the lecture starts.

1. Consider the linear $n \times n$ system $A x=b$ with $n=100,000$,

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
3 & -1 & & & \\
-1 & 3 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 3 & -1 \\
& & & -1 & 3
\end{array}\right), \\
& b=(2,1,1, \cdots, 1,1,2)^{T} .
\end{aligned}
$$

(a) Use $x_{0}=(0,0, \ldots, 0)^{T}$ as your initial guess and solve the above system using the Jacobi method. Stop the iteration when the ∞-norm of the residual is less than 10^{-3}.
(b) Use $x_{0}=(0,0, \ldots, 0)^{T}$ as your initial guess and solve the above system using the GaussSeidel method. Stop the iteration when the ∞-norm of the residual is less than 10^{-3}.
(c) Use $x_{0}=(0,0, \ldots, 0)^{T}$ as your initial guess and solve the above system using the conjugate gradient method. Stop the iteration when the ∞-norm of the residual is less than 10^{-3}.
You should use Matlab's sparse matrix package to do these calculations. You should hand in: your code for Jacobi and Gauss-Seidel methods as well as one figure that shows the ∞-norm of the residual as a function of the iteration number for all three methods.
2. p. 116, Exercises 2.5: 5

