Math 128b - Spring 2014 - Homework set 6

Due Tuesday $3 / 11$ in class before the lecture starts.

1. p. 229, Exercise 3: let

$$
A=\left(\begin{array}{ccc}
1 & 0 & a_{13} \\
0 & 1 & a_{23} \\
0 & 0 & 1
\end{array}\right)
$$

Prove that for any initial guess x_{0} and any right hand side b, GMRES converges to the exact solution after two steps.
2. Let x be a real $n \times 1$ vector. Minimize

$$
f(x)=\frac{1}{2} x^{T} x
$$

with Newton's method and show that it converges after one step for any initial guess x_{0}.
3. Let A be an $n \times n$ SPD matrix and let x and b be real $n \times 1$ vectors (b is given). Minimize

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

with Newton's method and show that it converges after one step for any initial guess x_{0}.
4. Let x_{1} be an $n \times 1$ vector that represents the weather today.
(a) Suppose you have one measurement y (a scalar), indicative of today's weather. Find the "best" estimate of today's weather given the data y by minimizing

$$
f(x)=\frac{1}{2}\left\|y-H x_{1}\right\|_{2}^{2}
$$

where $H=(1,0,0, \ldots, 0)$ is a $1 \times n$ (row) vector, with Newton's method. What can you say about $\left(x_{1}\right)_{j}, j+1, \ldots, n$, (the elements of x_{1}) given this one measurement?
(b) Let x_{0} be an $n \times 1$ vector that represents the weather yesterday. Suppose you have some knowledge about yesterday's weather, which you describe by x_{0} being "close" to μ, a given $n \times 1$ vector. Further suppose that you have a numerical model that computes today's weather from yesterday's weather by

$$
x_{1}=A x_{0}
$$

where A is a given, invertible $n \times n$ matrix. Update your estimate of yesterday's weather by minimizing

$$
f(x)=\frac{1}{2}\left\|H A x_{0}-y\right\|_{2}^{2}+\frac{1}{2}\left\|x_{0}-\mu\right\|_{2}^{2}
$$

To do the minimization, compute the gradient ∇f and then solve $\nabla f=0$. What is your forecast for today's and tomorrow's weather? Suggestion: compute

$$
x_{1}=A x_{0}
$$

and

$$
x_{2}=A x_{1}=A^{2} x_{0}
$$

where x_{0} is your best guess at the weather yesterday, and x_{1} and x_{2} represent the weather today and tomorrow.
(c) You are given an improved, nonlinear model of the weather. The model relates the weather at day j (described by a 3×1 vector $\left.x^{j}=\left(x_{1}^{j}, x_{2}^{j}, x_{3}^{j}\right)\right)$ to the weather at day $j+1\left(x^{j+1}\right)$ by

$$
\begin{align*}
x_{1}^{j+1} & =x_{1}^{j}+\sigma\left(x_{2}^{j}-x_{1}^{j}\right) \Delta t \\
x_{2}^{j+1} & =x_{2}^{j}+x_{1}^{j}\left(\rho-x_{3}^{j}\right) \Delta t \tag{1}\\
x_{3}^{j+1} & =x_{3}^{j}+\left(x_{1}^{j} x_{2}^{j}-\beta x_{3}^{j}\right) \Delta t,
\end{align*}
$$

where $\sigma=10, \beta=8 / 3, \rho=28$ and $\Delta t=0.05$ (this is a discretization of the Lorenz attractor). You also have measurements of today's weather in the form of the 3×1 vector

$$
y=(-3.37,-4.01,19.62)^{T}
$$

Find the best estimate of yesterday's weather by approximately minimizing

$$
f\left(x_{0}\right)=\frac{1}{2}\left(\mathcal{M}\left(x_{0}\right)-y\right)^{T}\left(\mathcal{M}\left(x_{0}\right)-y\right)+\frac{1}{2}\left(x_{0}-\mu\right)^{T}\left(x_{0}-\mu\right)
$$

where

$$
\mu=(-3.1,-3.7,24)^{T}
$$

is your best guess at yesterday's weather before you collected the data y and $\mathcal{M}\left(x_{0}\right)$ is the vector you obtain by plugging x_{0} into the model (1). To do so, first formulate this problem as a nonlinear least squares problem, i.e. find the (vector-valued) function $r\left(x_{0}\right)$ such that

$$
f\left(x_{0}\right)=\frac{1}{2} r\left(x_{0}\right)^{T} r\left(x_{0}\right)
$$

then perform one step of Gauss-Newton to obtain x_{0}^{*}.
Find your best estimate of today's weather by computing $x_{1}^{*}=\mathcal{M}\left(x_{0}^{*}\right)$, and make a forecast for tomorrow's weather by computing $x_{2}^{*}=\mathcal{M}\left(x_{1}^{*}\right)$.
Find the errors of your estimation as follows. Yesterday's weather really was

$$
x_{0}^{\text {true }}=(-3.6,-3.2,22.1)^{T}
$$

Today's and tomorrow's true weathers are $x_{1}^{\text {true }}=\mathcal{M}\left(x_{0}^{\text {true }}\right)$ and $x_{1}^{\text {true }}=\mathcal{M}\left(x_{0}^{\text {true }}\right)$. Compute the errors

$$
\begin{aligned}
& e_{0}=\frac{\left\|x_{0}^{*}-x_{0}^{\text {true }}\right\|_{2}}{\left\|x_{0}^{\text {true }}\right\|_{2}} \\
& e_{1}=\frac{\left\|x_{1}^{*}-x_{1}^{\text {true }}\right\|_{2}}{\left\|x_{1}^{\text {true }}\right\|_{2}} \\
& e_{2}=\frac{\left\|x_{2}^{*}-x_{2}^{\text {true }}\right\|_{2}}{\left\|x_{2}^{\text {true }}\right\|_{2}}
\end{aligned}
$$

which represent the errors in your estimates of yesterday's, today's and tomorrow's weather. Compare these with the errors you would have made without the Gauss-Newton minimization and the data as follows. Compute $\mu_{1}=\mathcal{M}(\mu)$ and $\mu_{2}=\mathcal{M}\left(\mu_{1}\right)$; these would be your estimates
of today's and tomorrow's weather without using Gauss-Newton and the data y. Compute the errors

$$
\begin{aligned}
& \hat{e}_{0}=\frac{\left\|\mu-x_{0}^{\text {true }}\right\|_{2}}{\left\|x_{0}^{\text {true }}\right\|_{2}}, \\
& \hat{e}_{1}=\frac{\left\|\mu_{1}-x_{1}^{\text {true }}\right\|_{2}}{\left\|x_{1}^{\text {true }}\right\|_{2}}, \\
& \hat{e}_{2}=\frac{\left\|\mu_{2}-x_{2}^{\text {true }}\right\|_{2}}{\left\|x_{2}^{\text {true }}\right\|_{2}},
\end{aligned}
$$

and compare with the errors e_{0}, e_{1} and e_{2} you found above.

