Math 128b - Spring 2014 - Homework set 7

Due Tuesday $3 / 18$ in class before the lecture starts.

1. Code:
(a) the power iteration method to find the leading eigenvalue and the corresponding eigenvector of an $n \times n$ matrix;
(b) the inverse power iteration method to find the smallest eigenvalue matrix and the corresponding eigenvector of an $n \times n$ matrix;
(c) the Rayleigh quotient iteration method to find the smallest eigenvalues and corresponding eigenvector of an $n \times n$ matrix.

Test your codes on the matrix

$$
A=\left(\begin{array}{rrr}
7 & -33 & -15 \\
2 & 26 & 7 \\
-4 & -50 & -13
\end{array}\right)
$$

and compare with Matlab's command "eig(A)".
You should hand in (i) your code for all three methods; $(i i)$ the results of all three methods applied to A.
2. Let A be an $n \times n$ matrix and define the Rayleigh quotient for any $x \neq 0$ by

$$
R(x)=\frac{x^{T} A x}{x^{T} x}
$$

Let λ be an eigenvalue of A with corresponding eigenvalue v. Show that

$$
\nabla R(v)=0
$$

and that

$$
\lambda=R(v)
$$

i.e. the eigenvectors are the stationary points of the Rayleigh quotient and the eigenvalues are the local maxima, minima or saddle points. Hint: note that

$$
\nabla R(x)=2 \frac{1}{x^{T} x} A x-2 \frac{x^{T} A x}{\left(x^{T} x\right)^{2}} x
$$

3. Show that the determinant of an $n \times n$ matrix A equals the product of its eigenvalues. Hint: recall that the characteristic polynomial is $\operatorname{det}(A-\lambda I)$ and that its roots are the eigenvalues. Thus we can factorize the characteristic polynomial $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$. Now find a clever choice for λ.
4. Let $a \neq 0$ and $\epsilon>0$ and

$$
A=\left(\begin{array}{cc}
a & \epsilon \\
\epsilon & a
\end{array}\right)
$$

(a) Find the eigenvalues and eigenvectors of A as functions of ϵ.
(b) Take the limit of as $\epsilon \rightarrow 0$ of the eigenvalues and eigenvectors and compare with the eigenvalues and eigenvectors of

$$
B=\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)
$$

5. Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(a) Compute the eigenvalues of A.
(b) Show that $v=(1,0)^{T}$ is an eigenvector of A with eigenvalue $\lambda=1$.
(c) Show that the power method applied to this A will converge for any starting vector $x_{0} \neq 0$ to the eigenvector $v=(1,0)^{T}$.

Hints. Recall that

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{k}=\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right)
$$

Let $x_{0}=(a, b)^{T}$ be your initial guess. After k steps of power iteration you have

$$
x_{k+1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{k}\binom{a}{b}
$$

Now normalize x_{k+1}, by computing $x_{k+1} /\left\|x_{k+1}\right\|_{2}$ and let $k \rightarrow \infty$.

