Math 128b - Spring 2014 - Homework set 8

Due Tuesday $4 / 1$ in class before the lecture starts.

1. Code
(a) simultaneous iteration,
(b) the "pure QR" method,
to find all eigenvalues of an $n \times n$ matrix. Test your codes on the matrix

$$
A=\left(\begin{array}{rrr}
7 & -33 & -15 \\
2 & 26 & 7 \\
-4 & -50 & -13
\end{array}\right)
$$

and compare with Matlab's command "eig(A)" gives you.
You should hand in (i) your code for both methods; (ii) the results of both methods applied to A.
2. What happens when you apply "pure QR " to an orthogonal $n \times n$ matrix Q (recall that Q is orthogonal if $Q^{T} Q=I$).
3. Give an example to show that the operation "subtract a multiple from one row from another" can change the eigenvalues of a given real square matrix A.
4. Let A be an $n \times m$ matrix and let B be an $m \times n$ matrix. Show that the nonzero eigenvalues of $A B$ are the non-zero eigenvalues of $B A$.
5. Type "randn(1e5)" into Matlab. Find out what this command does. Describe what happens to your computer (if "nothing" happens, try randn $(1 \mathrm{e} 6)$). Why does this happen? What does this tell you about the size/type of matrices we can deal with using the techniques we developed for solving linear systems of equations, solving least squares problems and solving eigenvalue problems?

