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4. PSD of Discrete Processes

Every result for a continuous-time stationary stochastic process has an

analog in the discrete theory, and there are no surprises. I will state the

results here without derivation. Here is the definition of the PSD as a

limit of finite Fourier transforms:

SX ( f ) =
N →∞
lim

1

2N
E [|

N

n=−N
Σ X ne−2πinf |2], − ½ ≤ f ≤ ½ .  (4.1)

The alternative definition through the autocovariance is

SX ( f ) =
∞

n=−∞
Σ RX (n) e−2πinf , − ½ ≤ f ≤ ½ (4.2)

and of course one can obtain the autocovariance from the PSD with the

coefficients of the Fourier series expansion in (4.2)

RX (n) =
½

−½

∫ SX ( f ) e2πinf df . (4.3)

Setting n = 0 in (4.3) gives

σ 2
X =

½

−½

∫ SX ( f ) df (4.4)

so that the variance is again the integral of the PSD over frequency. If we

restrict ourselves to convolution filters, then filtering a discrete sequence

gives the power spectrum

Sg ∗ X ( f ) = | ĝ( f )|2 SX ( f ) (4.5)

where

ĝ( f ) =
∞

n=−∞
Σ gn e−2πinf . (4.6)

5. Aliasing in the PSD

Although we have seen how aliasing affects sampled data earlier, we

should see how sampling modifies the PSD for stochastic processes. This

is an important issue in the real world because sampled data may be the

only record we have of an underlying continuous physical signal whose

power spectrum we would like to know. We call a continuous-time signal

Y (t), and we derive from it the discrete process:

X n = Y (n∆t), n = 0, ± 1, ± 2, . . . (5.1)

where ∆t is the sampling interval. As I asserted earlier it is almost

always easier to derive properties of the spectrum from the autocovari-

ance. So the autocovariance of the sampled series is
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RX (n) = E [X j X j+n] (5.2)

= E [Y ( j∆t) Y (( j + n)∆t) = RY ( j∆t) .  (5.3)

Thus the autocovariance of X n is simply the sampled autocovariance of Y .

The PSD of the discrete process is given by (4.2), which we modify by

including ∆t in the exponent to scale the frequencies, replacing the

Nyquist frequency of ½ in (4.2) by 1/2∆t, and also scaling the expression

by the same quantity:

SX ( f ) = ∆t
∞

n=−∞
Σ RX (n) e−2πinf ∆t, − 1/2∆t ≤ f ≤ 1/2∆t . (5.4)

Now substitute (5.3)

SX ( f ) = ∆t
∞

n=−∞
Σ RY (n∆t) e−2πinf ∆t . (5.5)

To sum this series we appeal to the Poisson Sum Rule given in our

treatment of Fourier Theory

SX ( f ) = ∆t
∞

m=−∞
Σ

∞

−∞
∫ RY (n∆t) e−2πinf ∆t e−2πinm dn . (5.6)

We change variables in the integral: set t = n∆t and then recognize the

definition of the continuous process PSD:

SX ( f ) =
∞

m=−∞
Σ

∞

−∞
∫ RY (t) e−2πit( f + m/∆t) dt (5.7)

Figure 3: Aliasing in the PSD
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=
∞

m=−∞
Σ SY ( f + m/∆t) .  (5.8)

Thus the discrete process PSD is a sum of spectra of the original continu-

ous process, shifted by multiples of twice the Nyquist frequency. If the

power in the continuous process has fallen off to low levels at the Nyquist

frequency, the PSD of SX will be a good approximation to SY , although in

general SX will be a factor of two or more above the ‘‘true’’ PSD at

f = 1/2∆t. The moral is that to get a good PSD one must set the sampling

rate high enough to avoid aliasing.


