
GEOPHYSICAL DATA ANALYSIS

Class Notes by Bob Parker

CHAPTER 1: STOCHASTIC PROCESSES

1. Introducing Ordered Data

In the statistical portion of this class the observations is far have been almost

entirely of the kind that has no special order associated with it. From now on

we will study data in which the order is important. Usually we will call the

sequence x1, x2, x3
. . . xn, a time series; the index n denotes the time t = n ∆t

at which the observation was made with respect to some initial time; obvi-

ously we are sampling here uniformly in time at an interval ∆t. Obviously we

could equally well be treating a data set sampled in space or, much more

rarely, some quite different independent variable. For theoretical purposes it

is useful to be able to treat time as continuous sometimes, and to work with

x(t), but here when we introduce the concept of a random variable for the

observation, things can become mathematically extremely difficult without

some further quite severe simplifications. For ideal models we will often

want to consider infinite sequences, maybe infinite in both directions.

So a stochastic process {X n} or {X (t)} is a family of random variables

indexed by the integer n, when it is a discrete process, or by the real number

t, when it is a continuous process. (Random variables or functions will nor-

mally be denoted by upper case letters, but the converse is not true.) As with

ordinary random variables, X1 for example, has no definite value, but is to be

thought of as an infinite collection of values from which a particular experi-

ment will extract a value. A given data series is conceptually the result of an

experiment that could be repeated as many times as we like. We usually

have just one realization, drawn from an ensemble of alternative series, all

generated by the underlying process fully described by its probability dis-

tribution function (PDF). When we think of operations such as taking the

average or expected value at a particular n or t, in general this is an aver-

age over different realizations for the same n or t. See Figure 1 for a picture.

Even in discrete time the general stochastic process is a horribly com-

plex affair. To specify it completely requires the joint PDF of every element

X n with every other element. The simplest case is the Gaussian model,

which you already have met. Given N data we have the joint PDF is in the

form

φ(X) =
1

(2π)½N det (C)
exp [−½(X −x)T C−1(X −x)] (1.1)

where X = (X1, X2, . . . X N )T , x ∈ IRN is vector of mean values, and C ∈ IRN×N

is the covariance matrix, a symmetric, positive definite matrix that describes

the correlations among the random variables X n. The reason this is compli-

cated is that to describe completely these N random variables, we need a
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total of ½N (N +3) parameters, far more than we are likely to have observa-

tions: if we have even a short time series of say 50 numbers we would need

1325 parameters; for a reasonably long data series of 2000 members, more

than 2 million parameters. This is for the Gaussian distribution, the sim-

plest kind of PDF. Now imagine what this means if we consider continuous

time instead; the problem is almost completely intractable, and such a gen-

eral treatment has no practical value because it would be impossible to make

estimates of the necessary parameters, even if the mathematics were possi-

ble, which turns out to be very hard for the general case. See Priestley, Chap-

ter 3 for a further discussion.

2. Stationary Processes and Autocovariance

The perfectly general stochastic process is too general to be useful, and so

the conventional wisdom is to focus on a much more restrictive class of

random processes called stationary processes. The idea here is that,

while the actual observables vary in time, the underlying statistical

description is time invariant. This can be weakened a bit, but we will con-

sider only these so-called completely stationary processes. This has the

gratifying effect of reducing the number of parameters needed to a man-

ageable number. For example, the mean value of a stationary process:

E [X n] = x (2.1)

Figure 1: Five realizations of the same stochastic process.
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is a constant independent of n, or of time t if the process is continuous. It

is often assumed the mean is zero, since it is a trivial operation to add the

mean value back into the data series, if necessary. Of course, many obser-

vational series do not look as if the mean is constant − there may be a

secular trend. Stationarity is such a powerful and useful property that

one often attempts to convert an evidently nonstationary series into a sta-

tionary process, for example, by fitting a straight line trend, or forming a

new stationary sequence by differencing:

Y n = X n+1 − X n (2.2)

Recall from the variance of single random variable the definition

σ 2
X = var [X n] = E [(X n − x)2] .  (2.3)

With stationarity this number must also be independent of n (or t). And

the covariance between any two random variables in the sequence cannot

depend on where we are in the series and therefore

cov [X m, X n] = E [(X m − x)(X n − x)] = RX (m − n) (2.4)

that is, a function RX of the interval between the two points. The func-

tion RX is called the autocovariance. For continuous processes this is

usually written

cov [X (t), X (t +τ )] = RX (τ ) .  (2.5)

Then τ is called the lag. Observe that by definition

RX (0) = σ 2
X . (2.6)

Also notice that, because of stationarity, one can set s = t −τ in (2.5) and

the result will be the same, since the answer is independent of which time

was selected. This yields:

RX (−τ ) = RX (τ ) (2.7)

which shows that the autocovariance function is an even function of the

lag. We see then that a stationary process does not contain information

on which way time is flowing − it is the same process if time is reversed.

Returning to a stochastic process with a Gaussian PDF as in (1.1),

we see that in place of the vector x of mean values we have a single num-

ber. How about the covariance matrix? You may recall that the j-kth

entry of C is

C jk = cov [X j , X k] = RX ( j − k) .  (2.8)
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Hence the covariance matrix has the same values on all its diagonals

C =
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. (2.9)

This type of matrix is called a Toeplitz matrix. Now instead of

½N (N +3), there are only N +1 parameters in the Gaussian stationary

PDF.

Just because the stochastic process is composed of random variables

does not mean it is completely unpredictable. Recall the correlation coeffi-

cient of two random variables:

ρ XY =
cov [X , Y ]

√  var [X ] var [Y ]
. (2.10)

Then from (2.5) we have the correlation coefficient between any two points

in a sequence in continuous time is

ρ(τ ) =
RX (τ )

σ 2
X

(2.11)

and a similar result for discrete processes. This function is called the

autocorrelation function. Thus, unless the autocovariance function is

exactly zero for the lag τ , one can predict something about the value fur-

ther along in the sequence at X (t +τ ) from value at t, because they are

correlated.

So far we have considered the average of the process, and averages

of the products (X (t1) − x) (X (t2) − x). Such averages are examples of

moments of the process. The second order moments concern the vari-

ance and autocovariance function, and nothing else. Higher order

moments, those involving the product of three or more Xs can obviously

be defined, but if the process is based on a Gaussian PDF, all the informa-

tion about the PDF is contained in the second order moments and the

higher moments can be predicted. Even if the PDF is not Gaussian a

great deal can be learned about a process from its second order moments,

and so the higher order moments are rarely investigated. We will follow

this path.
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3. White Noises and their Relatives

Let us look a few concrete examples of stationary stochastic processes.

The simplest (but artificial) example is that of white noise. This is

defined as a stationary process in which the random variable at any point

is independent of every other variable. It is also common to assume the

mean value of white noise is zero. In the discrete case we have

RW (n) = σ 2
0 δn0 (3.1)

where δ jk is the Kroenecker delta symbol. Hence in this case the random

process is unpredictable to the extent that we learn nothing about the

next or subsequent values from the current one. The results are still not

completely unpredictable, because we can say something about the range

of values to be expected on account of the known variance, σ 2
0 .

For continuous processes, it turns out that a white noise is singular

because the variance at any point must be infinite:

RW (τ ) = s2 δ (τ ) (3.2)

But these definitions do not completely specify the stochastic

process. At any particular time t (or index n) X is a random variable with

a PDF; that PDF will be the same for every t, but so far we have no speci-

fied it. Of course, the most common choice is the Gaussian, so that

φ(X ) =
1

σ0√  2π
e−½(X /σ0)2

. (3.3)

Because of the statistical independence, the joint PDF is

ψ (X1, X2, X3, . . .) = φ(X1) ⋅ φ(X2) ⋅ φ(X3) ⋅ . . . . (3.4)

This is of course Gaussian white noise; shown by in Figure 2a.

Figure 2: Three white noises; the vertical bar is 1 σ long.
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We allow any other PDF for X n; suppose we choose a uniform distri-

bution:

φ(X ) = b−1 box (X /b) (3.5)

where now var [X ] = b2/12. This is a different kind of white noise, easily

seen in Figure 2b. The joint PDF is given by (3.4) again, with the appro-

priate choice of φ. This kind of white noise turns up quite frequently in

real measurements: round-off noise. Suppose a discrete time series is

recorded and the number is rounded, say to 1 decimal. If the series varies

by much more than ±0. 1 over each ∆t, the value recorded is the true value

of the measurement plus an unpredictable (ie random) amount that lies in

(−0. 05, + 0. 05) with a uniform distribution. Thus the recorded series

appears to be the true signal with a white noise added, since the consecu-

tive values of the rounding error are uncorrelated. The noise is zero mean

and its variance is in this case 0. 12/12. If the last significant digit doesn’t

change very often in the series, then the round-off noise added is no

longer uncorrelated; but then it seems likely the signal is not being

recorded with enough accuracy.

Another random white series with a limited range is the random

telegraph signal: this one switches discontinuously between only two

values, say, 0 and 1:

φ(X ) = ½[δ (X ) + δ (X −1)] . (3.6)

Here the mean value is not zero but one half, and the variance is a quar-

ter. The random telegraph signal is used as a calibration signal for seis-

mometers or other instruments since it is easy to generate electronically.

A zero mean version is sometimes suggested as a model for the Earth’s

dipole moment over time scales of 105 to 106 years, but this is actually

very implausible because the moment is far from constant between rever-

sals. See Figure 2c for a picture.

These three examples of white noise are clearly different to the eye.

Somewhat remarkably to me at least, if they are normalized to the same

variance and converted into a sound track, they sound identical − the ear

doesn’t have a very good density function discriminator.

These three sequences were obviously not observational; they were

made with a random number generator in MATLAB. We can obtain other

kinds of stochastic sequences by filtering white noise in various ways; the

series in Figure 1 were generated that way. If one filters white noise, the

result tends to be Gaussian in distribution as a consequence of the Cen-

tral Limit Theorem. Many physical processes can be thought of as result-

ing from this kind of process, so Gaussian distributions are often assumed

in a signal, and are quite often observed too, but not always. A common

exception appears to be traces of marine magnetic anomalies, which are

usually heavy in the tails compared with a Gaussian distribution.
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Let us briefly consider the simplest kind of filter, a FIR: this stands

for a Finite Impulse Response filter (aka MA or Moving Average).

For a FIR filter we convolve the white noise sequence W j with a finite

number of weights wk:

Y n =
K

k=1
Σ wkW n−k . (3.7)

Then we can calculate the autocovariance of the new sequence using the

definition (2.4); let’s assume for simplicity the mean is zero. Then

RY (l) = cov [Y n+l, Y n] = E [Y n+lY n] (3.8)

= E [
K

j=1
Σ w jW n+l− j

K

k=1
Σ wkW n−k] (3.9)

=
K

j=1
Σ

K

k=1
Σ w jwk E [W n+l− j W n−k] (3.10)

=
K

j=1
Σ

K

k=1
Σ w jwk σ 2

0δl− j+k,0 . (3.11)

The delta symbol vanishes except when l − j + k = 0, namely when

j = l + k; so

RY (l) = σ 2
0

K

k=1
Σ wk wk+l = σ 2

0 wk ∗ w−k . (3.12)

Of course we see that the previously uncorrelated (zero covariance) white

noise W k has become correlated. Notice that RY does go to zero once

|l| > K .

The student is invited to verify that the same result is obtained for

the continuous time version: if

Y = w ∗ W (3.13)

RY = s2 w(t) ∗ w(−t) (3.14)

A lot of space is wasted (in my opinion) in books (eg, Priestley) applying

various recursive filters (AR, ARMA filters) to white noise and looking at

the consequences.

Let us move on to some examples of actual observations that might

be realizations of stationary processes.
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4. Examples from the Real World

Our first example is a recording of the water height at the edge of a lake

over a period of several hours. The water is rising and falling in response

to the wind, but because of standing waves in the basin, there are well-

defined oscillations in time, known as a seiche. Below in Figure 3 we see

a record of nearly 10 hours; I have data for the best part of a full day, 1301

minutes. First observe, the mean is clearly not zero. Next notice the

oscillations, which are not completely regular, but none-the-less there is a

suggestion of periodicity. This definitely looks like a stochastic process,

but one might be skeptical that it is stationary, given the amplitude

increase at about 210 minutes. None-the-less we will stick with that

model because it is so useful.

We can ask if this looks like a good approximation to a white noise.

Then values at one time would not be related, even on average, to values

at other times. That looks improbable to the eye. We can also draw a

scatter plot, for example, as shown in Figure 4 where the observed value

at one time is plotted against the height 8 minutes later. A very clear cor-

relation is visible. I estimate the correlation coefficient by (2.10) to be

0.626. In the sample there were 1293 data, and we can calculate the

probability that ρ would be this big in an uncorrelated Gaussian sample

by the t test (see Rice’s book for details): we find tN−2 = 28. 8, and the

chances of random data exceeding this value are less than 10−180.

How good is the Gaussian model? Ignoring the fact this is a

sequence, and just treating the values as an ordered set, we can find a

histogram, or better, the cumulative distribution function. This can be

tested against the Gaussian model with the Kolmogorov-Smirnov test.

Figure 5 shows the quantile-quantile plot on the Gaussian hypothesis: the

fit is remarkably good. From the value if the DN statistic we calculate

Figure 3: Water height on the shore of the Salton Sea; a seiche.
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that the probability of a random sample exceeding the observed value is

0.83, so the fit to the Gaussian model is excellent, maybe even slightly too

good.

Figure 4: Scatter plot of data in Figure 3 with a lag of 8 minutes.

Figure 5: Q-Q plot and density function of seiche data.
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The second geophysical data sequence is a series of values in space,

the magnetic field measured on by a high flying aircraft (7,000 meters

altitude) over the south-eastern Pacific Ocean. In Figure 6 I show only

the vertical component Z, and the horizontal, along flight-path component

X . Both components are plotted after removal of a standard geomagnetic

model, so that their mean values should be nearly zero. The spacing of

the sampling is uniform at 3.5 km. Again, as with the lake level data, we

see an irregular line with a certain amount of order. A stochastic process

seems like a good model, but here there seems to be little evidence of a

regular oscillation, or even an irregular one. A feature to notice here is

that the two components appear to be related, varying together in some

not very obvious fashion: there is a phase lag and perhaps a suggestion of

differentiation of Z to obtain X . We will discuss later how to look at pairs

of time series for evidence of common variability of this kind.

Concentrating for the moment on the Z component, let us look at an

estimate of the autocorrelation function, shown in Figure 10. I will not

describe yet how that estimate was made because that will be the subject

of a later lecture. For now notice how the RZ dies awa y monotonically

from one. This means that neighboring values are likely to be very similar

indeed, but as one separates two samples in space, their correlation fades

away so that by a lag of 30 samples, they are uncorrelated. It is easy to

believe this series could be generated by smoothing white noise, that is, by

applying a suitable FIR filter to white noise.

The Q-Q plot shows something I mentioned earlier. The magnetic

anomaly cumulative plot does not follow the Gaussian model very well: it

is rather asymmetric with a large positive tail and a compressed lower

tail. The K-S test says that random Gaussian variables would generate

such a large value for dN only 18 percent of the time. This is not a

resounding rejection of the Gaussian model, but tells us we should be sus-

picious of it. The reason for this commonly observed behavior is not

understood.

Figure 6: Magnetic anomaly profile over the eastern Pacific Ocean.
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Figure 7: Estimated autocorrelation function for magnetic component Z.

Figure 8: Q-Q plot and density function of Z data.
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As a final example I show in Figure 9(a) a bathymetry profile across

the East Pacific Rise, an example of a spatial series, which could be a true

time series if I had calculated the age of seafloor from the spreading rate.

Here the depth signal is very obviously not stationary, because as we

expect from marine geology, the seafloor becomes deeper with age. As a

realization of a stationary process, the depth curve is a miserable failure

because the mean value is not independent of t. But if we remove an

average trend, (the line shown), we get a much more satisfactory-looking

approximation to a stationary series, as we see from the gray line in Fig-

ure 9(b). Now the geologists among the group will, know I should not

have removed a straight line but a parabola, because of the famous √ t

approximation. The least-squares best-fitting age curve is shown also,

and it fits the observations slightly better than the straight line. The

residual is the black curve in Figure 9(b).

Figure 9: EPR bathymetry, and a depth anomaly.
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What we have done is to model the observations as a steadily evolv-

ing part, plus a random, stationary part. Unusually in this example, we

have a good model for the evolving piece of the model; normally we would

just take a straight-line trend to represent that, and as you can see in this

case the difference is not very large.

The statistics here are not quite Gaussian again − the distribution is

heavy tailed, but not at a high level of significance according to K-S.


