
GEOPHYSICAL DATA ANALYSIS

Class Notes by Bob Parker

CHAPTER 2: SPECTRAL ANALYSIS OF STOCHASTIC PROCESSES

1. Spectral Analysis

At this point in the class it should not be a surprise that we will introduce a

decomposition based on frequencies, a spectral analysis. Many things are

simpler when looked at through these glasses − any time-invariant system,

and solutions of differential equations with constant coefficients, have

already been beaten to death with filters and Fourier transforms. As I men-

tioned elsewhere, most physical processes have behavior that can be charac-

terized by the frequency of the variation, because which set of physical laws

provide the dominant approximation depends on frequency. Recall my exam-

ple about the magnetic field at a point on the Earth’s surface: at frequencies

of one over 1 million years (3 ×10−14 Hz) the physics is that of the slow mov-

ing fluids of the core dynamo; at 1 over a year (3 ×10−8 Hz) the field is gov-

erned by the behavior of the solar wind; at 1 ×108 Hz the magnetic field most

likely originates from a local TV station. Given a natural process with a ran-

dom appearance, one naturally would like to decompose it into components of

various frequencies, in effect, to take its Fourier transform.

To create a viable theoretical basis we need to consider stationary sto-

chastic processes, which are random functions extending throughout all time

with time-invariant properties. For functions of a real variable (continuous-

time signals) we have the classical Fourier transform:

x̂( f ) =
∞

−∞
∫ x(t) e−2πi ft dt . (1.1)

For sequences (discrete-time signals) we have the spectrum on the finite

interval (−½, ½):

x̂( f ) =
∞

n=−∞
Σ xn e−2πi fn, − ½ ≤ f ≤ ½ (1.2)

which allows reconstruction by the spectral representation:

xn =
½

−½

∫ x̂( f ) e2πi fn df . (1.3)

Can we apply either of these to their corresponding stochastic processes? The

answer is no, because to make sense, the integral in (1.1) or the sum in (1.2)

must converge, which requires some kind of decrease in amplitude, or energy,

as t or n gets large. For a stationary process, that does not happen.
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Also, if we put a stochastic process in f (t) in (1.1) we would obtain

another random function. Our goal is to characterize X (t) with an ordinary

function describing its properties in frequency (as the autocorrelation func-

tion does in time) not generate another random process. We can see in an

intuitive way what we require, as follows. Suppose we wanted to know how

much variability the stationary process exhibits at a frequency f0 . We could

build (or design) a narrow band-pass filter φf0
that only allowed signals

through in the frequency band ( f0 −½df , f0 +½df ) with unit gain. Now send

the signal X through that filter, and out would come a stochastic process

which would have a very limited frequency content. We measure its ampli-

tude by the variance; we would expect the variance to proportional to the

width df of the band-pass filter. Then define

SX ( f0 ) df = var [φf0
∗ X ] (1.4)

that is the variance of the filtered process will be some positive value times

df ; it will vary as the center frequency f0 is varied, and be proportional to the

variance in X at that frequency. The variance of X in a frequency band is

called the power in that band and so SX is the Power Spectrum of X , or

more grandly its Power Spectral Density. Equation (1.4) is our informal

definition of SX ( f0 ). Notice this definition works equally well for continuous

or discrete processes. In the days before computers, analog spectral analysers

were built based on this principle: a large number of narrow band-pass filters

followed by rectifiers to measure the variance in each band.

2. Two Definitions of the PSD

We begin with a strict definition of the Power Spectral Density (PSD) of a

stationary process as a kind of Fourier Transform. Let us study the defini-

tion for a continuous stationary process. In what follows we will always

assume the process X (t) has zero mean. Two problems with the ordinary

FT were noted in Section 1: (a) the FT of X would not be defined on the infi-

nite interval, and (b) the answer would be a random process, not a statistic of

X . We fix these two things as follows: first define XT (t) as the process X (t)

on the finite interval (−T , T):

XT (t) =




X (t),

0,

−T ≤ t ≤ T

otherwise.
(2.1)

Any particular realization of this process (which is not stationary) has

bounded 2-norm and thus has an ordinary FT:

X̂T ( f ) = F [XT ]( f ) =
∞

−∞
∫ XT (t) e−2πi ft dt =

T

−T

∫ XT (t) e−2πi ft dt . (2.2)

Note that X̂T is still a random function of f , however. So we find its magni-

tude, square it, and take the expected value: E [| X̂T ( f )|2]. Our plan is to let

T tend to infinity, but we can easily see that this number would grow to finity,
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and so we divide by the interval length 2T to tame the growth: we define the

function of frequency

SX ( f ) =
T →∞
lim

1

2T
E [| X̂T ( f )|2] (2.3)

=
T →∞
lim E






1

2T

T

−T

∫ XT (t) e−2πi ft dt 2






. (2.4)

This is the definition of the PSD; it can be shown to exist for all stationary

processes X with zero mean and a bounded variance. It is obviously real and

non-negative.

Equation (2.4) defines what is often called the two-sided PSD, because

we allow f to run from −∞ to ∞. When X is real, the usual case, it is easily

seen from the well-known properties of the FT that SX ( f ) is an even function

of f and therefore only values for f ≥ 0 need be specified. Quite commonly a

one-sided PSD is used, given by 2SX ( f ) for f ≥ 0; we will see in a moment

why it is convenient to put in the factor of two.

Looking at (2.4) we can observe that SX at any particular f is obtained

as some kind of second order moment of X − only products of X with itself

are needed, no third order moments enter. We have already introduced

another second-order moment of X , the autocovariance. Does SX provide

independent information about X , or is there a connection between RX and

SX ? Somewhat surprisingly, to me anyhow, is the following answer: the func-

tions RX (t) and SX ( f ) contain exactly the same information. In fact, SX is

the FT of RX

SX ( f ) = F [RX ] =
∞

−∞
∫ RX (t) e−2πi ft dt (2.5)

Equation (2.5) is sometimes used as an alternative the definition of the PSD.

Before we establish the truth of (2.5) we observe a few consequences.

Since RX is a real even function of t, (2.5) implies that SX is a real and even

in f . But the fact that SX must be non-negative puts severe restrictions on

what functions RX are allowed to be autocovariances; clearly not every even

RX with an FT is going to have a positive FT. Now take the inverse trans-

form of (2.5):

RX (t) =
∞

−∞
∫ SX ( f ) e2πi ft df . (2.6)

Now recall from the definition of RX that

RX (0) = E [X (t) X (t)] = var [X ] = σ 2
X (2.7)
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remembering that X is a zero-mean process. Setting t = 0 in (2.5) gives the

important result:

σ 2
X =

∞

−∞
∫ SX ( f ) df . (2.8)

In words, the area under the power spectrum is the process variance. That is

why we double SX if we use the one-sided PSD, to preserve this property.

Now we verify (2.5). We start with the squared magnitude of the FT of

XT :

| X̂T|2 = X̂T X̂
∗
T (2.9)

Now recall that the FT of a convolution is the product of the FTs; further

notice that, since XT is real

X̂T ( f )∗ =
∞

−∞
∫ XT (t) e2πi ft dt =

∞

−∞
∫ XT (−t)e−2πift dt = F [XT (−t)] (2.10)

Combining the Convolution Theorem with (2.10) and (2.9), we have

| X̂T|2 = F [XT (t) ∗ XT (−t)] = F [

∞

−∞
∫ XT (s) XT (s − t) ds] (2.11)

In (2.3) we have normalized by the interval 2T . So let us put that into the

Figure 1: The integrand of (2.12).
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definition of another function:

RT (t) =
1

2T
XT (t) ∗ XT (−t) =

1

2T

∞

−∞
∫ XT (s) XT (s − t) ds (2.12)

Then by (2.11)

| X̂T|2

2T
= F [RT ] =

∞

−∞
∫ e−2πi ft RT (t) dt (2.13)

Our definition of the PSD is (2.3); let us plug (2.13) into that

SX ( f ) =
T →∞
lim E





| X̂T|2

2T





=
T →∞
lim

∞

−∞
∫ e−2πi ftE [RT (t)] dt (2.14)

From (2.12) we see that RT (t) is even in t and so we can always write

RT (t) = RT (|t|); in the following we will assume t ≥ 0 and then replace t

by |t| at the end. We know XT (s) vanishes outside the interval (−T , T)

and therefore the integrand of (2.12) must vanish when s > T or when

|s − t| > T ; see Figure 1. Therefore we can reduce the interval of integra-

tion in (2.12) to be on (−T + t, T) instead of the whole real line. Also

observe that once t > 2T the nonzero sections cease to overlap, and the

integrand is identically zero. These considerations lead to

RT (t) =








1

2T

T

−T+t

∫ XT (s) XT (s − t) ds,

0,

0 ≤ t < 2T

t ≥ 2T .

(2.15)

Further simplifications ensue when we take the expected value, as dic-

tated by (2.14); for the segment 0 ≤ t < 2T

Figure 2: The function ΛT (t).
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E [RT (t)] =
1

2T

T

−T+t

∫ E [XT (s) XT (s − t)] ds =
1

2T

T

−T+t

∫ RX (−t) ds (2.16)

where we have introduced RX , the autocovariance of the process. Since

RX (−t) = RX (t), which is independent of s, we can evaluate s the integral

explicitly:

E [RT (t)] =
RX (t)

2T

T

−T+t

∫ 1 ⋅ ds = RX (t)

1 −

t

2T


, 0 ≤ t ≤ 2T (2.17)

From (2.15) E [RT (t)] = 0 when t ≥ 2T . Recalling that RT is even, we can

the negative t behavior from RT (t) = RT (−t), and obtain the following com-

plete description for the expected value of RT :

E [RT (t)] = RX (t) ΛT (t) (2.18)

where

ΛT (t) =




1 − |t|/2T ,

0,

|t| ≤ 2T

|t| > 2T .
(2.19)

See Figure 2 for a sketch of ΛT (t). Substituting (2.18) into (2.14) gives us

this very plausible expression for the PSD:

SX ( f ) =
T →∞
lim F [RX (t)ΛT (t)] =

T →∞
lim

∞

−∞
∫ e−2πi ft RX (t) ΛT (t) dt (2.20)

If it is permitted to put the limit in (2.20) inside the integral we have the

result we predicted, equation (2.5), since ΛT (s) → 1 as T →∞. Priestley

(Spectral Analysis and Time Series, p 213-4) uses the Lebesgue Domi-

nated Convergence Theorem, and the further condition that

∞

−∞
∫ |RX (t)| dt < ∞ (2.21)

to prove that it is permitted to reverse the order of the limit and the inte-

gral. For those interested, I give in the Appendix a proof of my own that

makes a different set of assumptions about RX .
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3. Some Properties of the PSD

We continue to consider only continuous processes. By establishing the

key fact that the autocovariance function and PSD are Fourier transforms

of each other, we have shown that they contain the same information.

But as we will see later, the PSD is much more useful for the interpreta-

tion of actual data because of the intuitive idea that a process divides up

naturally as a sum of processes with different frequencies. So while the

PSD is the property of the stationary process that is the most informative,

the definition via the limit, equation (2.3) is usually very awkward to han-

dle, and the alternative relation (2.5) through autocovariance is the most

useful for doing theory, as we will illustrate.

First the simplest example, take white noise. Recall for a continu-

ous process, a white noise has a delta function autocovariance, equation

(3.2) in Chapter 1. Then The PSD is

SW ( f ) =
∞

−∞
∫ RW (t) e−2πi ft dt =

∞

−∞
∫ s2δ (t) e−2πi ft dt = s2 (3.1)

which is a constant independent of frequency. White noise has the same

power at every frequency, which is why the term is borrowed from physics,

because white light is ideally composed of light with the same property,

equal power at each frequency. Recall from (2.8) that the area under the

PSD is the process variance. For white noise that is infinite, so continu-

ous time white noise is not a physically realizable phenomenon. Notice

that the different white noises of Chapter 1 all have exactly the same fre-

quency content, a flat spectrum. The PSD is simply a second order prop-

erty, and does not concern itself with other details of the distribution

defining the stationary process.

Let us consider next what happens to the PSD of process if it has

been filtered. In the continuous parameter case we will say

Y = g ∗ X (3.2)

where g is a filter function, possibly infinite in extent. When we know SX

we can calculate SY . As advertised the simplest approach is to compute

the autocovariance of Y . Assume X has mean zero, then so does Y , and

RY (t) = cov [Y (s), Y (s + t)] = E [Y (s) Y (s + t)] (3.3)

= E






∞

−∞
∫ du g(u) X (s − u)

∞

−∞
∫ dv g(v) X (s + t − v)






(3.4)

=
∞

−∞
∫

∞

−∞
∫ E [X (s − u) X (s + t − v)] g(u) g(v) du dv (3.5)
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=
∞

−∞
∫

∞

−∞
∫ RX (t + u − v) g(u) g(v) du dv . (3.6)

Next we replace the autocovariance on the right with its representation in

terms of SX : we apply (2.6):

RY (t) =
∞

−∞
∫ du

∞

−∞
∫ dv

∞

−∞
∫ df SX ( f ) e2πi f (t + u − v) g(u) g(v) (3.7)

=
∞

−∞
∫ df e2πi ft SX ( f )

∞

−∞
∫ du e2πi fu g(u)

∞

−∞
∫ dv e−2πi fv g(v) (3.8)

=
∞

−∞
∫ df e2πi ft[SX ( f ) ĝ( f )∗ ĝ( f )] (3.9)

= F
−1

[SX ( f ) ĝ( f )∗ ĝ( f )] (3.10)

If we take the FT of (3.10) and again recognize the FT of RY is the PSD

SY we see

SY ( f ) = ĝ( f )∗ ĝ( f ) SX ( f ) (3.11)

= | ĝ( f )|2 SX ( f ) .  (3.12)

This is an important result. It is the stochastic process version of the

Convolution Theorem applied to filtering: when one filters a deterministic

signal, the FT of the resultant function is multiplied by the frequency

response of the filter. Here the new spectrum is found by multiplying the

original by the squared magnitude of the filter function. Equation (3.12)

also puts on a firm foundation the idea described in Section 1 that we can

obtain a power spectrum by applying a series of ideal, narrow band-pass

filters the stochastic process.
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4. PSD of Discrete Processes

Every result for a continuous-time stationary stochastic process has an

analog in the discrete theory, and there are no surprises. I will state the

results here without derivation. Here is the definition of the PSD as a

limit of finite Fourier transforms:

SX ( f ) =
N →∞
lim

1

2N
E [|

N

n=−N
Σ X ne−2πinf |2], − ½ ≤ f ≤ ½ .  (4.1)

The alternative definition through the autocovariance is

SX ( f ) =
∞

n=−∞
Σ RX (n) e−2πinf , − ½ ≤ f ≤ ½ (4.2)

and of course one can obtain the autocovariance from the PSD with the

coefficients of the Fourier series expansion in (4.2)

RX (n) =
½

−½

∫ SX ( f ) e2πinf df . (4.3)

Setting n = 0 in (4.3) gives

σ 2
X =

½

−½

∫ SX ( f ) df (4.4)

so that the variance is again the integral of the PSD over frequency. If we

restrict ourselves to convolution filters, then filtering a discrete sequence

gives the power spectrum

Sg ∗ X ( f ) = | ĝ( f )|2 SX ( f ) (4.5)

where

ĝ( f ) =
∞

n=−∞
Σ gn e−2πinf . (4.6)

5. Aliasing in the PSD

Although we have seen how aliasing affects sampled data earlier, we

should see how sampling modifies the PSD for stochastic processes. This

is an important issue in the real world because sampled data may be the

only record we have of an underlying continuous physical signal whose

power spectrum we would like to know. We call a continuous-time signal

Y (t), and we derive from it the discrete process:

X n = Y (n∆t), n = 0, ± 1, ± 2, . . . (5.1)

where ∆t is the sampling interval. As I asserted earlier it is almost

always easier to derive properties of the spectrum from the autocovari-

ance. So the autocovariance of the sampled series is
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RX (n) = E [X j X j+n] (5.2)

= E [Y ( j∆t) Y (( j + n)∆t) = RY ( j∆t) .  (5.3)

Thus the autocovariance of X n is simply the sampled autocovariance of Y .

The PSD of the discrete process is given by (4.2), which we modify by

including ∆t in the exponent to scale the frequencies, replacing the

Nyquist frequency of ½ in (4.2) by 1/2∆t, and also scaling the expression

by the same quantity:

SX ( f ) = ∆t
∞

n=−∞
Σ RX (n) e−2πinf ∆t, − 1/2∆t ≤ f ≤ 1/2∆t . (5.4)

Now substitute (5.3)

SX ( f ) = ∆t
∞

n=−∞
Σ RY (n∆t) e−2πinf ∆t . (5.5)

To sum this series we appeal to the Poisson Sum Rule given in our

treatment of Fourier Theory

SX ( f ) = ∆t
∞

m=−∞
Σ

∞

−∞
∫ RY (n∆t) e−2πinf ∆t e−2πinm dn . (5.6)

We change variables in the integral: set t = n∆t and then recognize the

definition of the continuous process PSD:

SX ( f ) =
∞

m=−∞
Σ

∞

−∞
∫ RY (t) e−2πit( f + m/∆t) dt (5.7)

Figure 3: Aliasing in the PSD
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=
∞

m=−∞
Σ SY ( f + m/∆t) .  (5.8)

Thus the discrete process PSD is a sum of spectra of the original continu-

ous process, shifted by multiples of twice the Nyquist frequency. If the

power in the continuous process has fallen off to low levels at the Nyquist

frequency, the PSD of SX will be a good approximation to SY , although in

general SX will be a factor of two or more above the ‘‘true’’ PSD at

f = 1/2∆t. The moral is that to get a good PSD one must set the sampling

rate high enough to avoid aliasing.
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6. Illustrations

Let us look briefly at some PSDs estimated from real-world data. Exactly

how the PSD is estimated is the subject of Chapter 3; it is a nontrivial

topic which we must defer.

We begin with the Salton Sea seiche data. Below is a an estimate of

the PSD of the 1301 data points. As I mentioned in Chapter 1 the data

time series suggests a number of resonances excited by the wind. In the

PSD we see a series of peaks, well resolved in frequency. The peaks are

far from being delta-function lines, and this not a fault of the estimation

process. The lake resonances are not perfect since we expect them to

broad features due to frictional losses. The four peaks picked out are cer-

tainly significant, but other smaller ones are suggestive, though not delin-

eated with confidence. I have plotted two bars, both representing the 1

standard deviation error estimates; the smaller one for places where the

spectrum is smooth, the larger for regions of rapid variation.

You should notice several other important things about this graph.

First it is plotted on linear-frequency, log-PSD axes. The spectrum covers

a large dynamic range, which is almost universal in geophysical data.

Plotted on a linear y axis nothing except the left side of the plot would be

visible to the eye. Always plot your spectra with a log scale. A log

Figure 4: PSD of Salton Sea seiche data.
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frequency axis is sometimes useful too, but not in this example. Next

observe that rise in power at the low-frequency end. Such a rise is called

a red spectrum because in optics red light has its power concentrated

towards long wavelengths. Red spectra are the norm in geophysical work.

This is because attenuation processes operate more efficiently at high fre-

quencies or short wavelengths; most natural filters (like seismic losses, or

upward continuation in potential fields) are low-pass filters. Finally,

notice the units of the power spectrum: PSD is a measure of variance per

unit frequency. Since the frequency here is one cycle per minute, and the

series measures water depth, the units are those of squared-length multi-

plied by time. The Power Theorem for Fourier decomposition means that

one could, for example, estimate how much kinetic energy is tied up in the

largest resonance by finding the area under the PSD in an appropriate

frequency range.

Although the autocorrelation function holds exactly the same infor-

mation as the PSD, a plot of RX is almost always useless. We plotted the

autocovariance for one component of the magnetic data from the plane fly-

ing across the Pacific (Figure 7, Section 4): about the only thing one can

deduce from it is that the data series is far from white noise. Let us look

at the PSD. This will take two graphs. In Figure 5 I show the whole spec-

trum. Notice again the very large dynamic range in power. The field val-

ues are sampled at an interval of 350 m, so f Ny = 1/(2 × 0. 35) = 1. 43 km−1.

The magnetometer is reported as having an accuracy of ±1 nT. If we take

this to mean there is uncorrelated noise with a uniform PDF, with b = 1

from Chapter 1 (3.5), we find the variance is 1/12 = 0. 0833 nT2. The

Figure 5: PSD of Z component in magnetic data.
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dashed horizontal line corresponds to white noise with this variance: Fig-

ure 5 is a one-sided PSD plot, so the area under the dashed line is

σ 2
Z = 1. 43 × 0. 0582 = 0. 0833 nT2. What this means is that two-thirds of

the frequency content of the record is devoted to almost pure white noise,

and is completely uninformative about geophysics — the true geophysical

signal at wavenumbers greater than 0. 5 km−1 (wavelengths shorter than

2 km) is evidently of such low amplitude, the noise of the magnetometer

totally obscures it.

In Figure 6 I expand the frequency scale by a factor of ten to show

the small wavenumber part of the spectrum more clearly. We see the PSD

at this scale approximates two intersecting straight lines. When one

looks into the theory of upward continuation of static magnetic fields the

process is essentially that of low-pass filtering (as mentioned earlier) —

roughly speaking, if Bz(x) is the Z component on a profile at the level of

the magnetic sources, then on a path of height h above the first line the

field becomes g ∗ Bz where g is filter with response ĝ(k) = exp (−2πkh), an

exponential fall with wavenumber k. Recall that the effect of the filter on

the PSD is to square this response. I have plotted a line corresponding to

| ĝ|2 in Figure 6 for h = 7 +4 = 11 km, the aircraft height plus the average

ocean depth. It is plausible to assume that the PSD near the crustal

sources of the field falls off fairly slowly, and after upward continuation

the spectrum fits that prediction quite well. What then is the other

straight-line segment? It can be shown that lack of stability in the gyro

system orienting the coordinates for the measurements causes this effect

Figure 6: Lowest 10% in wavenumber of Figure 5.
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through nonlinear processes; for anyone interested, see Parker and

O’Brien, JGR, v 102, pp 24815-24, 1997. So it turns out by looking at the

power spectrum we have discovered that nothing above k = 0. 03 km−1 con-

cerns geophysics in the observations; only the bottom one-thirtieth of the

spectrum contains geophysical information, the rest is noise or one kind

or another! It is worth remembering that a leveling off in the PSD at high

frequency is often an indication that instrument noise has overwhelmed

the signal under investigation at that point, and that the high frequency

behavior in the record is probably not geophysical. Unfortunately, inter-

pretation of high-frequency wiggles is a widespread occupation in data

analysis.

We have seen in this example how the PSD has revealed a number

of remarkable things about the original signal, properties that could not

be deduced by visual inspection from the original sequence (shown in

Chapter 1 Figure 6) nor from the autocovariance function in Figure 7.

More still can be learned by combining the X , Y and Z components in

their cross spectra, but we don’t yet have the theory in hand for that.

Finally, we look at the PSD estimated from the stationary part of the

marine bathymetry data set; this is shown in Figure 7. Notice here I have

used a log wavenumber axis. The reason for this is to show that the

power spectrum of the profile is quite well approximated by a straight line

which on this graph means that the PSD has the form of a power law:

SH (k) = β k−q (6.1)

Figure 7: PSD of ocean rise bathymetry.
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A fit to the spectrum gives the estimate q = 2. 64. Power-law behav-

ior has the characteristic that there is no intrinsic length scale. This

means that the stochastic process must look the same at any magnifica-

tion — the hall-mark of a fractal. This idealization cannot be true for all

scales, and clearly it breaks down in the graph at wavelengths longer

than about 3 km. The geological process responsible for the terrain is

repeated fracturing and faulting, and there are some theories (Fox and

Hayes, Reviews of Geophysics, v 23, pp 1-48, 1985) predicting fractal

behavior, although I do not believe it is possible to predict the exponent q

very well.
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Appendix: Proof of Equation (2.20)

In Section 2 I left the proof of the validity of the interchange of the inte-
gral and limit to a reference to Priestley. There is a reason why Priest-
ley’s proof is not entirely satisfactory, namely, the additional restriction
(2.21) is too severe since it excludes autocovariance functions behaving
like the sinc function, those associated with a discontinuity in SX . Here
is an alternative proof.

We examine the difference between the desired result and the func-
tion within the limit, and show that the difference vanishes under some
mild restrictions, as T becomes large. We measure the discrepancy with
the 2-norm:

|| f (t)||
2 =

∞

−∞
∫ | f (t)|2 dt . (A1)

Define the number

∆T = ||F [ΛT RX − RX ]|| = ||ΛT RX − RX || . (A2)

The second equality follows from the Power Theorem, the invariance of
the 2-norm under the FT. Then, since ΛT and RX are both real and even

∆2
T = 2

∞

0

∫ (ΛT (t) −1)2 RX (t)2 dt (A3)

= 2

2T

0

∫ (ΛT (t) −1)2 RX (t)2 dt + 2

∞

2T

∫ RX (t)2 dt (A4)

= 2

2T

0

∫
t2

4T2
RX (t)2 dt + 2

∞

2T

∫ RX (t)2 dt . (A5)

To proceed we need to assume something more about the behavior of RX .

We know RX is never greater than σ 2
X , so it is bounded; we will assume

that it dies awa y for large t, but more rapidly than some power:

|RX (t)| <
c

(1 + t)ν
(A6)

for some fixed values of c and ν . With this constraint we can see that

∆2
T <

1

2T2

2T

0

∫
c2t2

(1 + t)2ν dt + 2

∞

2T

∫
c2

(1 + t)2ν dt =
A(T)

T2
+ B(T) .  (A7)

Our interest lies in the behavior of ∆T as T tends to infinity. By L’Hopi-
tal’s rule of elementary calculus on the first term:

T →∞
lim

A(T)

T2
=

T →∞
lim

A′(T)

2T
(A8)

=
T →∞
lim

2Tc2

(1 +2T)2ν = 0, when ν > ½ .  (A9)
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In the second term we find

B(T) <

∞

2T

∫
2c2

t2ν dt =
2c2

2ν −1

1

(2T)2ν −1
(A10)

and, provided that ν > ½, B(T) tends to zero with large T . Thus if ν > ½,
both terms in (A7) tend to zero for large T and this means that ∆T van-
ishes, and hence the discrepancy between the FT of RX and the F [ΛT RX ]
also vanishes in the limit. In the context of bounded functions like RX (t)
our class of functions in (A6) is much bigger than the one in Priestley’s
proof and includes the sinc function, for example.


