
GEOPHYSICAL DATA ANALYSIS

Class Notes by Bob Parker

CHAPTER 3: ESTIMATING THE POWER SPECTRAL DENSITY

1. Introduction

If we are willing to assume that given data set is (after suitable pre-process-

ing as necessary) approximately modeled by a stationary stochastic process,

we would like procedures that can make reasonably reliable estimates of the

PSD, or the autocovariance function, of the underlying process. We confront a

problem not previously encountered in statistical estimation: while we have

of necessity only finitely many data values, the thing we need to know is a

function, something with infinitely many unknowns. We will have to settle

for a simplified version of the function, usually a smoothed version. In some

estimation processes, the function is itself written in terms of a few parame-

ters and modeled with a simple rational expression terms of sines and cosines

of the frequency. These approaches (for example, maximum entropy) are

considered by the experts to be unreliable and we will not cover them here.

But we will make some simplifications, though not as drastic as the few-

parameter model.

We will normally treat a discrete process {X n} often with sampling

interval ∆t = 1, and although the underlying stationary process is infinite, we

will have at our disposal only N consecutive terms from a single realization.

There will be no spectral lines, meaning no exactly periodic components. If

these are suspected to be present they should be removed first by other

means, just as the mean or a trend should be removed before spectral analy-

sis. Finally, and importantly, we must assume the process is ergodic.

What does this last term mean? In the theory we have assumed that it

is possible to generate as many realizations of the process as required, and

then when averaging, such as the expectation E is needed, we take the aver-

age over the independent realizations. In most practical situation we are pos-

session of exactly one realization, the data series under study. To reduce

variance, it is absolutely essential to average something. In practice we must

average over time. An ergodic stationary process is one in which averaging

over infinite amounts in time gives the same answer as averaging over infin-

itely many repeated realizations. It is perfectly possible to invent stochastic

processes for which this fails. We can guess that a process would be ergodic if

the autocorrelation dies awa y fast enough, that pieces of the data series sepa-

rated far enough are essentially independent. For discrete processes it is suf-

ficient that:

∞

n=−∞
Σ RX (n)2 =

½

−½

∫ SX ( f )2 df < ∞ (1.1)
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for the process X n to be ergodic. This is a pretty mild condition; any bounded

spectrum satisfies it.

2. Several Bad Approaches

Spectral estimation is the subject of a huge literature. The reason for this is

that the task is still something of an art, and there is no definitive best way.

None-the-less, most of the methods in the literature are rather poor, and

there are many people in the community who cling to decidedly inferior meth-

ods because of ignorance or reluctance to change. I will be recommending one

specific approach based on the periodogram. Here I will mention briefly some

of the inferior methods, so that when you see them in the literature you will

know the author hasn’t kept up, or is deluded. For a more complete catalog of

inferior estimation methods see the introduction in Thomson’s classic 1982

paper (Thomson, D. J., Spectrum estimation and harmonic analysis, Proc.

IEEE, v 70, pp 1055-96, 1982).

Many estimation methods in statistics go as follows: look at the defini-

tion of the particular statistic, and if it involves the expectation operation

over the process, replace the expectation by an average over the sample in

hand. The mean is an obvious illustration: definition x = E [X ]; estimator

X̂ =
1

N

N

n=1
Σ xn . (2.1)

(We run into a notational problem, that the hat ⋅̂ is used in statistics to

denote an estimate, while in Fourier theory, it is the Fourier transform: we

need both! We resolve the problem with this rule: if the hat is applied to an

upper case letter, it is the estimator, not the FT.)

We can apply this approach to the two definitions of PSD in Chapter 2.

The first, (2.2) Chapter 2, the limit over longer and longer sections of a dis-

crete FT of the data, is called the periodogram estimator and ultimately

will be the basis of the preferred method; much more on this estimator later.

The second estimator would be a two stage affair: estimate the autocovari-

ance function thus:

R̂X (n) =
1

N − n

N−n

k=1
Σ xk xk+n, n = 0, 1, 2, . . . N −1 (2.2)

from the measured data series xn; then take the discrete FT to find Ŝ X . This

turns out to be a very poor estimator, both of RX and SX . One problem is

that the variance of the autocovariance estimate in (2.2) gets worse and

worse as n increases, and the higher variances are then spread across the

whole spectrum. It is very difficult to find the uncertainties in these esti-

mates and there is significant issue with bias too. This method is almost

never seen today. (Except in some parts of the paleoclimate literature!)
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Another class of estimators more widely advocated derives from the fil-

ter theory for stationary processes. Recall (3.11) Chapter 2: if X = g ∗ T then

SX = | ĝ|2 SY . (2.3)

Suppose that you could somehow choose the filter g so that when Y is white

noise, the filter output is the desired process X ; then

SX ( f ) = c | ĝ( f )|2 (2.4)

where c is a constant. The idea is usually implemented by selecting g to be a

finite AR (autoregressive) filter with k weights:

X n = Y n + a1 X n−1 + a2 X n−2 + ak X n−k (2.5)

where Y n is a white process. By multiplying through these equations with

X j and taking the expectation, we can generate a set of equations (known as

the Yule-Walker equations) for the unknown coefficients a j in terms of esti-

mates of the autocovariances, like (2.2); see Seion 9, and Priestley, pp 349-51.

As with the earlier method based on estimated autocovariance, it is hard to

find uncertainties. Also there is the question of the proper choice of k, the

number of terms to be taken in the filter model. The answers vary wildly

with different choices, and there is no good theory to decide what is the cor-

rect number. There are alternative methods for finding the coefficients, for

example, Burg’s method, and the ever popular but equally flawed method

of maximum entropy.

The Yule-Walker approach does have a valuable application, however.

As we will see, spectral estimates based on the periodogram method are

biased if the PSD covers a wide range. Often a relatively short filter like (2.5)

(with k ≤ 5 say) can be found that dramatically reduces the dynamic range,

and then the filtered process can be safely treated, after which the effect of

the filter is removed. The process is called prewhitening.

We return to the classic bad estimator, the periodigram estimator.

As already noted the idea is to replace expectations with ordinary averages.

Of course we have a limit in the definition, but we will simply ignore this

inconvenience. Then (4.1) of the previous Chapter becomes the estimator:

Ŝ X ( f ) =
1

N





N−1

n=0
Σ xne−2πinf





2

. (2.6)

Notice we have numbered the data sequence to start at zero, which is the

usual convention for the DFT. Equation (2.6) is what one often encounters for

an estimate of the PSD by unsophisticated people − it seems natural just to

take the FFT and square the magnitudes of the coefficients. Methods based

on modifications of (2.6) are called direct spectral estimates. Direct esti-

mates are the kind I recommend, and since they start at the periodogram, we

must study it in some detail to understand why it is bad estimator, and

armed with that knowledge, fix the problems.
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Figure 0: A primitive periodogram spectrum of the Project Magnetic X

field shown in earlier Chapters

The spectrum shown on this page is typical of many still to be found in the

literature. When you see the log-log scales and the dense wiggles at high fre-

quency, you know immediately that the author needs to take a class in spec-

tral estimation!
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3. The Raw Periodogram: White Gaussian Noise

We begin with the simplest case: the periodogram for Gaussian white noise.

Since all practical observations are discrete, we will study almost exclusively

discrete stationary stochastic processes. For convenience we repeat a few

well-known properties of the white noise, which we now call X n. The X n are

iid Gaussian RVs with zero mean and variance σ 2. Hence X n ∼ N (0, σ 2) and

RX (n) = cov [X j , X j+n] = E [X j X j+n] = σ 2δn0 . (3.1)

We are attempting to estimate the true PSD of this process, which is

SX ( f ) = σ 2, − ½ ≤ f ≤ ½ .  (3.2)

We will use (2.6) to estimate the PSD at N +1 evenly spaced frequen-

cies: f m = m/N = m∆ f , with m = 0, ± 1, ± 2, . . . ± N /2, and we will take N to be

an even number for convenience. Thus the frequencies sample the spectrum

across the band, right up to the Nyquist frequency f = ±½. These are easy

frequencies to calculate with the FFT, but as we will see there are other rea-

sons for this choice of frequencies. Define the real and imaginary parts of the

DFT in (2.6):

Am = Re
N−1

n=0
Σ xne−2πinm/N ; Bm = Im

N−1

n=0
Σ xne−2πinm/N (3.3)

and then the periodogram estimate is

Ŝ X (m∆ f ) =
A2

m + B2
m

N
. (3.4)

We will now characterize the statistical distributions of Am and Bm. Observe

that by definition these are simply weighted sums of samples drawn from a

Gaussian process. Therefore it follows that all the Am and Bm must be Gaus-

sian RVs too, and as such we can completely specify their joint distribution

from a knowledge of the mean values and the covariances (Recall (1.1) and

(2.8) from Chapters 1 and 2).

First the mean values, which are easy:

E [Am] = Re
N−1

n=0
Σ E [X n]e−2πinm/N = 0 (3.5)

and similarly E [Bm] = 0. To calculate the variances and covariances write

Cm = Am + iBm . (3.6)

Now consider

E [C j C∗
k] = E [A j Ak + B j Bk] − iE [A j Bk − Ak B j] (3.7)

=
N−1

m=0
Σ

N−1

n=0
Σ E [X m X n] e−2πimj/N e2πink/N (3.8)
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=
N−1

m=0
Σ

N−1

n=0
Σ σ 2 δmn e−2πi(mj − nk)/N (3.9)

= σ 2
N−1

m=0
Σ e−2πim( j − k)/N . (3.10)

This is a sum we have seen several times before in this course. It is a geo-

metrical series and was used to demonstrate the orthogonality of the complex

vector basis e2πin/N . Recall that it vanishes unless j = k; in that case the sum

is N . Therefore

E [A j Ak + B j Bk] − iE [A j Bk − Ak B j] = N σ 2δ jk . (3.11)

In an exactly similar way we can calculate

E [C j Ck] = N σ 2δ j,−k . (3.12)

And so

E [A j Ak − B j Bk] + iE [A j Bk + Ak B j] = N σ 2δ j,−k . (3.13)

Equations (3.11) and (3.13) give for each pair ( j, k) two complex equations in

E [A j Ak], E [B j Bk], and E [A j Bk]. We solve for these and, omitting the sim-

ple manipulations, obtain the following:

cov [A j , Bk]

cov [A j , Ak]

cov [B j , Bk]

var [A j]

var [A j]

var [B j]

var [B j]

=
=
=
=
=
=
=

0,

0,

0,

½Nσ 2,

Nσ 2,

½Nσ 2,

0

all j, k

j ≠ k

j ≠ k

j ≠ 0, j ≠ ± ½N

j = 0, ± ½N

j ≠ 0, j ≠ ± ½N

j = 0, ± ½N .

(3.14)

In summary, this reveals that the A j and B j are completely uncorrelated —

the covariances all vanish. The variances of the individual variables are all

½Nσ 2, except for zero and the Nyquist frequency, where that of the real part

A j is doubled, and that of the imaginary part B j vanishes. So if we exclude

zero and the Nyquist frequency (both ±½ will be intended by this phrase), the

DFT comprises iid Gaussian RVs ∼ N (0, ½Nσ 2); almost ‘‘Gaussian white

noise in, Gaussian white noise out.’’

Such statistical independence is useful, but we would fail to get it if we

tried to estimate SX at frequencies other than those we have chosen; this is

the main reason for the choice.

Now to the estimator of the PSD. Setting aside the zero frequency and

the Nyquist for now, we must consider in (3.4) the weighted sum of two inde-

pendent variables each one the square of a Gaussian RV with mean zero, and

variance ½Nσ 2, which we will called ρ2. This is usually treated by recalling

that the sum of K iid squared Gaussian RVs is distributed as χ 2
K , the chi-

squared distribution with K degrees of freedom; and here K = 2. For such a
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simple problem, that is too complicated. We need the expected value of Ŝ X :

E [Ŝ X (m∆ f )] =
1

N
E [A2

m + B2
m] .  (3.15)

But Am and Bm are independent, zero-mean Gaussian variables, and so

E [Ŝ X (m∆ f )] =
1

N
(E [A2

m] +E [B2
m]) =

1

N
(var [Am] + var [Bm]) (3.16)

=
1

N
(½Nσ 2 + ½Nσ 2) = σ 2 . (3.17)

This is the true value of the PSD, so the periodogram estimator is unbiased.

The same holds at zero and the Nyquist frequency, as can readily be verified.

That is the good news. Now for the variance.

Since the RVs are identical and independent, we can treat Am alone

then double the answer.

var [Ŝ X (m∆ f )] = var




1

N
(A2

m + B2
m)





=
2

N2
var [A2

m] (3.18)

=
2

N2
(E [A4

m] − E [A2
m]2) .  (3.19)

The second expectation is again var [Am] = ½Nσ 2. The first is the fourth

moment of a zero-mean Gaussian; with variance ρ2 this is:

∞

−∞
∫ x4 e−x2/2ρ2

/ρ√  2π dx = 3ρ4 . (3.20)

Here ρ2 = var [Am] = ½Nσ 2. Assembling the pieces in (3.18) we find

var [Ŝ X (m∆ f )] =
2

N2
[3(½Nσ 2)2 − (½Nσ 2)2] = σ 4, m ≠ 0, ± ½N . (3.21)

A short calculation of the same kind confirms that:

var [Ŝ X (0)] = var [Ŝ X (±½)] = 2σ 4 . (3.22)

So the standard error of the estimate (square-root variance) is normally σ 2,

which is the same size as the estimate itself. An uncertainty so large is bad

enough, but what is worse is the fact that, as the number of data N grows

towards infinity, the variance does not improve; hence the periodogram gener-

ates inconsistent estimates.

The reason for this behavior can be understood by a simple matter of

counting. The periodogram gives ½N independent estimates from N data;

the number of degrees of freedom per estimate is two. This does not improve

with increasing N , so the variance doesn’t get any smaller — we are not aver-

aging over more data as we increase N .
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4. The Raw Periodogram: Continuous Spectra

How do these results generalize to the spectra of processes other than white

noise? For continuous power spectra, we will show that the periodogram esti-

mator is asymptotically unbiased, which means as N →∞ the expected

value of the estimate is the correct PSD. Also as N grows, the variance has

the same kind of behavior as in the white-noise case:

var [Ŝ X ( f )] → SX ( f )2 . (4.1)

Let us calculate the bias, when the number of samples is N , the practi-

cal situation. Sparing you some algebra, which goes exactly like the proof we

gave showing the equivalence of the two definitions of PSD in the continuous

time case, we find that the discrete DFT estimator (2.6) can also be written

without approximation as

Ŝ X ( f ) =
N−1

n=−N+1
Σ 


1 −

|n|

N




R̂X (n) e−2πinf (4.2)

where R̂X is the estimator (2.2) of the autocovariance function:

R̂X (n) =
1

N −|n|

N −|n|

k=0
Σ X k X k+n . (4.3)

This estimator is unbiased. (Show this.) To find the bias of the PSD estima-

tor in (4.2) we take the expectation:

E [Ŝ X ( f )] =
N−1

n=−N+1
Σ 


1 −

|n|

N




E [R̂X (n)] e−2πinf (4.4)

=
N−1

n=−N+1
Σ 


1 −

|n|

N




RX (n) e−2πinf . (4.5)

Now recall that RX is the integral over the true PSD, equation (4.3) of Chap-

ter 2; substitute the integral:

E [Ŝ X ( f )] =
N−1

n=−N+1
Σ 


1 −

|n|

N




½

−½

∫ SX ( f ′) e2πi f ′n d f ′ e−2πi fn (4.6)

=
½

−½

∫ SX ( f ′)




N−1

n=−N+1
Σ 


1 −

|n|

N




e−2πi( f − f ′)n



d f ′ (4.7)

=
½

−½

∫ SX ( f ′) F N ( f ′ − f ) d f ′ (4.8)

where the sum in (4.8) can be evaluated exactly, and is called the Fejer ker-

nel:

F N ( f ) =
1

N

sin2 π Nf

sin2 π f
. (4.9)
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This function is very well approximated by N sinc 2(Nf ), even for modest val-

ues of N ; see Figure 1.

Equation (4.8) demonstrates that the periodogram estimator convolves

the true spectrum with a function resembling sinc-squared, a  function with

considerable amplitude awa y from the central peak. When the spectrum is

flat the convolution has no effect, but when there are peaks or other varia-

tions, the effect can be serious, particularly in the most interesting cases,

where the PSD has a large dynamic range. This bias is called spectral leak-

age. Notice that as N tends to infinity, the kernel gets taller and narrower

ultimately yielding the correct expected value and so, as advertised, the esti-

mate is asymptotically unbiased.

Figure 1: Fejer kernel: (a) linear scale; (b) log scale. Blue curve is

sinc-squared approximation.
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5. Simple Fixes for the Periodogram

To improve the poor variance of the periodogram we must expect to aver-

age in some way. The most natural approach, which we will examine

briefly, is simply to average together a number of estimates made at

neighboring frequencies. The periodogram has the virtue that the spec-

tral estimates at the frequencies m∆t are uncorrelated for white noise,

and this remains approximately true even for other smooth spectra.

Therefore when we average K consecutive spectral estimates together

with a uniform weight, we reduce the variance by a factor of K : from (4.1)

var [<Ŝ X ( f )>K ] ≈
SX ( f )2

K
. (5.1)

You will see that averaging introduces a smoothing of the spectrum, a new

bias of its own. Such loss of spectral resolution is inescapable; we

must balance the desire to see detail in the PSD against the need for sta-

tistical reliability.

Another technique, still in wide use, is Welch’s method or section

averaging. Here one splits the original record up into K segments of

equal length, and makes spectral estimates from each one. To the extent

that the sections are long enough, the data series are approximately inde-

pendent, and thus each one provides a statistically independent estimate

of the PSD at each frequency, and these are then averaged. Notice, just as

in the case of frequency-domain averaging, one loses spectral resolution,

because now the interval between consecutive frequencies in the esti-

mated PSD becomes K /N instead of 1/N as it was with the whole record.

To reduce bias the sections are each tapered, a process we will discuss

next, and it is also part of the method that the segments should overlap to

make maximum use of the information. We will not examine the method

in detail because it is now obsolete in my opinion.

Figure 2: Total field observation on 4 complete orbits of Magsat.
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In Figure 2 I show the total geomagnetic field strength as measured

during four orbits of Magsat. There are 4096 measurements, taken at a

sampling interval of 38 km along track. I want to use this fairly extreme

example for illustration. In Figure 3 we see two periodogram estimates in

the lowest wavenumber part of the spectrum; the Nyquist wavenumber is

0. 0132 km−1. The orange curve is the raw periodogram, which is as pre-

dicted extremely noisy. In fact above k = 0. 0003 km−1 the raw peri-

odogram becomes smooth, an effect of spectral leakage. Also shown is the

result of averaging 11 consecutive periodogram estimates: a great

improvement results in the variance.

Averaging is the traditional way to reduce variance and it is no sur-

prise that the variability in the PSD here as been brought down consider-

ably. But what of the bias? It is no coincidence that the bias-producing

kernel in (4.8) is approximately the square of the sinc function, well-

known as the FT of a box-car function. By the technique we used in sec-

tion 4 we can show a more general result: suppose that the data sequence

is multiplied by a weight series w(n) and the original periodogram esti-

mate is replaced by

Ŝ X ( f ) =
1

N





N−1

n=0
Σ w(n) xne−2πinf





2

. (5.2)

Then the new expected value of the estimator comes out as

E [Ŝ X ( f )] =
½

−½

∫ SX ( f ′) W ( f ′ − f ) d f ′ (5.3)

where the convolving function in the frequency domain is given

Figure 3: Raw periodogram of data in Figure 2, shown orange;

11-point average blue.
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approximately by

W ( f ) =
1

N
|ŵ( f )|2 =

1

N
|F [w]|2 (5.4)

that is, the squared magnitude of the FT of the weight series. In the case

of the raw periodogram, the weight series comprises a set of N ones: sup-

pose we take w(t), the function of continuous time w in (5.4), to be:

w(t) = box(t /N −½) . (5.5)

Then

ŵ( f ) = Neπi fN sinc (Nf ) (5.6)

and because |eπi fN | = 1 (5.4) agrees exactly with the approximation

N sinc 2(Nf ) mentioned earlier and plotted as the blue curve in Figure 1.

To improve the bias of spectral leakage, we deliberately choose w(n)

to be a function whose FT falls awa y faster than sinc 2, which for large fre-

quencies has f −2 behavior. The key is to have smooth behavior in the

transitions at n = 0 and n = N −1, the ends of the interval, because the

leakage is a consequence of poor convergence of the Fourier transform of a

function with a discontinuity. Let us introduce a continuous time approxi-

mation for convenience in the use of (5.6): let t = n and T = N −1 so that

the observations are on the time interval (0, T). Nowadays the function

w(t) is called a taper. In the earlier literature it was known as a ‘‘data

window,’ ’ and in some fields called the ‘‘apodizing function.’’ There are

many choices of suitable w(t), and a large number have been given names

in the literature: see Priestley for definitions of the Daniell, Bartlett,

Parzen, Tukey-Hamming, Tukey-Hamming and Bartlett-Priestley tapers!

They are all obsolete, for reasons we will soon come to. For purposes of

illustration, we will look at two simple examples: First the sine taper

wA(t) =




(2/T)½ sin (πt/T),

0,

0 ≤ t ≤ T

otherwise .
. (5.7)

The leading constant factor is to insure unit area under |ŵ|2, which we

need if the convolution (4.8) is to get the right answer for white noise.

Then the FT is

ŵA( f ) = (½T)½ [sinc ( fT +½) +sinc ( fT −½)] . (5.8)

Next the sine-squared taper:

wB(t) =




(8/3T)½ sin2 (πt/T),

0,

0 ≤ t ≤ T

otherwise
(5.9)

ŵB( f ) = 

2T

3




½

[sinc ( fT) +½sinc ( fT −1) +½sinc ( ft +1)] . (5.10)
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We plot the convolving functions |ŵA|2 and |ŵB|2 in Figure 4, only for

f ≥ 0, along with the sinc 2( fT). In the plots I have scaled the function to

unity at f = 0 for easy of comparison.

Figure 4: Top panel. Three tapers, box-car (or no taper) gray; sine taper,

dashed; sine-squared taper black. Lower panel. Corresponding convolv-

ing weight functions with frequency.
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The graphs in the lower panel show on a log scale how much more rapidly

the smoother tapers decay awa y. In that respect, the convolving function

W (f ) is a better approximation to a delta function, because the functions

corresponding to the sine taper are nearly zero awa y from the center; and

the quality is even better for the sine-squared taper. But notice that the

central peak is wider than that of the sinc-squared for both functions, so

in this respect |ŵ( f )|2 is a poorer approximation. Suppression of leakage

from large peaks into low-amplitude parts of the spectrum turns out to be

much more important than the loss of resolution introduced by this fac-

tor. We have already had to sacrifice resolution by averaging for the

improvement in variance, a sacrifice well worth making.

How effective in practice is the introduction of a taper like wA or

wB? For many spectra the reduction in bias gives astonishing results, and

that is the case for the Magsat fields. In Figure 5, I show the spectra esti-

mates that result from tapering with wA, the sine taper, and wB the sine-

squared taper. What the Figure reveals is that for k > 0. 0005 km−1 spec-

tral leakage in the periodogram estimate has artificially raised the level of

the PSD by 3 to 4 orders of magnitude. Admittedly this is a spectrum

with a gigantic dynamic range. None-the-less, the smoothed periodogram

totally misrepresents the field behavior at shorter wavelengths.

Figure 5: PSD estimates of Magsat data for smoothed periodogram

and with two tapers wA, the sine taper, and wB the sine-squared

taper.
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Examples like this are easy to find, though not usually so dramatic as this

particular example.

Our next topic is a brief description of the modern approach to spec-

tral estimation, in which tapers play a  central role, not only in bias sup-

pression but also, strange to say, in variance reduction also.

6. The Perfect Taper

The idea of tapering prompts us to ask the following deceptively simple

question: What function w(t), vanishing outside the interval (−T /2, T /2),

has the greatest concentration of energy in its Fourier transform? I have

turned to continuous time for this discussion, because it is simpler to

illustrate the ideas; of course there is an entirely parallel theory for dis-

crete processes, which is the theory we need for practical calculations.

Recall in (5.4) the continuous model was used to compute the approxima-

tion |ŵ( f )|2 for convolving kernel W ( f ) in (5.3). I have also shifted the

time origin to the center of the interval. Here I am drawing on, but not

exactly following, Percival and Walden pp 75-116. The question is still too

vague to be answered, but we make it more precise by defining a measure

of spectral concentration:

C[w] =

F

−F

∫ |ŵ( f )|2 df

∞

−∞
∫ |ŵ( f )|2 df

. (6.1)

We know the original signal is limited between −T /2 and T /2; so we

choose a bandwidth F and ask that the taper w have maximum concen-

tration for that F; clearly from (6.1), no w can make C[w] exceed unity. It

makes no sense to select F as small as 1/T , since that’s the lowest

Figure 6: The integral for concentration.



SPECTRAL ESTIMATION 16

frequency accessible from a record of length T . The idea is to pick ahead

of time the interval of frequency averaging we would be willing to settle

for, and then to find the best taper for that problem. Observe in Figure 4

how as the spectral leakage improves, the width of the region averaged

near f =0 gets broader.

Suppose we pick the bandwidth F = 1/T . How well do the three

tapers we have looked at so far perform according to the measure in (6.1)?

This is of course just an exercise in integration. The answers are 0.902

for no taper at all, 0.97 for the sine taper, and 0.918 for the sine-squared

taper. Somewhat surprisingly perhaps the sine taper is the best in this

case. If we choose F = 4/T the numbers for C[w] are 0.9748, 0.99973, and

0.999986; if we are willing to average over this bandwidth, the sine-

squared taper is clearly superior.

How is this problem of maximum concentration solved? Suppose,

instead of normalizing by the total power, we simply set it to unity as a

side condition. Then we introduce a Lagrange multiplier ν and look for

stationary points of the functional

U [ŵ] =
F

−F

∫ ŵ( f ) ŵ( f )∗ df − ν
∞

−∞
∫ ŵ( f ) ŵ( f )∗ dt . (6.2)

To solve this we need to introduce the parent function w(t), whose Fourier

transform is ŵ( f ), along with the fact that w vanishes outside (−T /2, T /2).

We use Parseval’s Theorem for the second term in (6.2):

∞

−∞
∫ ŵ( f ) ŵ( f )∗ df =

T /2

−T /2

∫ w(t)2 df . (6.3)

Then we insert (6.3) and the definition of ŵ, namely,

ŵ( f ) =
T /2

−T /2

∫ e−2πi ft w(t) dt (6.4)

into equation (6.2):

U =
F

−F

∫ df

T /2

−T /2

∫ e−2πi ft w(t) dt

T /2

−T /2

∫ e2πi ft′ w(t′) dt′ − ν
T /2

−T /2

∫ w(t)2 dt (6.5)

=
T /2

−T /2

∫ dt

T /2

−T /2

∫ dt′ w(t) w(t′)
F

−F

∫ e−2πi f (t − t′) df − ν
T /2

−T /2

∫ w(t)2 dt (6.6)

=
T /2

−T /2

∫
T /2

−T /2

∫ w(t) w(t′)
sin 2πF(t − t′)

2π(t − t′)
dt dt′ − ν

T /2

−T /2

∫ w(t)2 dt . (6.7)

This equation is a Hilbert space equivalent of the one we encountered at

the beginning of the year for the principal axes of inertia, to maximize the
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moment of inertia, I. In abstract notation (6.7) is

U [w] = (w, Kw) − λ (w, w) (6.8)

for the linear operator K on L2(−½T , ½T) where

(K w)(t) =
T /2

−T /2

∫ sinc (2(t − t′)) w(t′) dt′ . (6.9)

The stationary points of (6.8) are obtained by differentiating with respect

to w. (This is Gateaux differentiation, which we will see in inverse the-

ory). The result for (6.8) is that we seek the solution to the eigenvalue

equation:

Kw = λ w (6.10)

which is explicitly:

T /2

−T /2

∫
sin 2πF(t − t′)

2π(t − t′)
un(t′) dt′ = µn un(t), |t| ≤ T /2, n =0, 1, 2, . . . (6.11)

for eigenvalues µn and the corresponding eigenfunctions un(t). The ei-

genvalues of the system corresponds to concentration factors C in

(6.1) for the appropriate eigenfunction. The largest eigenvalue, µ0,

gives the largest concentration, and the corresponding eigenfunction u0 is

the optimal taper for the specified values of F and T .

Before describing some of the remarkable properties of the solutions

to (6.11), it helps to make a change of variables to remove the apparent

dependence on the two parameters T and F; as you can imagine, the com-

plete family of solutions is parameterized by a single dimensionless num-

ber. Let x =2t/T , y =2t′/T and p = FT ; then (6.11) becomes

1

−1

∫
sin π p(x − y)

π(x − y)
ψn(y) dy = µn ψn(x), |x| ≤ 1 .  (6.12)

and un(t) =ψn(2t/T). This is almost equation (33) of Percival and Walden,

in a slightly more readable notation.

When you decide on a bandwidth F, this fixes p, which is called the

time-bandwidth product of the system under study; for practical prob-

lems we always choose p > 1, because, as we mentioned, you cannot expect

to get good concentration into a frequency band narrower than 1/T . Then

it can be proved there are infinitely many distinct, real, positive eigenval-

ues:

1 > µ0 > µ1 > µ2 > . . . (6.13)

and as n →∞, µn → 0. Since the concentration function C[ψn] = µn, the

first eigenfunction, ψ0 is the best performing taper for the particular value

of p in question; we will soon see the other eigenfunctions in the sequence

have a role in estimation too. This is partly because the eigenfunctions
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(and of course the corresponding tapers) are mutually orthogonal on

(−1, 1):

1

−1

∫ψm(x)ψn(x) dx = 0, m ≠ n (6.14)

which is a general property of self-adjoint eigensystems like (6.12). More

unusual, and harder to prove, is the following fact about the eigenvalues:

for n ≤ 2 p, the eigenvalues µn (and hence the spectral concentrations) are

all very close to unity, then fall suddenly to very small values. This means

for time-bandwidth product p there are about 2 p very good tapers, that

have strong rejection outside the desired band. There are hosts of other

properties − Percival and Walden list eight on pp 79-80; but they don’t

mention in that list where the functions ψn get their name, which is pro-

late spheroidal wavefunctions. A simpler name has been suggested:

Slepian functions, after David Slepian who invented this application of

them. The self adjoint integral operator in (6.12) commutes with a certain

second-order differential operator describing wave motion in prolate

spheroidal coordinates! Commuting operators share eigenfunctions,

hence the name. And in fact, computation of ψn is greatly facilitated by

this commutation.

How good is the perfect taper? Let us study the case p = 4, which

you will recall corresponds to F = 4/T , and for which we obtained C[w] of

0.999986 for the best, sine-squared taper. The largest eigenvalue of (6.11)

with p = 4 is 0. 99999 999942, that is nine 9s! Figure 7 shows the optimal

taper ψ0 for the time-bandwidth product, p =4, along with the sine-

squared taper. Below are the squared Fourier transforms of these |ŵ|2.

Observe how the weight function for ψ0 is nearly two orders of magnitude

smaller than the one for sine-squared in the rejection band, and larger in

most of the pass band. It is one of those remarkable facts that ψ̂0, the

Fourier transform of ψ0, is equal to a constant ×ψ0(2π f / p), that is, a

stretched version of the original function; when the argument of the

stretched function is outside (−1, + 1), we simply use the left side of (6.12)

to extend it! And the relationship is the same between ψn and ψ̂n.

We have looked at only the continuous-time/continuous-frequency

theory, which first appeared in the 1980s and was invented by Slepian.

All the results, including our (6.1) which motivates the whole idea, are

only approximations for a true discrete and finite time series. But an

exact theory precisely corresponding to the optimization we have just dis-

cussed can be carried out − unfortunately it introduces another parameter

(the number of points in the time record) over which the family of func-

tions varies, when we want the absolute best out of the theory. The people

who have developed these ideas such as David Thomson (and Percival and

Walden) seem to believe in the principle that the more subscripts and

superscripts you hang on a variable, the clearer the notation. This is an

error: the truth is, The utility of a mathematical notation is proportional
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to the amount of information it hides. So the treatment of Thomson is

generally agreed to be hard to read, and Percival and Walden are no bet-

ter. We will not go into the thicket of the optimal discrete prolate spher-

oidal sequences as they are called − it is enough that you understand the

general idea.
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Figure 7: Best taper and its FT for p = 4; also shown, performance of

wB(t), the sine-squared taper.
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7. Spectral Estimation: Multitapers

At this point we have focussed on the taper with the best concentration,

ψ0(t), with eigenvalue µ0. But the theory tells us there are infinitely

many eigenfunctions for K associated with orthogonal tapers. How good

are the eigenvalues for these functions? The Table lists those for p = 4.

n Eigenvalue µn

0 0.99999999942487

1 0.99999997246259

2 0.99999878976974

3 0.99996755459638

4 0.99941008235158

5 0.99250455019311

6 0.93665243143508

7 0.69883581857698

8 0.29937483065771

9 0.06424183042118

The spectral concentration of these tapers is excellent out to n = 4 at

least. It is fair to say that these tapers are nearly as good as the optimal

taper, and yet we apparently have no use for them. David Thomson (op.

sit.) observed, however, that if a set of tapers is orthogonal, the spectral

estimates made with them are uncorrelated. Thus we can made separate

estimates with each taper, and average them together, in this way reduc-

ing the variance by averaging over the independent estimates. This is the

method of Multitaper Estimation.

To summarize: a series of tapers is computed, based on the pre-

assigned bandwidth F of interest; then a tapered periodogram is made for

each one and they are averaged together. How is the number of tapers K

chosen? There are a number of recipes, some based on estimating the

Figure 8: The first six eigentapers with p = 4.
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variance improvement by adding a further term, but by and large the

answer is usually around 1. 2 p, a factor times the time-bandwidth prod-

uct, because after this number the concentration falls off so rapidly. Fig-

ure 8 shows the first six tapers for the time bandwidth product p =4.

Notice how the higher order tapers are applying more emphasis to values

near the ends of the series, thus overcoming an old objection that such

data were being accorded insufficient weight in the single taper theory.

In Figure 9 we see the result of a multitaper estimation on the

Magsat data. Here, after some experimentation, I used a time-bandwidth

product p = 6 (this gives F = 0. 000038 km−1) and five tapers. The result

is barely distinguishable from the sine-squared taper (shown dashed)

even though the spectral concentration of the fifth taper is 0.9999999826.

We can conclude from this that spectral leakage is not a problem for the

sine-squared taper in this case, and that are we indeed looking at the true

spectrum in the low-amplitude band in the graph. It may be disappoint-

ing that the multitaper estimate does not outperform the simple sine-

squared taper here, but there will be situations where it does.

As you will appreciate by consulting Percival and Walden there is a

great deal I have not covered. For example, the details of how to calculate

Figure 9: Magsat PSD estimates with Thomson multitapers, p = 6

and 5 tapers, shown red; sine-squared taper grey.
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the tapers: there is a very clever idea that allows the solution of the

matrix eigensystem to be formulated into a three-term recurrence scheme

(like the one used for computing spherical harmonics) which makes prac-

tical the use of these Thomson tapers even for very long time series − the

computation time only rises as N , the number of points, not N3 as a naive

approach would give. The Matlab Signal Processing Toolbox provides

code for computing the Slepian functions. I have Fortran for them. They

are also included in my spectral estimation program PSD.

The Thomson/Slepian multitapers are without doubt the best way to

estimate spectra when there is very large dynamic range, such as a sharp

fall-off or a strong peak (true spectral lines should always be removed

separately before spectral analysis begins). But because of the need to

choose an averaging bandwidth that is fixed across the whole spectrum,

the averaging may be too severe in one frequency interval (where the

spectrum is varying rapidly), and not enough in other parts (where the

spectrum is relatively flat). A completely different multitaper method was

given by Riedel and Sidorenko (IEEE Trans. Sig. Proc., 43, pp 188-195,

1995) which we discuss next.
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8. Local Bias Minimization

When one tapers the time series, one convolves the true spectrum with a

function that essentially averages the local behavior, smoothing it to some

extent. If there are peaks, or troughs, this introduces a local bias, as

Figure 10 below illustrates. When the spectrum has a moderate dynamic

range, so that spectral leakage is not too significant, the local bias can be

a problem. We can ask, What tapers will minimize the local bias? Of

course we need a measure. Riedel and Sidorenko (1995) use a quadratic

approximation as follows. The bias β is the difference between the

expected value and the true value of the PSD:

β = E [Ŝ( f0 )] − S( f0 ) =
½

−½

∫ S( f ) W ( f − f0 ) df − S( f0 ) (8.1)

where W is the convolving function; see (5.3)-(5.4). The area under W ( f )

is always chosen to be unity, and hence (8.1) can be written

β =
½

−½

∫ [S( f ) − S( f0 )] W ( f − f0 ) df . (8.2)

For practical tapers, W also dies awa y to zero fairly fast; R&S then say we

can approximate the factor in brackets with a local Taylor series:

S( f ) − S( f0 ) = ( f − f0 ) S′( f0 ) + ½( f − f0 )2 S′′ ( f0 ) + O( f − f0 )3 . (8.3)

If we substitute (8.3) into (8.2) and integrate, because W ( f ) is always an

even function of f the odd derivative terms vanish and we obtain the

approximation:

β =
½

−½

∫ ½S′′ ( f0 ) W ( f − f0 ) ( f − f0 )2 df (8.4)

Figure 10: Smoothing of true PSD introduces bias. The convolution

flattens peaks and widens the flanks.
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and the error depends on Siv( f0 ). This is only valid if S′′ ( f0 ) ≠ 0 or course.

You can see in Figure 10 how the discrepancy between the true S and

W ∗ S is greatest where the second derivative of the PSD is largest in

magnitude, just as predicted by (8.4).

Now we can proceed to ask for the time-limited taper w(t) that mini-

mizes β [w], just as Slepian minimized C[w]. We omit the details, and

simply note that a similar eigenvalue problem is produced whose eigen-

functions are a family of orthogonal functions, just as the prolate taper

functions are. Notice, that here there is no band-width parameter, like F,

to choose. But an amazing thing happens: to a remarkable degree of

approximation, those orthogonal functions are the sines. In continu-

ous time

φn(t) = 


2

T




½

sin
πnt

T
, 0 ≤ t ≤ T . (8.5)

These simple functions are an orthogonal set that can be used together to

form estimates of the spectrum, and by averaging the statistically inde-

pendent estimates we can reduce variance. The remaining question is,

How many of the φn should be used?

Before answering that question, let us plot the convolving functions

in frequency corresponding to the eigentapers in time. Recall

W n( f ) = |φ̂n( f )|2 . (8.6)

Figure 11: Several convolving kernels for sine tapers.
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We find the following simple result:

W n( f ) =
2n2T

(n +2 fT)2
sinc ( fT −½n)2 . (8.7)

Thus when fT >> n the kernel decays like n2/2π2T3 f 4 times a squared

sine function. The peak of W n( f ) is roughly at f = n/2T for n > 1  and is at

f = 0 when n = 1. These functions are illustrated in Figure 11, best

viewed in color. Unlike the Slepian-Thomson tapers, which attempt to

concentrate inside the bandwidth F, these functions spread out over a

wider and wider frequency band as n increases, because there is no fixed

scale parameter corresponding to F. We obviously have a much poorer

rejection of spectral leakage.

Suppose we consider averaging together K spectral estimates, based

on the first K tapers in (8.5). Then R&S show by integrating (8.4) with

the W n inserted that approximately

|β| =
|S′′ ( f0 )| K 2

24T2
(8.8)

so that the bias increases as the square of the number of tapers included.

On the other hand the variance decreases like 1/K because we are averag-

ing independent estimates We find

var [Ŝ( f0 )] =
S( f0 )2

K
. (8.9)

We would like to keep both of these undesirable properties small, so R&S

suggest looking for the minimum value of a linear combination:

L = β 2 + var [Ŝ( f0 )] (8.10)

which is called the mean square error or MSE in statistics. Here is a

simple calculus problem: What value of K makes L smallest?

L =
S′′ ( f0 )2 K 4

576T4
+

S( f0 )2

K
;

dL

dK
=

S′′ ( f0 )2 K 3

144T4
−

S( f0 )2

K 2
(8.11)

which gives

K opt =




12T2S( f0 )

|S′′ ( f0 )|





2/5

. (8.12)

This formula provides a way of estimating the best number of tapers to

average at each frequency. Where the spectrum is smooth, we take a

lot of tapers and beat down the variance as much as possible; where there

are narrow peaks or troughs, we sacrifice variance for good resolution by

using only a few tapers. There is no need to guess a suitable value for the

bandwidth of smoothing that best suits the spectrum, as required with

Slepian multitapers. There are two problems, however.
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First we don’t really know S or S′′ at any frequency, and so we can-

not calculate K opt; this is a chicken-and-egg problem. We solve it by sim-

ply guessing some value for the number of tapers to be used at all fre-

quencies, as first estimate. The pilot estimate is then used in (8.12).

Since the estimates are noisy, we will need to smooth some more to get a

reasonably reliable approximation for S′′ ; but we know from K opt a local

band-width over which the spectrum should be relatively smooth, so this

provides a guide for the range of smoothing needed. With the new K opt

we find another estimate of S, and the process can be repeated. In prac-

tice things settle down in two or three steps, but there is no proof of con-

vergence that I know of.

The second difficulty is not easily overcome in a pleasing way. The

whole theory depends on S′′ ( f0 ) ≠ 0. When the second derivative vanishes,

the bias calculation is invalid, and the number of tapers predicted by the

theory is infinite. Because the spectral estimates are noisy, S′′ ( f ) passes

through zero quite often just through random variations. At present my

code (called PSD), looks for runawa y growth in K opt and limits the

increase as a function of f . This ad hoc process seems to work quite well,

but it would be better if there were a more defensible theoretical

approach.

There are of course a lot of other details to be worked out in the cre-

ation of a useful, reliable espectral estimate procedure. For example, I

haven’t mentioned prewhitening except in passing: see Section 9 for

more about this useful idea. The sine multitaper approach seems to pro-

vide a very convenient way of performing spectral estimation, because it

doesn’t require the user to guess various parameters, like F or the num-

ber of sections to be averaged, if you use Welch’s method. It is very fast

for a reason I haven’t mentioned yet: Because the tapers are all sine func-

tions, you need only Fourier transform the original time series once!

Unlike every other method, that requires many FTs, here the different

estimates can be made simply by combining the Fourier coefficients found

by the FFT in different ways. While with today’s computers speed is often

not an issue, it is still convenient with very long records to get an answer

in less than a second, while the prolate method makes you wait a lot

longer. The prolates still win if there is a very large dynamic range, or for

really short series, however.
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9. Prewhitening

Most geophysical spectra with large dynamic range are red, meaning that

the energy is concentrated at the low frequencies, often falling as an

inverse power or exponentially. The Slepian-Thomson tapers can provide

excellent suppression of spectral leakage to the higher frequencies, but

they often distort the low-frequency spectrum because of the flattening

due to the (relatively broad) convolution introduced. On the other hand,

the sine-multitapers may do a reasonably good job at the low end, but

spectral leakage can corrupt the higher frequency estimates because the

sines are not very good at leakage protection. One technique particularly

helpful in these circmstances is prewhitening.

The idea, which we have mentioned briefly before (Notes, Chap 3,

Section 2), is to design a really simple filter arranged to have a response

so that upon application to the original record, the output series is nearly

a white process. The original series is filtered in the time domain (usually

with a convolution filter) and a spectrum estimated for that series, then

the effect of the filter is undone in the frequency domain. Here are the

details.

We set up a model in which there are k weights from which the stoc-

ahstic process X n is generated autoregressively from white noise Y n via:

X n = Y n + a1 X n−1 + . . . ak X n−k (9.1)

Given a process X n, we wish to recover the unknown weights ak in this

model: we multiply (9.1) through by X j and take the expectation:

E [X j X n] = E [X jY n] + a1E [X j X n−1] + . . . akE [X j X n−k] (9.2)

Now a truly white noise Y n is uncorrelated with anything except itself at

zero lag, so the first term on the right vanishes. The rest of the terms are

given by autocovariances of the process:

RX ( j − n) =
k

m=1
Σ RX ( j − n + m) am (9.3)

If we perform this on for j − n = 1, 2, . . . k we have a square linear system

of equations for the unknown weights. These are called the Yule-Walker

equations. But wait a minute: we don’t know the RX ( j)s! In a practical

scheme we make a pilot estimate of the PSD SX with a guess for the num-

ber of sine tapers, then take its digital FT for preliminary values of RX ( j)

with which we can solve (9.3). It will not be a large system, since typi-

cally k < 10.

Next we use the weights am to filter the original series X n as fol-

lows: we rearrange (9.1) to give Y n:

Y n = X n −
k

m=1
Σ ak X n−k (9.4)

which applies to X n a simple convolution filter of length k +1. The series
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Y n is called the prewhitened version of the original series X n. If the

idealized model (9.1) were exact, Y n would be a white noise but (9.1) is

only an approximation, maybe not even a very good one. Nonetheless, it

is certain that when the original X n had a red spectrum, the correspond-

ing Y n will have a less severe concentration at low frequency in its PSD,

and then spectral leakage will be a less serious problem.

How is the spectrum SY ( f ) related to SX ( f )? That was answered in

Section 4 of Chapter 2: from (9.4)

SY ( f ) = |â( f )|2 SX ( f ) (9.5)

=



1 −

k

m=1
Σ am e−2πimf





2

SX ( f ) (9.6)

the discrete version of the famous result. So finally, we make a PSD esti-

mate on the prewhitened record and obtain ŜY ( f ), then we rearrange

(9.6) to give the spectral estimate of the original series:

Ŝ X ( f ) =
ŜY ( f )




1 −

k

m=1
Σ am e−2πimf





2
(9.7)

Figure 12: Low end of PSD for Magsat field data.
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We conclude with an example. Let us return to the Magsat total

field magnetic data of Section 5. In Figure 12 we see the lowest

wa venumber portion of the PSD according to two estimates, the prolate

mutitapers with time-bandwidth 10, and the adaptive sine multitaper

method. Both suggest a rather flat PSD near k = 0, which I assert is due

to bias. Notice spectral leakage is apparent in the sine multitaper esti-

mate. Using one of these estimates we find a set of just 4 weights by solv-

ing the Yule-Walker equations, and apply that series as a filter to X . The

results appear in Figure 13, where I’ve plotted the original series and the

prewhitened record. The change is remarkable: with just four weights the

original data series, which is smooth, almost sinusoidal in appearance, is

converted into an almost random series. To the eye it is not a white noise

perhaps, but the advertised ‘‘whitening’’ has clearly been effective. Some-

thing very obvious to the eye is the spike near the beginning of the

prewhitened series, which is followed by several low-amplitude values.

Figure 13: (a) Original time series; (b) Prewhitened series with 4

coefficients; (c) PSD of prewhitened record
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This is apparently a data glitch that has been incompletely edited, some-

thing entirely invisible in the original record. Prewhitening is very good

wa y of inspecting data to look for departures from regularity and station-

arity.

Next we take the sine multitaper spectrum of the prewhitened

record, which is shown on the previous page. The PSD is very far from

white. But the dynamic range, while it is four orders of magnitude, is still

enormously less than the 11 orders of magnitude exhibited by the esti-

mated spectrum of X shown in Figure 9. Finally, we divide the

prewhitened spectrum to form the estimate SY ( f )/|â( f )|2 plotted below.

To show the whole spectrum, which covers a huge range in PSD and fre-

quency, I have used log-log scales now. Observe how the sine multitaper

estimate of the prewhitened series is just as good as the prolate multita-

per estimate in avoiding the spectral leakage from low wavenumbers, but

Figure 14: PSD estimates on a log-log scale.



SPECTRAL ESTIMATION 33

it offers much smaller variance. At the lowest wavenumbers we see a new

peak, of almost 3 orders of magnitude, emerging where the other two esti-

mators gave as a very flat spectrum.


