
GEOPHYSICAL DATA ANALYSIS

Class Notes by Bob Parker

CHAPTER 4: MULTIVARIATE and MULTIDIMENSIONAL SPECTRA

1. Random Data Pairs

In geophysics and every other branch of physical science we encounter time

series in pairs that are related to one another. Examples: the vertical ground

motion, and the output voltage of a seismometer; two components of a vector

field (say the vertical and the horizontal) as the instrument measures values

along a path in space; the topographic height and the observed strength of

gravity as seen along a profile (here time has been replaced by distance); the

north electric field and the east magnetic field at a site. You can easily think

of dozens more yourself. One of the characteristics of the apparently random

geophysical list above is that in every case one can discover a theory capable

of predicting the relationship between the signal pairs, and a practical need

for a data analysis technique to estimate the quantitative behavior. We will

consider both these aspects

First, however, let us briefly consider how pairs of variables are tra-

ditionally analyzed when there is no independent variable, like time,

against which the system is evolving. A first example (from John Rice’s

book Mathematical Statistics and Data Analysis, 2nd ed, Duxbury Press,

1995) concerns breathing resistance in 24 children with cystic fibrosis tab-

ulated as a function of their heights; see Fig 1. We plot this pair of

Figure 1: Scatter plot of medical data.
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parameters as a point on a graph, (called a scatterplot) and if we have

enough data we may see a pattern emerging: very roughly, a taller child

has a lower breathing resistance. In this case there is no theoretical

model, just a statistical tendency. We don’t expect a perfectly linear rela-

tionship, but it would be nice to have a measure of common tendency, and

a test to say if a given sample really exhibits such a tendency or not. (Biol-

ogists and social scientists, who usually lack predictive theories, depend

on this measure a great deal.)

In cases of relations like this we would like to measure the degree of

association of one variable with another. The commonly used one is the

correlation coefficient ρ, or its square. For a pair of random variables

X and Y , jointly distributed we can calculate:

ρ XY =
E [(X −E [X ]) (Y −E [Y ])]

√ var [X ] var [Y ]
(1.1)

where E is the expectation, and var is the variance. That is something

you can calculate for a theoretical distribution like a joint Gaussian. The

numerator you will recognize as your old friend the covariance between

X and Y . A natural estimator of ρ is:

ρ̂ XY = j
Σ (x j − x) (y j − y)



 j
Σ (x j − x)2

k
Σ (yk − y)2





½
(1.2)

where x j and y j are the N data samples and x and y are the sample

means. We can shown that, for both the parameter and its estimator, ρ is

a number lying between −1 and 1. In the N -dimensional space IRN con-

taining the data sample, (1.2) is the inner product between the two sam-

ple vectors, divided by their Euclidean norms. Schwarz’s inequality

(x, y) ≤ ||x|| ||y||, shows that |ρ XY | ≤ 1. The inequality also shows that

ρ is ±1 only if the two variables are perfectly correlated and the scatter-

plot would be a perfect straight line; conversely zero corresponds to no

statistical connection between the two.

In our example I calculate ρ to be −0.2603. Is this significant, or

would a random collection of data pairs commonly come up with a number

as big as this in magnitude? To answer this question we will assume that

X and Y are jointly distributed with a Gaussian law. The theoretical

sampling distribution for ρ̂ in general is very complicated; see Priestley,

Chap 9 for references. But in one case it turns out to be relatively easy to

compute − just the case we have: we test the null hypothesis that the true

ρ is zero. Then (Kendall and Stuart, Advanced Theory of Statistics Vol 2,

p 316) it can be shown that the variable t defined by

t2 =
(N − 2) ρ̂2

XY

1 − ρ̂2
XY

(1.3)
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follows the Student t-distribution with N − 2 degrees of freedom. Thus

we can find the probability that even though the true correlation coeffi-

cient of the distribution is zero, the estimator, by chance gets bigger than

t. Plugging in the numbers for Fig 1 we get t = 1. 264, and from the t

tables, I find the probability of its being this big by chance is about 0.15;

this implies an 85% confidence there is a relationship.

We continue to look at the case of a pair of variables, without an

underlying evolutionary process in time. Often in the physical sciences

we have a reason for believing in a linear relationship between two vari-

ables based on some theory, but that there is a random component affect-

ing one (or both) of the observations. Fig 2 is a geophysical application

from the PhD thesis of Mark Stevenson, who worked for Mark Zumberge.

This plot (from Fig 3 of Stevenson et al., JGR 99, 4875-88, 1994) concerns

gravity survey made on the Vance-Cleft Overlapping Rift Zone on the

Juan de Fuca ridge. The two variables are: (y-axis) the observed gravity

anomaly measured on the seafloor, corrected for the earth’s vertical grav-

ity gradient and the presence of seawater; (x-axis) the depth of the obser-

vation site. For smooth terrain we expect the two to be connected by:

∆g = 2π G ρ c z + c (1.4)

where G is Newton’s gravitational constant and ρ c is the density of the

crust. (What is c in this equation?) Finding the crustal density from the

slope of the line, is known as Nettleton’s Method. The gravity variable

is much less accurately known than the water depth because of instru-

ment shaking due to water currents and the factor that the seafloor den-

sity really isn’t constant; so the fit is not exact (of course). Here the

Figure 2: Sea-floor gravity versus bathymetry.
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appropriate statistical model is not one of a pair of random variables with

joint two-dimensional Gaussian distribution, but rather:

Y j = α x j + β + N j (1.5)

where N j are random variables, ideally distributed identically with zero

mean, uncorrelated and maybe with known variance. (Why did I write Y

in upper case but x lower case?) Though you can calculate the correlation

coefficient here, the graph makes it clear there is a strong relationship

and the real interest centers on estimation of the slope of the line, which

leads to the constant ρ c in (1.4); also we would like a figure for the uncer-

tainty of the estimate. You should recognize a good application of the

least squares method. I won’t go over that material here, since you must

have seen it several times already. However, I want just to mention one

result. The least-squares estimator of the slope is given by:

α̂ = j
Σ (X j − X ) (Y j − Y )

j
Σ (X j − X )2

= ρ̂ XY

σ̂ Y

σ̂ X

. (1.6)

Remember, for uncorrelated random variables, (1.6) has the least variance

of all unbiased linear estimators (Gauss-Markov Theorem). If the vari-

ables are Gaussian in addition, (1.6) is the best unbiased estimator of α ,

period.

Notice that in (1.5) that all the noise is attributed to the y variable,

in the example, the gravity measurement. But what if both coordinates

have random components? Then things get considerably more compli-

cated, depending on what can be assumed about the noise. You will easily

convince yourself that the estimate of the slope is different if one assumes

all the noise is x instead of y. The next simplest case is the one in which

the noise in x and y is taken to be the same. But observe this really only

makes any sense when x and y are measured in the same units; it is

meaningless to say the water depth in meters has the same uncertainty

Figure 2a: Distances used in TLS.
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as the gravity anomaly in m s−2 ! In this special case we perform what is

called a total least squares estimate: we minimize the sum of squares of

the Euclidean distances from the points in the plane to the line.

If the straight line is y = α x + β , the TLS estimator for the intercept

is

β̂ =
1

N j
Σ Y j −

α̂
N j

Σ X j = X̂ − α̂ Ŷ (1.7)

where α̂ is the slope estimate given by the solution of this quadratic equa-

tion:

0 = −c2 + c1α̂ + c2α̂ 2 (1.8)

c2 =
j

Σ(X j − X̂ )(Y j − Ŷ )

c1 =
j

Σ[(X j − X̂ )2 − (Y j − Ŷ )2]

. (1.9)

A quadratic equation usually has two solutions of course; in thus case, one

corresponding to the best fit, the other to the worst.

Exercise

In (1.5) suppose it is known that β = 0, so that the true straight lines runs

through the origin. Solve the problem of estimating the slope α by the

least-squares method. Give an explicit formula like (1.6) for the estima-

tor.

2. Pairs of Stationary Signals

Suppose now we have a pair of signals, possibly related, both of them

assumed to be stationary processes, for example the pair in Fig 3. These

Figure 3: Two components of an aeromagnetic signal.



MULTIVARIATE AND MULTIDIMENSIONAL SPECTRA 6

are the track-parallel X , and vertical Z, magnetic anomaly components as

measured on a high-flying aircraft traveling roughly northward in the

southeastern Pacific over Nazca Plate. There are two ways of thinking

about the power spectrum. The more intuitive one asks us to imagine fil-

tering the time series through a very narrow band filter to isolate a given

frequency component − then the variance of the random signal that

results, normalized by the bandwidth of the filter is the power spectral

density. The corresponding idea for handling pairs of signals is very simi-

lar: imagine taking the Fourier transform of an identical time sample of

each series and selecting a single frequency; do this again and again with

new realizations. Now form a complex scatterplot of the Fourier ampli-

tude of series 1 against 2. Each point on the plot is one Fourier trans-

form. If the series are related, the cloud of points will tend to be elon-

gated. We can compute the correlation coefficient using the complex ver-

sion of (1.2) and taking the absolute value; this is called the coherency

at the selected frequency. You can also form the (complex) slope, and this

is the transfer function between the two signals. To give you the flavor,

I have plotted the imaginary part of F [X ] versus the real part of F [Z] at

one particular wavenumber: see Fig 4. I made separate realizations by

dividing the original series into shorter pieces. You see the strong (nega-

tive) correlation between the two components; we will see why we should

expect this behavior in a moment. To do a proper job of showing you the

complete complex scatterplot I would have to plot every component

against every other (six plots as we omit self-correlations, and the system

is symmetric). But the frequency domain provides a basis for forming

numerical estimates.

Figure 4: Scatter plot of two components of DFTs from Fig 3 at a

fixed wavenumber.
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Before discussing the estimation process, we develop in more detail

the alternative of looking at spectra as Fourier transforms of covariance

functions. Let two real stationary stochastic processes be X1 and X2 both

with zero mean, and define the cross-covariance between them:

R21(s) = cov [X1(t), X2(t + s)] = E [X1(t) X2(t + s)] (2.1)

and in general the covariance matrix is

Rkj(s) = E [X j(t) X k(t + s)], j, k = 1, 2. (2.2)

Notice the (somewhat illogical looking) reversal of the order of the indices

in the function and under the expectation. Because the processes are sta-

tionary, R jk depends only on s even though t appears in the equation.

Also some trivial algebra gives R12(s) = R21(−s).

We have already seen that the power spectral density (PSD) is

defined by taking the Fourier transform of the covariance function, in the

present case choosing the diagonal elements of the matrix. Similarly, we

define the cross-spectrum between X1 and X2 by

S12( f ) = F [R12]( f ) =
∞

−∞
∫ R12(t) e−2π i ft dt . (2.3)

Unlike the PSD, which is always real and nonnegative, the cross-spec-

trum is usually a complex function of frequency. Traditionally the real

and imaginary parts are given names:

S12 = C12 + iQ12 (2.4)

where C12 is called the cospectrum and Q the quadrature spectrum.

Then the coherency spectrum is defined by

γ12 =
|S12|

√ S11 S22

= √ C2
12 + Q2

12

√ S11 S22

. (2.5)

I might add that I personally prefer to use the square of γ12, which is

called the coherence. Equation (2.5) gives the correlation coefficient

between the two signals as a function of frequency. Its equivalence to the

more intuitive definition I gave earlier certainly requires proof; we don’t

have time here for it. Unfortunately, I don’t find Priestley’s (1981) demon-

stration (p 661) particularly convincing, as it depends on the orthogonal

increment representation of the processes.

In addition to the coherence, we define the phase spectrum in the

straightforward way as:

Φ12 = tan−1 


−Q12

C12




. (2.6)

The definition (2.3) is not a good way to estimate the cross spectrum from

data time series, but it is usually the best way to make theoretical calcu-

lations as we will illustrate in short while.
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Exercise

Suppose X1 is a stationary stochastic process of time, and X2 is defined

by X2(t) = X1(t + t0), where t0 is a constant. Find the coherence and phase

spectrum of these two signals. How do these spectra depend on the PSD

of X1?
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3. Estimation of Cross Spectra (Briefly)

Recall the standard modern way of estimating the PSD. It is based on the

idea that the PSD is the limit of a finite Fourier transform. Let us

assume that ∆t = 1, so that the Nyquist frequency f Nyq = ½. The peri-

odogram estimate for the PSD is

P̂ X (m∆ f ) =
N−1

n=0
Σ X ne−2π mn/N

2

, m = 0, 1, , . . . ½N (3.1)

where ∆ f = 1/N , and we have chosen the output frequency samples to

take advantage of the FFT. As you should remember, this estimator has

enormous variance, for white Gaussian noise the standard deviation as

the same as the answer. And for non-white processes, the result can be

strongly biased by spectral leakage. We ameliorate both these defects by

using 3tapers. To improve the variance we must average over indepen-

dent estimates. As you may recall we asserted that if the two tapers un

and vn are orthogonal (so that Σn unvn = 0) then PSD estimates based on

tapered versions of the time series un X n and vn X n are independent esti-

mates of P X . So the modern strategy is to choose a set of mutually

orthogonal tapers with good spectral leakage properties, and then to aver-

age the estimates together. That is multitaper estimation; see Percival

and Walden, (1993), and Riedel and Sidorenko (1995).

Multitaper estimation can and should be used with cross spectra.

The equivalent periodogram estimator for the cross spectrum between X n

and Y n is just

P̂ XY (m∆ f ) = 


N−1

n=0
Σ X ne−2π mn/N 





N−1

n=0
Σ Y ne−2π mn/N 



∗
. (3.2)

Tapered series can be formed and transformed with FFTs, but to preserve

the independence the same taper set must be used for X n and Y n even

though the two processes may be quite different, and the optimal set to

suppress leakage would then be different too. When K sets are used the

variance is reduced by the factor K −1. Estimates of coherence and phase

are usually based on the definitions

γ̂ XY =
|P̂ XY |

√ P̂ X P̂Y

(3.3)

Φ̂XY = tan−1




− Im(P̂ XY )

Re ˆ(P XY )





. (3.4)

These are not unbiased estimators, even when the various spectra and

cross spectra are. If the same tapers are used to estimates P X and PY

then it can be shown that 0 ≤ γ̂ XY ≤ 1, which is desirable; if different sets

are used, the coherence can wander above unity.
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Uncertainty estimates can be formed based on Gaussian statistics,

but the modern way is the Jack-knife estimator, which makes no such

assumptions. One exception is the case when we want to know if the

coherence (the analog of the correlation coefficient) differs significantly

from zero. Priestley (p 706) shows that under the Gaussian assumption

for X n and Y n, if K independent estimates are averaged to find γ̂ XY then

the statistic s defined by

s =
2K γ̂ XY

1 − γ̂ XY

(3.5)

has an F2,4K distribution. This allows a simple test for the hypothesis

that γ XY is zero:

Pr(| ̂γ XY | ≥ z) = (1 − z2)K−1 (3.6)

which is often the most important thing one wishes to know.
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4. Example: Calibration — Convolution plus Noise

We return to time series − functions of a single independent variable, like

time. Consider the calibration of a seismometer, by shaking it with a

‘‘random’’ signal generated by a computer

V = g ∗ I + N . (4.1)

Here V is the output voltage, g is the impulse response of the seis-

mometer (it is the output for a delta function input), I is the input signal,

and N is noise − it’s the result of ordinary ground motion, from which one

cannot isolate the system completely. (See the paper by Berger, et al.,

Bull. Seism. Soc. Am., 69, 271-88, 1979). Fig 5 shows the input (a), and

output from a long-period seismometer, (b). The input is called a random

telegraph signal − it switches randomly between one of two values. If

the transition times were entirely uncorrelated I, would be a white noise

but, because the transitions are allowed only on multiples of 5 data sam-

ples, this is not exactly true here; this input provides a fairly flat spec-

trum, without the large amplitudes; see Fig 6.

Figure 5: Input and output signals for a seismometer undergoing cal-

ibration.
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If we possessed an infinite, noise-free record we could take the FT

with time and obtain:

V̂ = ĝ Î (4.2)

where ĝ is called the transfer function, or simply the frequency

response of the seismometer. At each frequency the output is just the

input multiplied by a complex number, which varies with frequency. Our

task here is to estimate ĝ when V and I are stochastic processes which

we have measured; the noise N is unknown. At first you might think all

you have to do is to take the FFT of the time series, and divide both sides

of (4.2) by Î but, just as a naive technique is poor way of estimating the

power spectrum, this is not the best estimator. Notice that in (4.1) we

have the same least-squares situation as the gravity problem at the begin-

ning: the noise is confined to only one of the signals. For stationary sto-

chastic processes the answer is the analog of (1.6) as you might expect:

ĝ =
SVI

SI

(4.3)

the cross spectrum of V with I divided by the PSD of I. The magnitude

| ĝ| is often called the gain of the system; then we can define the transfer

function in terms of its gain and, through (2.6), its phase.

Here is the proof of (4.3). To make any progress we must assume

that N in (4.1) is uncorrelated with the input I. Then we calculate the

cross-covariance :

RVI (s) = RIV (−s) = E [V (t) I(t − s)] = E [(g ∗ I + N )(t) I(t − s)] (4.4)

= E [(g ∗ I)(t) I(t − s)] (4.5)

= E [∫ dp g( p) I(t − p) I(t − s)] (4.6)

= ∫ dp g( p) RI ( p − s) = ∫ dp g( p) RI (s − p) (4.7)

where in (4.7) we used the definition of RI to evaluate E [I(t − p) I(t − s)],

having moved the expectation under the integral. Now take the Fourier

transform of (4.7), which is by definition the cross spectrum between V

and I:

SVI ( f ) = ∫ ds ∫ dp e−2π isf g( p) RI (s − p) (4.8)

= ∫ dp [∫ ds e−2π i(s− p) f RI (s − p)] e−2π i pf g( p) (4.9)

= SI ( f ) ĝ( f ) .  (4.10)

And this is just (4.3).
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This is not of course a proper derivation of an estimator. What it

shows is that if all the noise is in one of the stationary processes, the

transfer function is given exactly by the ratio of the cross spectrum to the

PSD of the input. It can be shown (see Priestley) that ĝ is an unbiased

estimator when estimates of SVI and SI are used rather than the exact

functions.

Fig 6 shows in (a) the power spectra of input and output of our seis-

mometer example. The random telegraph input has two very low power

Figure 6: Gain and phase characteristics of the seismometer.
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"holes" in its PSD at 0.1 Hz, and again at 0.2 Hz. It is exactly at these

frequencies the estimated phase and gain becomes unreliable, as can be

seen in (b). The gain, here the magnitude of the seismometer frequency

response, is in reality a very smooth function. The estimates are quite

smooth, except in the neighborhood of the input power holes, and for

f >0. 17Hz where ground motion is having an effect. In the bottom panel,

which has a log scale for gain, I have plotted in grey the naive estimate

|V̂ / Î |, a simple ratio of DFTs. Note how very rough that estimate is, and

how strongly biased — the average values are much too large.

The geophysical application most commonly associated with cross

spectral analysis is geomagnetic and magnetotelluric sounding, where

time series of electric and magnetic field components are the basis for

estimates for the impedance of the Earth as a function frequency, from

which electrical conductivity structure can be inferred. One complication

here is that both signals are subject to noise, so that the approach

described for calibration, while often used, is not strictly valid, and alter-

natives to avoid these problems sometimes involve a special experimental

setup called a remote reference station (Gamble, et al., (1979); Egbert and

Booker (1986).

Another important topic in both Earth and planetary sciences is

cross-spectral analysis between topography and gravity data. The trans-

fer function, called the isostatic response, is a  function wavenumber,

not frequency, yields insight into crustal and lithospheric strength. In

this case it is plausible to assert that the gravity data are far more prone

to error than the topography, and so a transfer function estimate like the

one we have just done will be appropriate. See Chapter 5 of Watts (2001)

for many details. However, for this work we may need to work from data

over an area, rather than profiles, and that brings us to our next subject.
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5. Stationary Processes in the Plane

We take a brief look at multidimensional spectra, that is spectra of

functions of several variables. Up to now we considered on a single inde-

pendent variable (usually identified with time). Suppose there is a sta-

tionary processes in the plane (like bathymetry, or the gravity field from

random sources). It is simple to define the autocovariance of X , a signal

in the plane, by following the single-variable recipe:

RX (r) = E [X (s) X (s + r)] (5.1)

for r, s ∈ IR2. Then the two-dimensional power spectral density of X is

just the 2-D Fourier transform of RX as you would expect:

SX (k) = F 2[RX ](k) =
IR2

∫ RX (x) e−2π ik ⋅ x d2x . (5.2)

Quite often we have measurements on a single profile, or a slice thorough

a 2-dimensional random field. How do we collapse the 2-dimensional

spectrum to get the observed profile spectrum? This is exactly what we

have with the aeromagnetic data of Fig 3. We will prove the Slice Theo-

rem for spectra and cross spectra. Then we’ll apply it to magnetic data.

First we state without proof the Slice Theorem for ordinary Fourier

transforms. Given the 2-dimensional Fourier transform of a function f :

f̂ (k) = F 2[ f ](k) (5.3)

we find the 1-dimensional FT of f along the line y = 0 by:

F x[ f (x, 0)](k) =
∞

−∞
∫ dky f̂ (kx, ky) .  (5.4)

In words, we integrate the 2-dimensional Fourier transform in the per-

pendicular direction in the wavenumber domain to get the corresponding

1-dimensional FT.

Exactly the same result holds for power spectra and cross spectra!

We prove it for the PSD. A one-dimensional stationary process U is a

sample on the line xx̂ of the process W in the plane IR2. The autocovari-

ance of W is RW and then the autocovariance of U is

RU (x) = RW (xx̂) = RW (x, 0) .  (5.5)

By definition, the PSD of W is the 2-dimensional Fourier transform of the

autocovariance RW , that is

SW = F 2[RW ] .  (5.6)

Conversely:

RW (x) = F
−1
2 [SW ] =

IR2

∫ d2k e2π ix ⋅ k SW (k) .  (5.7)

Substituting (5.7) into (5.5) gives
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RU (x) =
IR2

∫ d2k e2π ixx̂ ⋅ k SW (k) (5.8)

=
∞

−∞
∫ dkx e2π ikx x

∞

−∞
∫ dky SW (kx, ky) (5.9)

= F
−1
x [

∞

−∞
∫ dky SW (kx, ky)] . (5.10)

And again the PSD of U is the one-dimensional Fourier transform of RU :

SU (k) = F x[F
−1
x [

∞

−∞
∫ dky SW (kx, ky)]] (5.11)

=
∞

−∞
∫ dky SW (kx, ky) .  (5.12)

Equation (5.12) is the Slice Theorem for power spectra. The result is the

same for cross spectra: simply integrate the 2-dimensional cross spectrum

in the perpendicular direction in the wavenumber domain.

Suppose there are two stochastic processes U and V both derived

from a third X via convolution:

U = g ∗ X , V = h ∗ X . (5.13)

How is the cross spectrum SUV related to SX , the PSD of X? The answer,

which takes a few lines of simple algebra is:

SUV = ĝ ⋅ ĥ∗ SX (5.14)

where the hat means Fourier transform. (When a hat decorates a func-

tion it denotes the Fourier transform; on a simple variable, it means a sta-

tistical estimate; I hope this convention does not cause confusion.) This

result is valid for processes of a single variable or in the plane IR2, or

indeed higher dimensions. When g = h, so that U = V , we get the well-

know result for the PSD of U :

SU = | ĝ|2 SX . (5.15)

The generalization of these results to three dimensional space is

quite straightforward and we will not spend time on it. Another, more

interesting generalization is to the sphere. Clearly for geophysics it is

only an approximation to say that the surface of the Earth is a plane; we

can ask what happens if the region is so large that we must account for

curvature, or even larger still, so that the whole surface of the Earth is

the domain of the random process. We will discuss that question later.



MULTIVARIATE AND MULTIDIMENSIONAL SPECTRA 17

A specially important kind of stochastic process in the plane is the

isotropic process, which is one with the property that the autocovari-

ance depends only on |r|, the distance between the two points. Then let

RX (r) = ρ(|r|) . (5.16)

The PSD is as always the Fourier transform of RX and so

SX (k) = F 2[RX ] = σ (|k|) (5.17)

where you will recall that the 2-D FT of a circularly symmetric function

like ρ is another function with circular symmetry. (Here symbol σ is

nothing to do with stanadard error.) The relation between ρ and σ is a

Hankel transform:

σ (k) = H [ρ] =
∞

0

∫ ρ(r) J0(2π kr) 2π r dr (5.18)

and J0(x) is the Bessel function. We have encountered the Hankel trans-

form in Fourier theory. We note that the Hankel transform is its own

inverse: H [ f ] = H
−1[ f ]. When a process in a plane is isotropic it is only

necessary to gather data on a straight profile to construct the PSD,

because the autocovariance along a straight line in any direction is just

the function ρ(x). This allows us to bring in the Slice Theorem again.

Suppose one has observations along a single straight line from

which we can calculate the profile spectrum P X (kx); notice that because

the stochastic process is isotropic, any line across the field can be desig-

nated the x axis. Then we can find the profile PSD in two ways: either as

the one-dimensional FT of the autocovariance:

P x(kx) = F 1[ρ] (5.19)

or by the Slice Theorem:

P X (kx) =
∞

−∞
∫ SX (kx, ky) dky =

∞

−∞
∫ σ (√ k2

x + k2
y) dky (5.20)

In practice, one may have observations on a profile and hence knowledge

of P X , which one would like to convert into the 2-D PSD function σ . The

wa y is clear: we invert (5.19), then apply (5.18) to find σ . In fact the

action of a 1-D FT followed by a Hankel transform can be combined into a

new operation:

σ (k) = H [F
−1
1 [P X (kx)]] = −

1

π

∞

k

∫
dP X

dkx

dkx

√ k2
x − k2

. (5.21)

I omit details of this derivation, which can be found in Bracewell, who

calls (5.21) the Abel transform. Equation (5.21) takes us directly from a

profile PSD to the 2-D PSD function. Equation (5.20) goes the opposite

wa y.
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6. Example: Magnetics over the Ocean

We can put all the 2-D material together for the aeromagnetic signals.

The magnetic field components X and Z are related to V , the scalar mag-

netic potential in the plane at z = 0. Since the potential V is harmonic (it

obeys Laplace’s equation, ∇2V = 0) above the sources, it can be upward

continued from the plane z = 0. You should recall that for wavenumbers

k ∈ IR2

V̂ (k, z) = V̂ (k, 0) e−2π |k|z (6.1)

where V̂ is the FT of V in a plane of constant z:

V̂ (k, z) = F 2[V (x, z)] =
IR2

∫ e−2π ik ⋅ xV (x, z) d2x . (6.2)

Thus knowledge of V on z = 0 is enough to determine V anywhere above

this level, provided the sources all lie below the plane z = 0. If we take

the inverse 2-D FT of (6.1), and use the Convolution Theorem (back-

wards), we find

V (x, z) = V0 ∗ G = G ∗ V0 (6.3)

where V0 = V (x, 0) and

G(x) = F
−1
2 [e−2π |k|z] =

1

2π
z

(z2 + |x|2)3/2
. (6.4)

We need, not the potential, but the vector B, and B = −∇V . From the defi-

nition of convolution it follows that

Bz = Z = −
∂V (x, z)

∂z
= −

∂G

∂z
∗ V0 = GZ ∗ V0 (6.5)

and similarly for the other components.

So far we have been considering ordinary functions for V and Z.

Now suppose that V0 is a stationary stochastic process in the plane z = 0,

a random field. Then from (6.5) so is the vertical field. Suppose the (two-

dimensional) PSD of V0 is SV (k). We calculate the (2-D) PSD of Z in the

standard way, equation (27):

SZ = |ĜZ|2SV (6.6)

where ĜZ is the 2-D FT of GZ . But by (6.4) G is the inverse FT of the

exponential in (6.1), so it follows that

Ĝ(k) = e−2π |k|z (6.7)

ĜZ = −
∂Ĝ

∂z
= 2π |k|e−2π |k|z . (6.8)

In a very similar way we can calculate the spectrum of X = Bx = −∂V /∂x:

Bx = X = −
∂V (x, z)

∂x
= −

∂G

∂x
∗ V0 = G X ∗ V0 (6.9)
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Ĝ X = 2π ikxe−2π |k|z (6.10)

SX = |Ĝ X |2SV . (6.11)

And Y follows in exactly the same way, with

ĜY = 2π ikye−2π |k|z . (6.12)

Notice that the cross spectrum, say between X and Z, as given by (26) is

SXZ = Ĝ X (ĜZ)∗SV . (6.13)

We have here a 2-D system in which the three processes X , Y , Z (which

happen to be three components of a random vector) are each given by dif-

ferent convolutions of a single process V . This means the 3 components of

the random magnetic vector are closely related. For example, because

|k|2 = k2
x + k2

y, it follows that

SZ = SX + SY . (6.14)

This result says that the vertical component of B of a field generated from

random sources is always larger on average than either of the other two.

And now back to that long magnetic profile over Pacific Ocean shown

in part in Fig 3. We have all the pieces to be able to say something inter-

esting. To look at the power and cross spectrum of the profile data we

simply apply the Slice Theorem:

P X (kx) =
∞

−∞
∫ dky

ˆ|G X (k)|2 SV (k) (6.15)

PY (kx) =
∞

−∞
∫ dky

ˆ|GY (k)|2 SV (k) (6.16)

PZ(kx) =
∞

−∞
∫ dky

ˆ|GZ(k)|2 SV (k) (6.17)

P XZ(kx) =
∞

−∞
∫ dky Ĝ X (k) ĜZ(k)∗ SV (k) .  (6.18)

Observe that we have the same relationship between the profile PSDs of

the components as in the 2-D system:

PZ = P X + PY . (6.19)

This relationship has been called the Power Sum Rule. Another thing

to notice in this example is that while ĜZ is real, Ĝ X (and ĜY ) is purely

imaginary. Thus whatever the spectrum is for SV , from (6.12) we see the

phase spectrum between must be exactly π /2 and constant for all kx. This

is a very strong prediction. We’ll return to this in a moment.
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Looking at the one-dimensional spectra and cross spectra of mea-

surements made through a random field of higher dimension is a very

common practice in physical oceanography: the idea that you get a version

that simply integrates over the unexplored directions is taken as obvious

in that field, but this is not yet so in most of geophysics. Finally in this

section, let’s look at the estimated spectra for the data of Fig 7, which

gives all three components (only X and Z were plotted before). This is

part of great circle path flown from Easter Island to Bay St Louis.

Figure 7: Magnetic anomaly on a great circle path across the Pacific

ocean.
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This discussion is based closely on the paper of Parker and O’Brien

JGR, 102, B11, pp 24815-24, 1997. The first interesting plot for us is Fig

8, the PSDs of all three components. Only the lowest tenth of the

wa venumber spectrum are shown, since measurements of the field were

made every 350 meters (What then is the Nyquist wavenumber?). All

spectra fall off steeply, in fact exponentially to a first approximation,

changing slope dramatically at about kx = 0. 3 km−1. Approximate expo-

nential decay like exp (−4π kx z) is expected from (6.15)-(6.17) if SV is fairly

flat. And the slope of the PSDs is about right initially: aircraft height

plus water depth equals 7 + 4 km, so z = 11 km. It is plausible that the

field spectrum falls of faster since SV itself ought be a red spectrum, like

most other geophysical PSDs. But clearly something happens when

kx > 0. 03. Next look at the plus signs; these plot the value of P X + PY .

According to the Power Sum rule (6.19) the pluses should lie on top of the

blue PZ line. Again things go as we might hope until 0. 03 km−1.

Figure 8: PSDs of the three components of the magnetic anomaly

shown in Fig 7.
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For further clues to solving this mystery we look at the cross spectra,

here just at X and Z. In Fig 9 we plot the phase and coherence spectra.

The phase is about 90° for the longer wavelengths although it wanders off

right near kx = 0, which may be an estimation artifact, or a real issue.

The theory we did early predicts the 90° phase for potential fields with

sources below the plane. Like the PSDs this shows that only for

k < 0. 03 km−1 (length wavelength > 33 km) are magnetic signals of crustal

origin.

As O’Brien and I explain in the paper quoted, the cause of the noise

is error in the orientation of the magnetometers. Fig 7 shows that the

anomalies are about 100 nT a fraction of a percent of the main geomag-

netic field, which is over 30,000 nT and it is roughly horizontal pointing

north. When the gyro-stabilized platform shakes, a tiny fraction of this

horizontal field appears on the Z sensor and the other components are

similarly corrupted, though less so; this is indicated clearly in Fig 8. Can

you see that because the main field points upward in the southern hemi-

sphere, the rocking platform causes a signal that is 180° out of phase

between Z and X , just as we see in Fig 9; high coherence is also predicted

by this mechanism.

One lesson from the power and cross spectra is that 90% of the

bandwidth of the record from this Project Magnet data is devoted to noise!

Only signal with wavelength less than 30 km are geophysical, and wiggles

on a smaller scale must not be interpreted as geology. For interpreta-

tional purposes we should filter the traces with a low-pass filter. Indeed

Figure 9: Coherence and phase spectra between X and Z.
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the very longest wavelength signals are also noise: on a flight of such long

duration, the time varying magnetic field appear as long wavelength spa-

tial signals, and these have not been properly corrected. Fig 8 shows the

Y component has more power than the Z near kx = 0, which the Power

Sum rule says can never happen; the improper phase spectrum there also

suggests a problem.
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7. Stationary Processes on a Sphere

The following is one way of approaching the problem. It must be noted

that, as usual in the literature involving spherical harmonics, everyone

feels free to define different normalizations, so factors of π , l, l + 1 and

2l + 1 appear in various places in the papers of various authors.

The proposition is that the statistics of a stationary random process

on the unit sphere, called S2(1), cannot depend on the position r̂. We will

assume that V (r̂), the process has zero mean, so that E [V ] = 0 is obvi-

ously position independent. The second-order statistics are once again

captured by the autocovariance:

R̃V (∆) = cov [V (r̂), V (ŝ)] (7.1)

= E [V (r̂) V (ŝ)] (7.2)

where ∆ is the angle at the center of the sphere between the two unit vec-

tors. On the sphere being independent of location means that every unit

vector is the same as every other, that any reorientation of the sphere

must leave R̃V unaltered. It is convenient to use the cosine of ∆ rather

than ∆ itself in the definition:

RV (cos ∆) = RV (r̂ ⋅ ŝ) = E [V (r̂) V (ŝ)] (7.3)

If this is the autocovariance, what is the corresponding PSD? How do we

decompose a function on a sphere into different wavelength components?

Answer: spherical harmonics! The analog of the relation that the autoco-

variance is the FT of the PSD is the expansion of RV :

RV (r̂ ⋅ ŝ) =
∞

l=0
Σ Sl P l(r̂ ⋅ ŝ) (7.4)

Here Sl is the variance of V in the part of the function with spherical har-

monic degree l. Since P l(1) = 1 we see that

RV (1) = var [V ] =
∞

l=0
Σ Sl (7.5)

This result is the equivalent of the fact that the variance of random

process on a line or in the plane is the area under the PSD. The sequence

Sl is my candidate for the Spherical Power Spectrum.

The inverse of (7.4), since Legendre polynomials are orthogonal is

Sl = (l + ½)

π

0

∫ RV (cosθ ) P l(cosθ ) sinθ dθ (7.6)

= √ (2l + 1)π
S2(1)

∫ RV (ẑ ⋅ ŝ) Y 0
l (ŝ)∗ d2ŝ (7.7)

where the spherical harmonic is normalized to ∫ |Y m
l |2 = ||Y m

l ||
2 = 1.

Equations (7.6) and (7.7) are the analog to the fact that the PSD is the FT

of the autocovariance.
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An alternative definition proceeds as follows: imagine that the sta-

tionary process is written out as a spherical harmonic expansion on S2(1):

V (r̂) =
∞

l=0
Σ

l

m=−l
Σ ClmY m

l (r̂) (7.8)

where Clm must be random complex coefficients. Plug this into (7.3). It

turns out the only way that you can get RV to be independent of the vec-

tors r̂ and ŝ in (7.3) is to say that

cov [Clm, C∗
nk] = 0, unless l = n, and m = k (7.9)

In other words the coefficients in the expansion must be uncorrelated ran-

dom variables. Furthermore, we find that

E [|Clm|2] = σ 2
l (7.10)

independent of the order m. Then from (7.3) and (7.8) we find

RV (r̂ ⋅ ŝ) = E [V (r̂)V (ŝ)] = E [V (r̂)V (ŝ)∗] (7.11)

= E


 l
Σ

m
Σ ClmY m

l (r̂)
n
Σ

k
Σ C∗

nkY k
n(ŝ)∗





(7.12)

=
∞

l=0
Σ

l

m=−l
Σ E [|Clm|2]Y m

l (r̂)Y m
l (ŝ)∗ (7.13)

We used (7.9) to go from (7.12) to (7.13). Now we use the Spherical Har-

monic Addition Formula together with (7.10)

RV (r̂ ⋅ ŝ) =
∞

l=0
Σ (2l + 1)σ 2

l

4π
P l(r̂ ⋅ ŝ) (7.14)

Compare this to (7.4) and we see that

σ 2
l =

4π Sl

2l + 1
(7.15)

The seemingly unnecessary factor of 4π here could be eliminated if we

were willing to use spherical harmonics normalized as ||Y m
l ||

2 = 4π .

The surprising fact is that on a sphere there are only isotropic sta-

tionary processes analogous to those described by equations (5.16-21), and

none corresponding to the more general (5.1).

Spherical power spectra are used to describe the geomagnetic and

gravitational potential fields, and also in seismology and geodynamics to

characterize velocity and temperature structure at a particular radius

within the Earth. One of the most successful uses of the stochastic model

on the sphere has been geomagnetic field over geological time: if the

dipole and a few of the other harmonics are excluded, the remaining field

appears to be spatially stationary and to have a ‘‘white’’ spectrum (Con-

stable and Parker, 1988).
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