
Computing Fourier Transforms Numerically

1. Real Even Functions

Superficially it seems that the numerical calculation of a Fourier trans-

form ought to be quite easy—you just take the FFT of the function, sam-

pled evenly in t. Rather than treating the general case, let us discuss the

simplest situation first. Suppose we want the FT of a real, even function

g(t), whose transform is also real and even. Then

ĝ(f) =
∞

−∞
∫ g(t) e−2πi ft dt (1)

= 2 Re

∞

0

∫ g(t) e−2πi ft dt . (2)

This seems perfectly adapted for approximation by the FFT:

ĝm =
N−1

n=0
Σ gn e−2πimn/N , m = 0, 1, 2, . . . N − 1 (3)

where we can replace the integral by the sum. There are some important

details to get right, if this is to work out. Notice that here the index on a

subscripted variable starts at zero, while in MATLAB it begins at unity; so

be careful in computer code.

First, how rapidly should the function g be sampled in time? We will say

gn = g(n ∆t) . (4)

Roughly we want the highest frequencies in g to be represented in the

sampling. For simple smooth functions, like the Planck formula (Figure

1)

E(k) =
β k3

exp (α k) − 1
(5)

Figure 1.

-2-

Figure 2.

we can see the graph of the function that there is probably no need to

sample more densely than α k = 0. 1 or ∆k = 0. 1/α .

In another common situation the function oscillates as it decays, like the

Bessel function J0(x) we should sample with at least 10 samples in the

dominant period, as shown in Figure 2. We conclude that ∆x = 0. 63. So

if possible, plot the function you want to transform to get an idea of the

frequency content.

The next thing we should estimate is N the number of samples of g(t).

Most functions we need to transform die awa y with large t. If the numeri-

cal FT is to be a reasonable approximation to ĝ the function should be

quite small at the end of the data series. Obviously if the function is still

large at tmax = N ∆t the answer will be inaccurate: if you want your result

to be accurate to a part in 104, it is plausible to insist that

|g(N ∆t)| < max |g| × 10−4. If all you want to do is plot ĝ a part in 103

will certainly suffice.

Let us try this on the Planck formula. When we look only at the exponen-

tial we have exp (α N ∆k) = 103, or α N ∆k = ln 1000 = 6. 9. But this obvi-

ously too small, just by looking at Figure 1. We must take the numerator

k3 into account. Try increasing by a factor of 2: with 13.8 we find

E = 2. 7 ×10−3, so let us say kmax = α N ∆k = 15 and we conclude that

N = 15/ (α ∆k) = 150 a very modest number.

However when we try this on the Bessel function we find a different story.

The magnitude of J0 decays only as √  π/2x and so even for 1 part in 1000

xmax = N ∆x = 6. 4 ×105; we see that N = 106. This is certainly possible,

but if we need a part in a million accuracy, things get out of hand since

then N = 1012. We will return to possible solutions to this problem later.

Let us substitute into (3) to see what we have so far: comparing (3) with

(2) we see we need to write things in terms of t = n ∆t.

-3-

ĝm =
N−1

n=0
Σ g(n∆t) exp

−2πim(n∆t)

N∆t
. (6)

Then if we say the frequency f = m ∆ f , we conclude from the exponential

function that ∆ f = 1/N∆t. Hence the FFT can be written

ĝm =
N−1

n=0
Σ g(n∆t) e−2πi(mDf) (n∆t) . (7)

The terms in the sum now correspond exactly to the factors in the inte-

grand in (2). Next we need to convert the sum to an approximation of the

integral. Recall the Trapezoid Rule

b

a
∫ g(t) dt = ½∆t[g(a) + g(b)] + ∆t

N−1

n=1
Σ g(a + n ∆t) + R . (8)

This differs from (7) in two respects: first we must weight the sum in (7)

by ∆t; second, the first and last terms in the sum in (7) must be halved. If

N is so large that g(N ∆t) may be neglected, we can ignore the discrep-

ancy in the last term. So we conclude that the approximate Fourier inte-

gral for (1) is given by

ĝ(m ∆ f) = 2 ∆t Re(ĝm − ½g(0)) (9)

where ∆ f = 1/(N ∆t). Notice that the frequencies at which the transform

is evaluated are not under our control if we use the FFT: they are dictated

by the rigid form of the FFT and the fact that we must choose ∆t and N to

satisfy essential conditions for accuracy. Of course, one can always make

N larger and ∆t smaller provided that N ∆t exceeds the essential lower

bound, but often ∆ f is found to be much too small, and then the FFT algo-

rithm itself should be replaced with digital Fourier transform whose out-

put frequencies are more flexible.

One last thing before the examples: the FFT of a real vector exhibits a

symmetry about the middle frequency:

ĝm = ˆ(gN−m) * . (10)

That symmetry does not hold for the Fourier integral, and so (9) cannot be

expected to be even approximately correct if f > ½N ∆ f . By the halfway

point in frequency, the sampled sines and cosines are being aliased into

low-frequency versions, and thus the sum ceases to resemble the integral.

So, asserting the symmetry of ĝ(f) for even functions g(t), we should

write (9) as

ĝ(±m ∆ f) = 2 ∆t Re(ĝm − ½g(0)), 0 ≤ m < ½N . (11)

-4-

2. Examples

We start with the Planck formula. It’s convenient to set α = β = 1 in (5).

We can recover the true units by scaling lengths by α and wavenumbers

by 1/α ; for the homework problem α = 2. 62 ×10−6 meters. We decided on

the basis of Figure 1 to set ∆k = 0. 1 and N = 150. Then we generate the

function E and take its FFT and apply (11). The result is a bit disap-

pointing: see Figure 3a. The output vector is mostly close to zero. The

interesting stuff is happening near x = 0. Since it is absolutely certain

that the true Ê does not have sharp corners (why?) we must conclude that

∆x = 1/N∆k, the sampling rate in the output function, is really about ten

times too large! We can blow up the low m portion, so from m = 0 to 10. In

plotxy we can smooth the result with the smooth command, and that’s

Figure 3b. But that’s really not correct, even if it is smooth. The best way

is to decrease ∆x, by increasing N , but leaving ∆k alone. In Figure 3c we

see the correct answer. But observe how, in order to display the interest-

ing portion in enough detail, we had to take the FFT on a series 1500

terms long, then throw awa y 650 of the 750 output values, because they

were essentially all zeros.

Figure 3

-5-

In fact we can get a better interpolation than Figure 3b, because we did

not recognize that the transformed function Ê, like E, itself is even. So

we could spline smooth the rather sparse series if we can set the deriva-

tive at x = 0 to zero. That’s shown dashed in 3b.

Next we turn to our Bessel function problem. Although we found that

N = 106 would get us a part in a thousand, I decided against trying that.

In Figure 4 we see how well we can do when we use (11) with ∆x = 0. 63

and N = 1000. Only the part near the origin has been plotted, because as

before most of the output vector is near zero. In this case we know the

exact transform; it is

F [J0] =







2

(1 − 4π2k2)½
,

0,

|x| < 1/2π

|x| > 1/2π
(12)

This function is plotted in red in the Figure. The results are not too bad,

except for the horrible undershoot near x = 0. 16.

We can understand this phenomenon easily enough by recalling the anal-

ysis of spectral leakage in the PSD. The approximation to the true FT is

obtained by setting to zero values outside the interval (−X , + X), in other

words multiplying the true g by a taper

ψ (x) = box



x

2X




(13)

Then

g̃(k) = F [ψ g] = ψ̂ ∗ ĝ (14)

and we see that the approximate transform is the true one convolved with

the FT of the box, namely

Figure 4.

-6-

ψ̂ (k) = 2X sinc (2kX) (15)

The singular peak at k = 1/2π in the true ĝ of the Bessel function FT is

being leaked into the region. This suggest that the solution to the prob-

lem is to multiply the original function with a taper that forces things to

zero in a smooth manner for large x, and thus replaces the sinc in (15)

with something that spreads peak values far less. I tried the following

taper because it is simple to code, although a prolate would probably be

better:

ψ (x) =







cos2 πx

2X
,

0,

|x| < X

|x| ≥ X
(16)

for which the transform is

ψ̂ (k) =
X sinc (2kX)

1 − 4k2 X 2
(17)

This transform decreases like k−3 rather than as k−1 for the untapered

function.

Multiplying the Bessel function by the taper in (16) and then applying

(11) yields remarkable improvement. The new approximation is so good

that it is useless plotting the new result on the same graph as the correct

transform because they are too similar. So in Figure 5 we plot the errors.

In blue we see the absolute error in the FT of the tapered function, in

light red that of the original approximation. There is thousand-fold

improvement over most of the plotted range. Admittedly the absolute

error rises near the singularity, and so if high accuracy were needed there,

we would probably have to go to a prolate spheroidal taper, or perhaps

some other completely different approach.

Figure 5.

-7-

3. Slightly more General Functions

The analysis so far has treated real even functions. Little of consequence

arises when we allow g(t) to be a more general form. If g(t) is real and

odd, we can replace (11) with

ĝ(±m ∆ f) = ±2i ∆t Im(ĝm), 0 ≤ m < ½N . (18)

The same taper should be used for slowly decaying odd functions as even

ones.

Allowing a function that is neither even nor odd requires some reformula-

tion, but can of course be handled by transforming the two functions:

ge(t) = g(t) + g(−t); go = g(t) − g(−t) (19)

then reassembling after transforming with (11) and (18):

ĝ(f) = ½(ĝe(f) + ĝo(f)) (20)

We’ll stop there, leaving the student to work out the extension to complex

functions.

