
6. ELECTROMAGNETIC INDUCTION IN EARTH’S CRUST AND MANTLE

In the late 19th century Schuster discovered that a minor part of the diurnal variation field originated within the earth:

this part of the variation is due to eddy currents induced within the conducting earth by the larger external field. The

response of Earth to time variations in the externally generated geomagnetic field can be interpreted in terms of electrical

conductivity variations with depth. The estimation of geomagnetic response functions and their interpretation in terms of

mantle electrical conductivity structure dates from the end of the last century.

There are two different approaches: magnetotelluric sounding and geomagnetic deep sounding. The first uses relatively

high frequency variations (sometimes as high as 1 kHz) and requires the measurement of electric as well as magnetic

fields; it is suitable mainly for shallow structures, in the upper crust or above. As the name suggests the magnetic sounding

employs only magnetic fields usually measured by arrays of instruments, for probing the mantle.

6:1 Skin Depth

We shall ignore magnetic permeability and electric polarizations, fairly good approximations in the deep crust and mantle.

Then the equations we must work with are the same as those we studied in 4.3, derived from pre-Maxwell’s equations in a

stationary conductor; we get the vector diffusion equation for B. There are three differences in the approach here. First, we

cannot so readily ignore the boundary conditions, which in our discussion of the core had no major effect on the physics.

The interface of the conductor with the insulating atmosphere is critical because it is there that we make our measurements.

The second, perhaps slightly related, question concerns the temporal behavior of the magnetic field, which we now think

of as typically periodic, not exponentially decaying with time. Finally, we cannot treat the conductor as uniform for any

but the most superficial analysis because in the mantle alone σ increases by at least four orders of magnitude.

Despite the last remark, we will perform a simple study of a uniform conductor. In our present problem energy is

being supplied by a fluctuating external field, created above the atmosphere by the solar wind and its interplay with the

magnetosphere. So we write (118), the vector diffusion equation

∇2B = µ0σ∂tB. (172)

Later we will return to spatially variable σ, but to get started we will make σ constant. We erect a traditional Cartesian

coordinate system with z positive downward. Then above ground, z < 0, the atmosphere is an insulator; below in

z > 0, is a uniformly conducting halfspace with conductivity σ. The wavelengths of the external fields are very long (the

ring current is typically at 10 Earth-radii) and so for a local problem we may consider a uniform magnetic field in the

atmosphere, in the x direction, varying in time as eiωt:

B = x̂B0eiωt, z ≤ 0. (173)

Below ground, to match continuity at z = 0, we have a horizontal field too, but it can vary in the z direction:

B = x̂b(z)eiωt, z ≥ 0. (174)
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Plugging (174) into (172) gives

iωµ0σx̂b(z)eiωt = x̂eiωt d
2b

dz2 (175)

or

d2b

dz2 = iωµ0σb(z). (176)

Figure 6.1.1

This is the simplest second-order ordinary differential equation (it is just y′′ = k2y dressed up), and its general solution is

b(z) = Ae(1+i)z/z0 + Be−(1+i)z/z0 (177)

where

z0 =
√

2/ωµ0σ = 1/
√
πµ0fσ. (178)

The first term in (177) is a growing (and oscillating) exponential function, a term that increases with depth: this term is

analogous to the magnetic fields of internal origin we saw in the ordinary SH expansion. Since the source of the energy

for the system is above ground, we conclude that A = 0. The remaining term dies away exponentially with depth, and the

characteristic e-folding scale is z0 which is the skin depth. Matching with the atmospheric field at z = 0 gives us

B(z) = x̂B0e−z/z0 [cosz/z0 − isinz/z0]. (179)
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It is easily seen from (178) that the high-frequency variations correspond to very shallow disturbances below ground, while

the long period fields penetrate more deeply. You will easily verify that both the electric field and electric currents (both

horizontal, in the y direction) fall off at the same rate as the magnetic field.

Table of Skin Depths

material σ, S/m 1 year 1 month 1 day 1 hour 1 sec 1 ms

core 3× 105 4 km 770 m 200 m 40 m 71 cm 23 mm

L. mantle 10 900 km 170 km 46 km 9 km 160 m 5 m

seawater 3.4 1500 km 300 km 80 km 16 km 270 m 9 m

sediments 0.1 9000 km 1700 km 460 km 95 km 1.6 km 50 m

U. mantle 0.001 104 km 104 km 4600 km 950 km 16 km 500 m

igneous 1× 10−5 105 km 105 km 104 km 9500 km 160 km 5 km

The table shows skin depths for a variety of typical Earth environments and a large range of frequencies. The first line

shows that for practical sounding the core is effectively a perfect conductor into which the external magnetic field does

not penetrate. The first column shows that 1-year variations (which are not the lowest frequency external fields – there

is an 11-year cycle associated with solar sunspot activity) can penetrate into the lower mantle and even to the bottom of

the mantle. The very large range of conductivities found in the crust points to the need for a corresponding large range of

frequencies in electromagnetic sounding of that region.

6:2 Variable σ – Magnetotelluric Sounding

As we already noted, the magnetotelluric (MT) method relies on simultaneous measurements of time series of the electric

and magnetic fields at the surface. The traditional development, which we will follow, works with the electric field E

rather than with B. As in the previous section we use a flat-Earth approximation and a uniform exciting field above the

ground; the only difference is that now the conductivity is allowed to vary with z. The idealized experimental arrangement

to measure two horizontal components, Bx and Ey at a single site. We will see in a moment that if the ground is truly

vertically stratified the electric and magnetic fields will be mutually perpendicular. Then think of the magnetic field as

causing eddy currents in the ground, currents that are evident from the electric fields seen at the surface. The governing

equations are linear, and so a periodic magnetic field with frequency f excites currents and a responding electric field

at the same frequency. In the real world the fluctuations of magnetosphere are far from sinusoidal, but that difficulty is

overcome by Fourier transforming the actual magnetic and electric time series, thereby isolating a particular frequency

by extracting a particular Fourier component. Fourier decomposition is done at a series of frequencies motivated by the

skin-depth analysis: the long-period variations penetrate deep into the ground and give some kind of average measure of

the deep conductivity, while the short-period energy probes the near-surface structure.

Since the amplitude of the source field is of no interest to us in this problem, our objective must be to find a measure
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that removes dependency on properties of the source. In magnetotelluric sounding one divides the electric field complex

Fourier amplitude at a given frequency, by the complex amplitude of the magnetic field. The resulting complex number

carries the electromagnetic response of the ground; it is complex because the currents induced into the ground lag behind

the forcing magnetic field, and the phase lag is contained in the complex response, as well as the amplitude. Let us analyze

the simplest physical system.

We assume all the fields vary periodically in time as eiωt; then we write two of the pre-Maxwell equations and Ohm’s law

∇× E = −iωB (180)

∇× B = µ0J (181)

J = σE. (182)

We take the curl of (180), then substitute from(181) and (182):

∇×∇× E = −iωµ0σE. (183)

In the geometry of the previous section nothing varies in the x or y directions, and that remains true here also. We look

for solutions in this form, with variations in the z direction only. Again we set the B field in the x̂ direction. Then it

follows from (181) that the vectors J and hence E (through Ohm’s law) have no x or z components; they are vectors in

the y direction. Thus ∇ · E = ∂yEy; but there is no gradient in y and so we must have that ∇ · E = 0. Hence the familiar

vector identity shows that∇×∇×E = −∇2E; from this, bearing in mind there are no x or y gradients, we conclude that

(183) simplifies to

∂2
zEy = iωµ0σEy (185)

which is an ordinary differential equation governing Ey . We will concentrate on solving this equation. To find Bx we use

(180)

Bx =
1
iω
∂zEy. (186)

In the previous section we obtained one boundary condition from the fact that of two linearly independent solutions, one

grows with depth. That works here too, but particularly for numerical solutions, a boundary condition applied at z = ∞

is awkward. It is easier to work in a system with finite z extent; then a natural boundary condition is to set Ey = 0 at the

base, which we will put at z = h. Physically this is equivalent to placing a perfect conductor there; a small amount of

energy does flow upward now – it is the energy reflected back from the perfect conductor. Obviously if h is many skin

depths (at the lowest frequency), solutions to the finite problem will be indistinguishable from those in a halfspace.

To get the second boundary condition recall that the measurements we will be using are normalized by the source field. In

fact a common type of measurement is the magnetotelluric admittance function, defined by

c = −
Ey(0)

iωBx(0)
= −

Ey(0)
E ′y(0)

(187)
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where the prime means derivative on z. Recall that Ey(0) and Bx(0) are complex functions of frequency, derived from the

field time series by Fourier analysis. Thus (187) shows that c is a complex function of frequency available from observation,

and it is also computable from a model. We can solve (185) with a conductivity profile σ choosing an arbitrary nonzero

value for Ey at z = 0; whatever value is used for the top boundary condition, disappears in the normalization performed

in (187). Alternatively, and more precisely, c = Ey(0) is found by solving (185) with the boundary conditions E ′y(0) = −1

and Ey(h) = 0.

This prescription allows us to compare observed values of c with predictions from a model σ, and then of course we can

attempt to adjust the model until its predictions match the measurements: this is another example of an inverse problem.

After the magnetic annihilator and the equivalent source theorem we have become used to the situation where having good

agreement between a model and data does not guarantee any degree of approximation to the true structure in the Earth.

However, in this case there is a uniqueness theorem – a function σ(z) that achieves exact matching of c for all ω is the only

possible solution.

There is an alternative to the admittance which provides some insight into the Earth’s response. We ask, How does c

behave over a uniform halfspace? You will readily verify that, when σ = σ0 =constant,

c(ω) =
1− i√
2ωµ0σ0

=
1
2
z0(1− i) (188)

where you may recall z0 is the skin depth in (178). Thus the magnitude of the admittance |c(ω)| is 1/
√

2 = 0.707 times

the skin depth. Approximating the system as though it were a uniform halfspace, we can calculate its effective resistivity

directly from (188), a quantity called the apparent resistivity:

ρa = ωµ0|c(ω)|2. (189)

By plotting
√

2|c| on the depth axis and ρa as a resistivity, we can obtain a very crude picture of the electrical structure of

the ground directly from admittance data.

As a method of model construction the use of apparent resistivity is obviously too primitive. The MT problem in one

dimension is probably the best-understood nonlinear inverse problem in geophysics. We could devote a whole quarter to

exploring the various approaches. For one powerful technique see Chapter 5 of my book, Geophysical Inverse Theory.

Exercise:

Solve (185) for a non-constant function σ of your choice. Plot c and ρa as functions of frequency and then plot

ρa against
√

2|c|; also plot 1/σ(z) on the second plot.

6:3 Global Electromagnetic Sounding - Results

In the huge frequency range of 3× 10−8 to 0.001 Hz, corresponding to periods of one year to 15 minutes, the fluctuating

geomagnetic field at the Earth’s surface is driven by currents circulating within the magnetosphere, a giant loop called the
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ring current. The main constituent is a small westward drift of protons whose velocity direction at any instant is mainly

north or south as the particles bounce between mirror points at high latitudes. To an observer on the Earth’s surface the

field appears to be almost uniform, or a Y 0
1 spherical harmonic in the external potential (with the z coordinate aligned with

the main dipole). When a radially stratified conductor is subjected to a varying uniform field, the toroidal currents that

flow have a Y 0
1 geometry, and the internally generated response is Y 0

1 also. For a radially stratified conductor, an externally

generated field with Y m
l geometry produces an internal part with the same symmetry. The ratio of the internal to external

parts of the SH expansion at a particular frequency can be used as an electromagnetic response measure as we will now

sketch.

Considering only axisymmetric fields, those with m = 0, we write the SH expansion:

Ψ(r, θ) = a
∑
l

[al
(
r

a

)l
+ bl

(
a

r

)l+1

]Pl(cosθ) (190)

where al and bl are the external and internal Gauss coefficients for some frequency ω. As we have seen it is possible to

obtain al, bl by Fourier analysis of surface observatory time series The complex ratio Ql = bl/al is a response measure

sensitivity to the Earth’s conductivity. Weidelt (Zeitschrift für Geophysik, 38, pp 257-89, 1972) showed that Ql could be

mapped into a function that is the 1-dimensional admittance of an equivalent flat-Earth conductor with

c =
a

l(l + 1)
l − (l + 1)Ql

1 + Ql
. (191)

This response measure has become popular. Constable (J. Geomag, Geoelec., 45, pp 707-28, 1993) has performed an

analysis of world-wide data in this form. Figure 6.3.1 shows the global admittance over the period range 3 days to half a

year. The next figure, Figure 6.3.2, shows a range of models compatible with these admittances. Here is the caption for

this figure, quoting from Constable’s paper: Curve 1 has the minimum 2-norm of the first derivative of log σ vs log depth;

curve 2 the minimum-norm of second derivative. Curve 3 is the same as 1 but with the penalty on the derivative relaxed

at 660 km, and curve 4 is the same as 3 except with a prejudice for 4 × 10−3 S/m applied between 200 and 410 km. All

models terminate with an infinite conductor at 3,000 km. measurements of lower mantle materials by Shankland: pw =

perovskite plus wustite, p=perovskite, both with 11% iron.
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Figure 6.3.2

Figure 6.3.1
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