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Annex to Chapter 3 of GIT

Distribution of the Misfit Norm

Here is a short addendum to the discussion of misfit in Chapter 3 of GIT.

We wish to use a norm to measure the misfit between the predictions of

our model and the measured data vector d ∈ IRN . Initially we will

assume that the noise in the observations is normally distributed, the

components of the noise vector being iid N (0, σ 2). The situation is illus-

trated below for N = 3, the dots representing a large number of indepen-

dent measurements, each with its own random error attached to the true

data vector. Given this assumption, how large should the misfit be when

we use the ordinary 2-norm? The squared length of a random vector of iid

normal components,

||X||
2 = X 2

1 + X 2
2 + . . . + X 2

N (1)

is distributed as the classical χ 2
N distribution scaled by the variance of the

noise, σ 2. It is easy to see that the average, or expected value, of the

squared norm is just Nσ 2, just the sum of the variances in (1), since each

component is independent of the the others. So

E [||X ]]2] = Nσ 2 . (2)

Less obvious is the result that

var [||X||
2
] = 2Nσ 4 or σ χ 2 = σ 2√  2N . (3)

This means as N , the number data, grows large, the relative width of the

distribution gets narrower.
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We use the statistical theory in the following way: We ask for a toler-

ance T such that the actual error produced by random noise will be less

than T with probability P, where P is a value like 0.5 or, if we are feeling

cautious, 0.95 say. If we choose 0.5 we are saying that the tolerance will

be met about half the time in hypothetical repeated experiments; with

0.95 the actual error will be larger than the assigned misfit only 5% of the

time. Larger values of T allow bigger misfits between the observations

and the model, and risk generation of over-simplified, smooth models.

Conversely, T too small risks production of models that are too complex.

In practice, the difference between solutions where P has been chosen to

0.5 and those with P = 0. 95 is not very great.

If we stick with zero-mean Gaussian noise, the first generalization

beyond iid components in the noise is to allow different variances for each

component. Then we can scale the measurements by dividing each obser-

vation by its standard error. The associated error is a standardized ran-

dom variable Y j = X j /σ j . This variable has zero mean and unit variance.

We would write Y j ± 1. Then
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= Y 2
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N (5)

where Σ = diag (σ1, σ2, . . . σ N ). So now we choose a tolerance for ||Σ−1 X||

just as before.

The next generalization is to allow the noise to be correlated with

known covariance matrix C ∈ IRN×N . This means that
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cov[X j , X k] = E [X j X k] = C jk . (6)

We find that the following quadratic form has the chi-squared distribu-

tion:

X T C−1 X ˜ χ 2
N . (7)

Because C is always positive definite the quadratic form is the square of a

valid norm on IRN . In my experience the situation in which C is known,

or even only roughly estimated, for a real geophysical data set is very

rare.

The three types of Gaussian noise, iid noise, uncorrelated Gaussian

noise, or correlated noise, can all be treated in the same general way by

demanding that

||A [Θ(m) − d]||
2 ≤ T2 (8)

where Θ(m) gives the prediction of the data vector d from the model m,

and A ∈ IRN×N is a square matrix: either I/σ , Σ−1, or L−1 where C = L LT

is the Cholesky factorization of a positive definite matrix, briefly described

in Section 7 of the Supplementary Notes. In (8) T is determined by the

using the chi-squared distribution to choose a probability level for the

validity of the inequality. Roughly speaking for large N , we find T2 = N ,

corresponds to P = 0. 5, and T2 = N + 2√  2N , gives P = 0. 977. In MATLAB

you can use the function chi2inv which gives

T2 = chi2inv(P, N )


