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Supplementary Notes

1. Introduction

In geophysics we are often faced with the following situation. We have

measurements made at the surface of the Earth of some quantity, like the

magnetic field, or some seismic waveforms, and we want to know some

property of the ground under the place where the data were measure.

Furthermore, the physics is well understood, and if the property we are

seeking were accurately known, we would be able to reconstruct quite

accurately the observations that we have taken. Now we wish to infer the

unknown property from the measurements. This is the typical geophysi-

cal inverse problem. It is called an inverse problem, because it reverses

the process of predicting the values of the measurements, which is called

the forward problem. The inverse problem is always more difficult than

the forward problem; in fact we have to assume that the forward problem

is completely under control before we can even begin to think about the

inverse problem, and of course there are plenty of geophysical systems

where the forward problem is still incompletely understood, such as in the

geodynamo problem, or the problem of earthquake fault dynamics.

Why is the inverse problem more difficult? There are mathematical

reasons why recovering unknown functions that appear as factors in dif-

ferential equations is a complicated business, but the practical issue is

less esoteric: the measurements are finite in number and of limited preci-

sion, but the unknown property is a function of position, and requires in

principle infinitely many parameters to describe it. We are always faced

with the problem of nonuniqueness: more than one solution can reproduce

the data in hand. What can we do?

The most obvious response is to artificially complete the data, by

interpolating, filling in the gaps somehow. Then in some circumstances it

may be possible to prove a uniqueness theorem, which states that only

one model corresponds to each complete data set. When this can be done

(which may be hard) you might think the difficulties have been conquered,

but that turns out not to be true. Most geophysical inverse problems are

ill-posed in the sense that they are unstable: then an infinitesimal pertur-

bation of a special kind in the data can result in a finite change in the

model. As a consequence the details of the interpolation process used to

complete the data are not irrelevant details as one would wish, but they

can control gross features of the answer, in contrast to the forward prob-

lem, where it is invariably the case that the solution is not only unique, it

is stable too.

Another strategy, more commonly used in the past before the advent

of larger computers, is to drastically oversimplify the model, for example,
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by claiming the unknown structure consists of a small number of layers or

zones within which the unknown property is uniform. If there are good

geological reasons for doing this, it is still a viable option, but when there

is no evidence for this arrangement, even if the simplified model can be

made to match the data (and usually it cannot), the inherent nonunique-

ness means we are uncertain of the significance of our solution. None-the-

less geometrical simplification is powerful tool, and often it is the only

wa y to extract useful information. For example, reduction of two- or

three-dimensional variations to one dimension may often be a reasonable

approximation. The major features of a system can be captured by the

assumption that the property varies only with depth, or radius in a spher-

ical Earth, or horizontally.

Clearly if we assume, for example, that electrical conductivity varies

only with depth, we are looking for a simple model. The next strategy

takes the idea of seeking simplicity explicit while allowing as much com-

plexity as necessary: this is called regularization. Here, instead of simpli-

fying the model by reducing its degrees of freedom, we ask for the sim-

plest model consistent with observation. Obviously simplicity can be

defined in various ways, but as we will see, the idea is usually to reduce

the wiggliness, or roughness in the solution as far as possible. Unstable

problems manifest themselves by the introduction of short wavelength

oscillations, often of large amplitude, that are not required by the data,

but appear because of minor imperfections in the measurements or even

because of numerical round-off in the finite-precision computer calcula-

tions. By choosing from among the family of models the one with the least

roughness, we avoid as far as possible being deceived that there are

‘‘interesting’’ features in the ground, that are in fact accidental. Regular-

ization is today a completely commonplace strategy in inverse theory.

But even after we have obtained the ‘‘simplest possible’’ model by

regularization, what do we know with certainty about the Earth? Geo-

physicists are lamentably quick to assume that the properties of the regu-

larized solution are properties of the true Earth, but that is not guaran-

teed. If we want to be mathematically rigorous, not a lot is known about

the question except for the so-called linear inverse problems. For mea-

surements of a single number, we expect to be able to assign an uncer-

tainty, usually an estimate of the standard error derived from statistics:

for example, a = 6371. 01 ± 0. 02 km. Why can’t we just assign a similar

uncertainty to the solution at every point in the model? That seems very

reasonable, at first. But, unless we are willing to make other assumptions

about the model, assumptions not contained in the measurements, such

uncertainties cannot be derived from the data. The reason for this is that

it is always possible for a very thin layer to be present, with huge con-

trasts in value, without making an observable perturbation to the obser-

vations. Such a model is therefore consistent with the data, and is in the

set of all solutions to the inverse problem. At any point, the allowed devi-

ations can be arbitrarily large and so we cannot (from the measurements
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alone) ascribe a point-wise uncertainty.

One solution to this dilemma is to say we are never interested in the

model value at a point, only its average value over some region. This is a

practical matter: in well logs we see large oscillations in properties that

we could never expect to match with models based on surface measure-

ments like seismics or magnetics, and so we are always content if the seis-

mic model matches a smoothed version of the well-log record. The uncer-

tainty in a solution may be limited if we specify an averaging scale. That

is the basis for the resolution available in a solution, something we will

spend some time on. Averaging over a scale can be useful in its own right

and even applies to nonlinear problems; see Medin, Parker, and Consta-

ble, 2007. Another idea, hinted at already, is to assume some reasonable

model property as an additional constraint. For example, if we can plausi-

bly assert that conductivity must increase with depth because of increas-

ing temperature, then that eliminates the very possibility of a thin layer;

with this assumption point-wise uncertainties can be computed. See

Stark and Parker, 1987. Another popular assumption (but not my

favorite) is to assign a probabilistic framework to the problem: in my opin-

ion too much must be assumed (such as Gaussian statistics and a known

autocovariance function) without any real justification.

A word on notation. Equations of these Supplementary Notes begin

anew at (1) in each numbered section. When I refer to equation outside

the current section I will use the form 5(2), which means section 5, equa-

tion number (2). When I refer to an equation Geophysical Inverse Theory

(GIT), I will use the form 2.05(13), which means section 2.05 in Chapter 2,

equation (13).
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2. An Illustration

To give you an idea of the sort of thing we will encounter, here is a seem-

ingly simple, and to some familiar, geophysical problem that has attracted

the attention of marine geologists and geophysicists for 40 years. A

seamount is a marine volcano, which can be formed at a ridge or in the

middle of a plate. Most seamounts are strongly magnetic, and they pro-

duce a magnetic anomaly at the sea surface that is easy to observe. A

seamount is depicted below in Figure 2.1, and its magnetic anomaly is

shown schematically in Figure 2.2. We would like to deduce the internal

magnetization vector for the seamount, and in particular the direction of

magnetization, because this vector gives paleomagnetic information about

the motion of the plate since the time of formation of the volcano − most

seamounts form quickly, so the magnetization vector can be used as a

kind of snapshot of the paleomagnetic latitude.

Let us first solve the forward problem. The magnetic anomaly is the

magnetic field remaining after the main geomagnetic field has been

removed, which can be done fairly accurately using satellite models of the

longest wavelength fields. The magnetic field due to the seamount is

Figure 2.1: Model bathymetry of seamount LR148.8W (48.2°S, 148.8°

W). Each square in the base is 5 km on a side and the arrow points

north.
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given by

∆B(r) =
V

∫ G(s, r) ⋅ M(s) d3s (1)

where M is the magnetization vector at the point s within the seamount

V and the vector valued function G is given by

G(s, r) =
µ0

4π
B̂0 ⋅ ∇ ∇

1

|r − s|
(2)

where ∇ acts on s, and B̂0 is a known constant unit vector and

µ0 = 4π ×10−7Hm−1 = 100 nT m A−1 the permittivity of free space in SI

units. All the grad operators here act on the coordinate s. Equations

(1)-(2) just state that the observed field at r is the sum of the fields from

all the elementary dipoles within V . If we knew M, which is just the den-

sity of dipole moments, we could compute ∆B from (1) and (2), which

means the forward problem has been solved.

The inverse problem is to discover M from measurements of ∆B.

Figure 2.2 shows that the actual measurements, which were taken by a

Scripps Thomas Washington in 1984. Notice that data are collected on an

irregular profile. While in reality there are only a few hundred values on

∆B on the profile, let us pretend we know ∆B everywhere on the ocean

surface, and that we know it without error. Surely then we would be in

position to determine M. But that turns out to be untrue, because there is

Figure 2.2: Ship track and magnetic anomaly over the seamount

LR148.8W.
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no uniqueness theorem for this inverse problem, even when perfect data

like these are available. We demonstrate the nonuniqueness with some

simple vector calculus. First rewrite (1) as

∆B(r) =
V

∫ ∇ g ⋅ M(s) d3s (3)

where

g(s, r) =
µ0

4π
B̂0 ⋅ ∇

1

|r − s|
(4)

which is OK because B̂0 is constant. Next consider a magnetization vec-

tor inside V given by m = ∇ f where f is some smooth function. Then (3)

becomes

∆B(r) =
V

∫ ∇ g ⋅ ∇ f d3s (5)

=
V

∫ [∇ ⋅ ( f ∇ g) − f ∇ 2 g] d3s (6)

where I have used the very useful vector identity:

∇ ⋅ ( f V) = ∇ f ⋅ V + f ∇ ⋅ V. But it is easily seen that ∇ 2 g = 0: it is the

Laplacian of 1/R, the potential of a point charge, which vanishes except at

the point r; since the observation site is never inside V , it follows that the

second term in the integral in (6) vanishes. Next we apply Gauss’s Diver-

gence Theorem to the other term:

∆B(r) =
V

∫ ∇ ⋅ ( f ∇ g) d3s =
∂V

∫ f n̂ ⋅ ∇ g d2s (7)

where n̂ is the outward facing normal to the volume V , and ∂V denotes

the surface of V . Suppose now I choose any smooth function f (s) that

vanishes on ∂V . We see from (7) that the magnetic anomaly ∆B due to a

magnetization m = ∇ f vanishes identically outside V .

The consequences of this result are that whatever the true magneti-

zation Mtrue may be, I can add a magnetization function like m to it to

form

M = Mtrue + m (8)

and the new magnetization distribution will match the data just as well

as Mtrue. From (1):

∆B =
V

∫ [G ⋅ [Mtrue + m] d3s (9)

=
V

∫ G ⋅ Mtrued3s +
V

∫ G ⋅ m d3s =
V

∫ G ⋅ Mtrued3s +
V

∫ G ⋅ ∇ f d3s (10)
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=
V

∫ G ⋅ Mtrued3s + 0 .  (11)

Thus, from the field observations, there is no way to distinguish between

the true magnetization and any member of an infinitely large family of

alternatives. The magnetization inverse problem does not have a unique

solution even with perfect data. The magnetization m is called, rather

dramatically, a magnetic annihilator for this problem.

The first answer to the dilemma of nonuniqueness was the Drastic

Simplification strategy, introduced for the seamount problem in 1962

(Vacquier, 1962), and still in widespread use today! It is simply asserted

that within V the magnetization is uniform, in other words, M(s) is not a

function of position at all, but a constant vector. Then there are exactly

three unknowns, the x, y and z components, instead of infinitely many,

quite a reduction. In the 1960s there was no compelling evidence to con-

tradict this simple model, but now we know it is wide of the mark. As

various seamounts were surveyed magnetically it quickly became clear

that the uniform magnetization model was incapable of matching the

data, but as I said, people continue to use it to infer paleopoles to this day.

Regularization in this problem (Parker, et al., 1987) takes the follow-

ing form. We write the magnetization distribution as the sum of two

terms:

M(s) = U + R(s) (12)

where U is a constant vector, and R varies with s; obviously any M can

written this way. To regularize the inverse problem, we ask for the model

that makes R as small as possible, in other words, we look for the most

nearly uniform model that fits the observations. Now we can always

match the measurements, and obtain a vector U for the uniform part. We

have constructed a regularized solution, the kind of thing done all the

time in seismic tomography, and surface wave inversion, and magnetotel-

luric sounding, and on and on. But how reliable is vector U, which is the

geologically significant product of the calculation? As we will see, in a lin-

ear problem like this, U is really still completely undetermined, unless we

are willing to make some further assumptions, or place additional restric-

tions on M. The information cannot come from observations of ∆B, which

as we have seen by themselves leave a huge amount of ambiguity.

There are several ways we can limit the ambiguity. One approach is

to say that we know based on samples of rocks from the seafloor and shal-

low drill holes in marine basalts that the magnitude of the magnetization

||M|| is limited in a way we would be willing to specify. In the Hilbert

space machinery that we will soon be studying, the simplest way to do

this to introduce a norm of magnetization:

||M|| =


 V

∫ |M(s)|
2

d3s




½

. (13)
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Samples would allow us to say that ||M|| ≤ m0 V with some confidence.

We will discuss how to do such calculations later in the class. While this

approach is a good idea in principle, it does not work very well for this

particular problem in practice. We find the allowed range of directions of

U is very large. And that might be the final answer; after all, it could be

that the data we have and the reasonable assumptions we might make, do

not in fact allow us to determine U accurately enough to be geologically

interesting.

But we shouldn’t give up too soon. A fact of paleomagnetism long

exploited in other problems is that rocks are magnetized with a constant

direction in large units. It would make no sense for a paleomagnetist to

take samples on the surface of an exposed unit if it was not plausible to

assume the directions are fairly uniform within. Approximate uniformity

of direction is indeed found to be the case, but not for the intensity of mag-

netization: magnetic intensity is found to vary over two or three orders of

magnitude, which is why the oversimplified model of Vacquier doesn’t

work. So we will restrict the model to be unidirectional in M; we call that

direction the unit vector M̂0. If the geomagnetic field reversed during the

formation of the seamount we would need both +M̂0 and −M̂0. Most

seamounts form rapidly enough that this is a low probability. With that

single assumption, unidirectionality, the inverse problem becomes a lot

harder to solve, but it turns out, it adds a lot of power to the data and

rather good results are obtained; see Parker (1991).
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3. Abstract Linear Vector Spaces

This section begins a review of linear algebra and simple optimization

problems on finite-dimensional spaces. We will cover some of these prob-

lems again but in the more abstract setting of Hilbert space in Chapters

and 1 and 2 of GIT. The current segment (Section 3) is a slightly modified

version of Section 1.01 in GIT.

The definition of a linear vector space involves two types of object:

the elements of the space and the scalars. Usually the scalars will be

the real numbers but occasionally complex scalars will prove useful; we

will assume real scalars are intended unless it is specifically stated other-

wise. The elements of the space are much more diverse as we shall see in

a moment when we give a few examples. First we lay out the rules that

define a real linear vector space (‘‘real’’ because the scalars are the real

numbers): it is a set V containing elements which can be related by two

operations, addition and scalar multiplication; the operations are written

f + g and α f

where f , g ∈ V and α ∈ IR. For any f , g, h ∈ V and any scalars α and β ,

the following set of nine relations must be valid:

f + g ∈ V (1)

α f ∈ V (2)

f + g = g + f (3)

f + (g + h) = ( f + g) + h (4)

f + g = f + h, if and only if g = h (5)

α ( f + g) = α f + α g (6)

(α + β ) f = α f + β f (7)

α (β f ) = (α β ) f (8)

1 f = f . (9)

In (9) we mean that scalar multiplication by the number one results in the

same element. The notation −f means minus one times f and the rela-

tion f − g denotes f + (−g). These nine ‘‘axioms’’ are only one characteriza-

tion; other equivalent definitions are possible. Notice in (7) the meaning

of the plus sign is different on the two sides, and in (8) there are two kinds

of multiplication going on. An important consequence of these laws (so

important, some authors elevate it to axiom status and eliminate one of

the others), is that every vector space contains a unique zero element 0

with the properties that
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f + 0 = f , f ∈ V

and whenever

α f = 0

either α =0 or f =0. If you have not seen it you may like to supply the

proof of this assertion.

Here are a few examples of linear vector spaces, most of which we

will come across later on. First there is the obvious space IRn. There are

two ways to think about this space. One is simply as an ordered n-tuples

of real numbers. So an element x ∈ IRn is just

x = (x1, x2, . . . , xn) (10)

where x j ∈ IR. The definition of addition of two vectors and multiplication

by a scalar is self-evident, and if we check off the list of axioms, they are

all very obviously true for this collection of elements. The alternative way

of looking at IRn is as the set of column vectors:

x =







x1

x2

:

xn







. (11)

This form highlights the fact that IRn is really a special case of one of the

spaces of real matrices, IRm × n; in fact, to use the form (11) we should

write the space as IRn×1.

This brings to the space of real matrices IRm × n. As you could easily

guess, it is the collection of all real rectangular arrays of real numbers in

the form:

A =







a11

a21

:

am1

a12

a22

:

am2

. . .

. . .

. . .

. . .

a1n

a2n

:

amn







. (12)

Once again it is clear what it means to add two matrices of the same size,

and multiplication by a scalar simply means every entry is multiplied by

that number. We will be discussing matrix algebra in the next section.

Notice that I did not use the proper mathematical notation for this space

in GIT, an unfortunate oversight on my part.

Perhaps less familiar to you are spaces whose elements are not finite

sets of numbers, but functions. For example, consider the real-valued

function f that takes a real argument x restricted the closed interval

[a, b]; a mathematician would write this specification as f : [ a, b ] → IR,

and you should consider it too. The collection of all such functions that

are continuous form a space called C0[a, b]. Again, there is no difficulty in

seeing what it means to add two such functions, and that the sum of two

continuous functions is itself continuous. Scalar multiplication presents
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no difficulty either, nor any of the other rules. There is a short table of

named function spaces on p 6 of GIT.

In a linear vectors space, you can always add together a collection of

elements to form a linear combination thus:

g = α 1 f1 + α 2 f2 + . . . + α k f k (13)

where f j ∈ V and the α j ∈ IR are scalars; obviously g ∈ V too. This kind

of operation is at the heart of almost everything we do in linear vector

spaces.

To a large extent all that is going on here is classification, just a way

of organizing things with names we can all agree on. But this is very use-

ful, and you must learn this language and use it.
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4. Essential Linear Algebra

The next few lectures will be on linear algebra and its computational

aspects. An elementary book for much of the material is by Strang, Intro-

duction to Applied Mathematics (Wellesley-Cambridge, 1986); more

advanced and a classic in the field is Matrix Computations, 3rd Edition,

by Golub and Van Loan (Johns Hopkins Univ. Press, 1996) The program

MATLAB which you must learn for this class, manipulates matrices very

naturally.

A matrix is a rectangular array of real (or possibly complex) num-

bers arranged in sets of m rows with n entries each see 3(12); or equiva-

lently, there are n columns each m long. The set of such m by n matrices

is called IRm × n for real matrices and C| m × n for complex ones. If m =1 the

matrix is called a row vector and if n =1 it is a column vector; notice

that the space of column vectors will usually be written IRm rather than

IRm×1. The entries of the array A ∈ IRm × n are referred to by indices, aij

which means the entry on the i-th row and the j-th column. A square

matrix has m = n of course. It is customary to denote a row or column vec-

tor by a lower case letter, say x, and then the i-th element is written x j .

Here is a list of names of special matrices defined by the systematic distri-

bution of zeros in them:

Diagonal aij =0 whenever i ≠ j

Tridiagonal aij =0 whenever |i − j| > 1

Upper triangular aij =0 whenever i > j

Sparse Most entries zero

Upper triangular matrices are also called Right triangular. Lower trian-

gular matrices are defined in the analogous manner, with the inequality

reversed. Notice these definitions apply to nonsquare matrices as well as

square ones. A diagonal matrix is often conveniently written by specify-

ing its diagonal entries in order, thus:

D = diag (d1, d2, . . . dn) .  (1)

In MATLAB this is D = diag(d) where d is a column or a row vector; MAT-

LAB distinguishes between column and row vectors in most circumstances,

so be careful. The square, diagonal matrix with only unity on the diago-

nal is usually denoted I (a very few authors use E) and is called the unit

matrix. In MATLAB you form the unit matrix I ∈ IRm × n by the weird

statement I = eye(n). Sparse matrices are very important because

they arise very frequently, and a great of work has been put into numeri-

cal algorithms for dealing with them efficiently.

As I mentioned in the previous section, the set of matrices IRm × n

forms a linear vector space under the obvious rules of addition:

A = B + C means aij = bij + cij (2)

and scalar multiplication:
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B = c A means bij = c aij (3)

where A, B, C ∈ IRm × n and c ∈ IR.

Another basic manipulation, which you all know, is transposition:

B = AT means bij = a ji . (4)

Some authors and MATLAB denote transpose by A′; this is to be discour-

aged in technical writing. Transposition is just the reversal of the roles of

the columns and rows. A symmetric matrix is its own transpose:

AT = A; it is obviously square.

Most important is matrix multiplication (IRm×n × IRn×p → IRm×p):

C = A B means cij =
n

k=1
Σ aik bkj . (5)

Notice that you can only multiply two matrices when the numbers of col-

umns in the first one equals the number of rows in the second; but the

other dimensions are not important, so nonsquare matrices can be multi-

plied. The combination of the operations of addition and matrix multipli-

cation allows one to define matrix arithmetic analogous to real number

arithmetic. The standard arithmetic law of distribution is valid:

A(B + C) = AB + AC. Less obviously, association of multiplication holds:

A (B C) = (A B) C, when the orders of the matrices are the correct size to

permit the product. So we get used to doing algebra on matrices as if they

were numbers, but multiplication is not commutative. This means in

general the order of multiplication matters, that is:

A B ≠ B A (6)

unless some special property exists.

When one multiplies a matrix into a column vector, there are a num-

ber of useful ways of interpreting this operation:

y = A x . (7)

If the vectors x and y are in the same space, Rm one can view A as pro-

viding a linear mapping or linear transformation of one vector into

another. This is especially valuable for 3-vectors and then A represents

the components of a tensor (referred to a particular frame). For example,

x might be angular velocity about some point, A the inertia tensor, and y

would be the angular momentum about the point; or x could be magnetiz-

ing magnetic field, A the susceptibility tensor, and y the resultant magne-

tization vector in a specimen. Another linear transformation performed

by matrices in ordinary space is rigid body rotation, used in plate-tectonic

reconstruction, and space-ship animation and CAD applications; this

involves a special square nonsymmetric matrix to be defined later.

Another useful perspective on matrix multiplication is supplied by

thinking about A as the ordered collection of its columns as column vec-

tors:
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y = A x = [a1, a2, . . . an] x = x1a1 + x1a2 + . . . + xnan (8)

so that the new vector is just a linear combination of the column vectors of

A with coefficients given by the elements of x. This is the way we typi-

cally think about matrix multiplication when it applies to fitting a model:

here y contains data values, the columns of A are the predictions of a the-

ory that includes unknown weight factor given by the entries in x.

We can interpret matrix multiplication this way too. Now let the col-

umns of B be the focus; then

A B = A [b1, b2, . . . bp] = [A b1, A b2, . . . A bp] .  (9)

In other words, A simply transforms the column vectors of B one at a

time. As a matter of fact, it is useful sometimes to partition a large

matrix into a set of rectangular submatrices or blocks. Then if you have

two matrices, both partitioned into blocks in a consistent manner, you can

multiply them together, treating the blocks just as if they were numbers.

There are two ways of multiplying two vectors. The outer product

if x ∈ IRp and y ∈ IRq :

x yT =





x1 y1

.

x p y1

. . .

.

. . .

x1 yq

.

x p yq






∈ IRp×q . (10)

And the inner product of two column vectors of the same length:

xT y = x1 y1 + x2 y2 +. . . + xn yn = yT x . (11)

Of course the inner product is just the vector dot product of vector anal-

ysis. Notice that if we write A and B as column vectors:

A = [a1, a2, . . . am] and B = [b1, b2, . . . bn] (12)

then the matrix product C = AT B is by definition (5) a collection of inner

products:

c jk = aT
j bk, j =1, 2 . . . m, k =1, 2, . . . n (13)

The unit matrix I is special for matrix multiplication. Whenever the

product I A is permitted, the matrix A is unchanged; the unit matrix

plays the role of the number one in arithmetic. Also if A is square and if

there is a matrix B so that A B = I, the matrix B is called the inverse of

A and is written A−1. When it exists, the inverse matrix is unique.

Square matrices A that possess no inverse are called singular; when the

inverse exists, A is called nonsingular. The inverse of the transpose of

A is the transpose of the inverse:

(AT )−1 = (A−1)T (14)

and sometimes authors write (A−1)T = A−T . I don’t like this notation,

however, and so I will never use it.
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The idea of the inverse is supposed to be useful for solving linear

systems of algebraic equations. When we write (7) and we suppose that

the vector y is known and A is square and known too, we can recover the

unknown vector x by multiplying both sides of (7) with A−1:

A−1 y = A−1 A x = I x = x . (15)

As we will see shortly, calculating the inverse and then multiplying it into

y is considered a poor way to do this numerically. How is the inverse actu-

ally calculated? We will not go into this in detail, but the ideas behind the

numerical calculation of y in (15) are important enough for us to look at

later. Once you know how to solve A x = y, it is a simple step to find A−1

from (9) setting B = I.

Two cute results. When you transpose the product of two matrices,

you can get the same result by transposing first, but you must invert the

order:

(A B)T = BT AT . (16)

And the same goes for the operation of inverting:

(A B)−1 = B−1 A−1 (17)

Exercises

4.1 Exhibit an explicit numerical example of a pair of 4 by 4 matrices

A and B that commute with each other subject to these rules: neither

of them is allowed to be diagonal and A must not be a scalar multiple

of B or its inverse. Explain the logical process that led to your

answer.

4.2 Our definition, that A B = I, strictly defines the right inverse of A.

Prove that if the left inverse exists, it is also B; that is B A = I; in

other words, prove a nonsingular matrix commutes with its inverse.

Do not assume the truth of (17). Can you prove a left inverse exists

whenever a right one does?

4.3 Show that the inverse of a nonsingular matrix is unique.

4.4 Under what conditions is the product of two symmetric matrices

also symmetric?

4.5 Prove (16) and (17).

4.6 In analysis a real self adjoint operator is a linear mapping that

satisfies (x, Ay) = (Ax, y) for every vector x, y, where (⋅, ⋅) is an inner

product. Show that for matrices and column vectors, and the inner

product (11), that from this definition A must be a symmetric matrix.

Now let us concentrate on square matrices, the kind that arise clas-

sically in the solution of linear systems. First, there is the determinant.
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This is a real number that measures the "volume" of the image of a unit

cube after the matrix A has been applied to the space IRn. The value of

the determinant isn’t much use, except to tell whether it is zero, or not;

Here is one way to find it: define det (A) = a11 for A ∈ IRn × n with n =1, in

other words, a 1 ×1 matrix. For larger values of n we work up by recur-

rence:

det (A) =
n

j=1
Σ (−1) j+1 a1 j det (A1 j) (18)

where A1 j is the matrix in IRn−1 × n−1 found by deleting row 1 and column j

of A. A useful simple case is that of a triangular matrix: the determinant

is the product of the diagonal elements. Some other important properties

of the determinant which we will not prove:

(a) det (AB) =det (A) det (B)

(b) det (AT ) =det (A)

(c) det (A) =0, if and only if Ais singular

The determinant is used for proving theorems but in numerical work it is

seldom used.

Here are the definitions of some important kinds of square matrix.

Symmetric AT = A

Skew-symmetric AT = − A

Positive definite xT A x > 0, x ≠ 0 ∈ IRn

Positive aij > 0, all i, j

Orthogonal AT A = I

Normal AT A = A AT

Projection AT = A and A2 = A

Diagonally dominant |aii| >
j≠ i
Σ |aij|

The orthogonal matrix obviously has the properties that

Q−1 = QT and thus Q QT = I . (19)

Consider an orthogonal matrix Q to be composed of column vectors:

Q = [q1, q2, . . . qn] .  (20)

Then the definition and (13) show that the vectors q j and qk are always

orthogonal when j ≠ k, and they are of unit Euclidean length. In other

words the columns are a collection of mutually orthogonal unit vectors.

But (19) shows that this also means the rows have exactly the same prop-

erty!

As you probably know the orthogonal matrix is the generalization of

the operation of rotation and reflection in a mirror in n-dimensional
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space. We can show this in several ways. First we can easily show the

orthogonal matrix leaves the volume of an element unchanged, because

the determinant of Q is ±1. Here is the proof: From (18) or the idea that I

leaves a space unchanged, det (I) =1. But

QT Q = I . (21)

So

1 = det (QT Q) = det (Q) det (QT ) = det (Q)2 . (22)

Hence the result. A negative sign indicates the mapping Q involves

reflection, as well as rotation. But equal volume transformations aren’t

necessarily rotations. The key is that the inner product of two any vectors

is preserved.

(Qx)T (Q y) = xT QT Q y = xT (QT Q) y = xT y . (23)

When x = y this proves the length of every vector is preserved and in addi-

tion the angle between any two vectors is unchanged; so any rigid body

will be preserved in shape, which is rotation, and possible reflection.

Suppose we are in IR3 and we want to know the orthogonal matrix

for a rotation about the origin, on an axis n̂ (a unit vector) and by an

angle θ . Then

R x = x cosθ + n̂ n̂ ⋅ x(1 − cosθ ) + n̂ ××x sinθ (24)

where ×× is the ordinary vector cross product in IR3. So the elements of R

are

rij = δij cosθ + (1 − cosθ ) ni n j + sinθ
k
Σ ε ijk n j (25)

where ε ijk is the alternator with the properties: ε ijk =0, whenever two

indices are equal; ε ijk = + 1 whenever ijk is a cyclic permutation of 123;

ε ijk = − 1 otherwise. You may find this formula useful one day.

Here is another interesting orthogonal matrix − the elementary

Householder matrix. Suppose u ∈ IRn is of unit Euclidean length,

meaning uT u =1. Then the matrix

Q = I − 2u uT (26)

is orthogonal. Proof: First note that Q is symmetric; therefore

QT Q = Q2 = (I − 2u uT ) (I − 2u uT ) (27)

= I − 4u uT + 4u uT u uT = I [QED] . (28)

So Q is both symmetric and orthogonal. (Can you think of a general spec-

ification of the class of symmetric orthogonal matrices?) The transforma-

tion of Q is quite simple to visualize as follows: Consider the vector y = Q x

= x −2u (uT x). The vector u (uT x) is the component of x lying in the u

direction. So y has that component reversed. That means x has been
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reflected in the subspace normal to the direction n. (This means

det (Q) = − 1; can you prove this independently?) The reason these particu-

lar matrices are important is that they play a central role in a special

matrix factorization called QR, invented by Alston Householder in the

1950s, and the QR method solves least-squares problems; more of this

later.

Next we go over some further ideas about linear vector spaces.

First, a set of vectors {a1, a2, . . . an} in a linear vector space (for example,

IRm) is said to be linearly independent if

n

j=1
Σ β j a j = 0 implies β1 = β2 = . . . = βn = 0 (29)

where β j ∈ IR. If a nontrivial linear combination of vectors can equal the

zero vector of the space, the set is called linearly dependent. A sub-

space of linear vector space is a set of vectors that is also a linear vector

space. For example, any plane in ordinary space through the origin of

coordinates; but not a plane that misses the origin. The spanning set or

more simply the span of a collection of vectors, is the linear vector space

that can be built from that collection by taking linear combinations of

them. Formally,

span {a1, a2, . . . an} = {
j
Σ β j a j | β1, β2, . . . βn ∈ IR} .  (30)

A linearly independent spanning set forms a basis for a vector space. The

number of elements in a basis is called the dimension of the space, and it

can be proved every basis for a particular space has exactly the same

dimension, which is a number that characterizes the "size" of the vector

space. In intuitive terms, the dimension is the number of free parameters

needed to specify uniquely an element in the space. Every collection of

more than n vectors in an n-dimensional space must be linear dependent.

These ideas apply quite generally to linear vector spaces (that might con-

tain functions or operators), but we are interested here on elements that

are collections of real numbers.

For a matrix in IRm × n there are two important spaces. First the

range space, also called the column space of A, which we write R (A).

It is simply the linear vector space formed by taking linear combinations

of the column vectors of A. Recall (8); this means that for all x ∈ IRn

Ax ∈ R (A) .  (31)

Obviously

If A = [a1, a2, . . . an] then R (A) = span {a1, a2, . . . an} . . (32)

The dimension of the column space of a matrix in IRm × n can never be

more than n the number of columns but it can be less. That dimension is

so important it has its own name: the rank of A:

rank (A) = dim [R (A)] . (33)
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It can be shown that rank (A) = rank (AT ), so the rank of a matrix is the

maximal number of linearly independent rows or columns. A matrix in

IRm × n is said to be of full rank if rank (A) =min(m, n) and to be rank

deficient otherwise.

The other side of the coin of the columns space is the null space of

A. This is given by the set of xs that cause Ax =0: for A ∈ IRm × n

N (A) = {x ∈ IRn | Ax =0} (34)

We agree to define as zero, the dimension of the space comprising a single

element, the zero vector, then

dim [N (A)] = n − rank (A) .  (35)

For the important case m = n the following are equivalent:

(a) A is nonsingular

(b) dim N (A) = 0

(c) rank (A) = n

(d) det (A) ≠ 0
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5. Simple Least Squares Problems

Least squares problems are examples of optimization problems that

involve the simplest of norms. We are going to solve these problems in

several ways, to illustrate a the use of use of Lagrange multipliers and a

few other things. The bible for the numerical aspects of LS is the ancient

Lawson and Hanson, 1974. First what is a norm? Informally, a norm is a

real number that measures the size of an element in a linear vector space.

Assigning a norm to a linear vector space is said to equip the space with

a norm. Most linear vector spaces can be so equipped (spaces of functions,

operator, matrices, etc), but here we will consider only the simplest norm

for IRm, the Euclidean length: when x ∈ IRm

||x|| =√ 
n

k=1
Σ x2

k . (1)

We can obviously express this in other ways, for example ||x|| = (xT x)½.

The space IRm is then properly called Em, but we won’t be pedantic. Here

is an approximation problem often encountered in geophysics, the classi-

cal least squares problem. We will state it as a problem in linear algebra.

Suppose we are given a collection of n vectors ak ∈ IRm and we wish

to approximate a target vector y by forming a linear combination of the

ak; when n < m, as we shall assume, we will not expect to be able to do

this exactly, and so there will be an error, called in statistics the residual:

r = y −
n

k=1
Σ xkak . (2)

In data analysis, straight-line regression is in this form, or fitting any

simple linear model to a data set. In numerical analysis you might want

to approximate a complicated function by a polynomial. To get the best

approximation in some sense, we want the size of the vector r ∈ IRm to be

as small as possible. Once we’ve picked a way to measure the size, we

have a minimization problem. The simplest norm for computational pur-

poses is the Euclidean length, and this leads to the overdetermined

least squares problem. If we can rewrite (2) in matrix notation:

r = y − Ax (3)

where x ∈ IRn and the matrix A ∈ IRm×n is built from columns that are the

ak:

A = [a1, a2, . . . an] .  (4)

So the minimization problem is to solve

x ∈ IRn
min f (x) (5)

where

f (x) = ||r||
2 = rT r = (y − Ax)T (y − Ax) .  (6)
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Obviously we can square the norm if it simplifies the algebra.

I will offer you several solutions to this problem, some of which may

be unfamiliar. First the classical approach, which is to multiply descend

into subscripts, and differentiate:

f =
m

j=1
Σ r2

j . (7)

Then

∂ f

∂xk

= 2
m

j=1
Σ r j

∂r j

∂xk

(8)

= 2
m

j=1
Σ (y j −

n

i=1
Σ a ji xi) × (− a jk) (9)

= −2
n

j=1
Σ a jk y j + 2

n

i=1
Σ (

m

j=1
Σ a jk a ji) xi (10)

and this is true for each value of k. At the minimum we set all the deriva-

tives to zero, which leads to:

n

i=1
Σ (

m

j=1
Σ a jk a ji) xi =

n

j=1
Σ a jk y j , k = 1, 2, . . . n . (11)

Translated into matrix language these are the so-called normal equa-

tions:

AT A x = AT y . (12)

Note that AT A is a square n by n matrix, and the left side is a column n-

vector. So the unknown expansion coefficients are found by solving this

system of linear equations, formally by writing

x = (AT A)−1 AT y (13)

a result that should be familiar to you.

This answer looks ugly and seems to have no intuitive content. But

a geometrical interpretation can help a lot. Suppose we assume that the

vectors ak are linearly independent (which they must be if we can write

(13)). Then the collection of all vectors that can be formed from linear

combinations of them is a subspace of IRm which we will call A ; it is the

column, or range, space of the matrix A, and so A = R (A) from 4(33). The

approximation problem we are solving can be stated as finding the vector

in A that comes as close to y as possible. We rewrite (12) as

0 = AT (A x − y) = AT r (14)
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=








aT
1 r

aT
2 r

:

aT
n r








. (15)

Remember the zero on the left is the vector 0 ∈ IRn. So what this equa-

tion is saying is that the residual vector, the error in the approximation to

y, is orthogonal to every one of the basis vectors of the space A (because

aT
1 r is the dot product between a1 and r). And that is what you might

expect from a geometrical interpretation as shown in Figure 5.1.

Let us give a name to the approximation we have created, let

Ax = ỹ. Then ỹ is called the orthogonal projection of y into the sub-

space A . The idea of a projection relies on the Projection Theorem for

Hilbert spaces. The theorem says, that given a subspace like A , every

vector can be written uniquely as the sum of two parts, one part that lies

in A and a second part orthogonal to the first. The part lying in A is

orthogonal projection of the vector onto A . Here we have

y = ỹ + r . (16)

There is a linear operator, PA the projection matrix, that acts on y to gen-

erate ỹ, and we can see that

PA = A (AT A)−1 AT . (17)

Figure 5.1: Orthogonal projection of y onto the column space of A.
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Recall from Section 4 that a projection matrix must be symmetric and sat-

isfy P2 = P. The second property is natural for a projection, because act-

ing once creates a vector falling into the given subspace, acting again

leaves it there. Verify these properties for PA .

We describe next a completely different way of looking at the least-

squares (LS) problem, which often offers considerable improvement in

numerical accuracy. Let us return to Householder’s QR factorization of

a matrix, mentioned briefly in the previous section: every matrix

A ∈ IRm×n where A is tall (meaning m ≥ n) can be written as the product:

A = Q R (18)

where Q ∈ IRm×m, R ∈ IRm × n, and Q is orthogonal, and R is upper triangu-

lar; recall that upper triangular means all zeros below the diagonal so

that Rij = 0 when i > j. We can write

R =




R1

O





(19)

where R1 ∈ IRn × n and is also upper triangular. For how the QR factoriza-

tion is found in practice and why QR is numerically stable, see GIT 1.13

and the references there. To solve the LS problem we look to the

Euclidean norm of r:

||r|| = ||y − Ax|| = ||y − QRx|| . (20)

Recall that Q QT = I, so

||r|| = ||QQT y − QRx|| = ||Q(QT y − Rx)|| .  (21)

Now recall that the length of a vector is unchanged under mapping with

an orthogonal matrix: ||z|| = ||Qz||. So

||r|| = ||QT y − Rx|| = || ŷ − Rx|| . (22)

Next square the norm and partition the arrays inside the norm into two

parts, the top one with n rows:

||r||
2 =





ŷ1

ŷ2





−




R1

O





x
2

=




ŷ1 − R1 x

ŷ2





2

(23)

= || ŷ1 − R1 x||
2 + || ŷ2||

2
. (24)

The second term || ŷ2||
2

in the sum is indifferent to the choice of x; but

we can reduce the first term to zero by solving

R1 x = ŷ1 . (25)

So this must be the solution to finding the smallest norm of r. Because

R1 is upper triangular, (25) is solved by back substitution, starting at

the bottom and working upwards, which is very simple. This doesn’t look

like a very efficient way to find the LS answer, but it can be made very
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efficient: for example, there is no need to store the matrix Q, because one

can calculate the vector ŷ = QT y without it. The QR factorization is com-

petitive with the normal equations for execution times (it is slightly

slower but, as mentioned earlier, it is numerically more stable against the

accumulation of numerical error. The key to understanding the accuracy

in the solution of Ax = b is κ (A) = ||A|| ||A−1|| called the condition

number of A, which estimates the factor by which small errors in b or A

are magnified in the solution x. This can sometimes be very large (

> 1010). It is shown in GIT that the condition number in solving the nor-

mal equations (13) is the square of the condition number for (25), which

can sometimes lead to catastrophic error build up. Therefore, for not too

large systems, QR is the proper way to go. In MATLAB, while you can get

the QR factors with the call

[Q R] = qr(A);

the LS problem is solved automatically for you by the QR method if you

simply write

x = A\y;

Finally, suppose you substitute the QR factors into the expression for the

projection matrix. We find after some algebra that

PA = QT




In

0

0

O





Q (26)

where In ∈ IRn × n is the unit matrix and the rest of the entries are zero.

Numerically this way of finding the projection is very stable because one

never needs to solve a linear system. But (26) also shows that if one

imagines rotating the data space onto new coordinates with Q, the projec-

tion operator then becomes the matrix in the middle of (26), which is the

projection that simply zeros out all the components of a vector after the

nth one.

Exercises

5.1 Show that the last m − n columns in the factor Q of the QR factor-

ization are never used in the LS calculation.

5.2 The Gram-Schmidt process is a method of creating a set of

orthonormal vectors from a given ordered set of linearly independent

vectors by forming linear combinations of one, then two, then three,

etc, of the given vectors. Show how the QR process does the same

thing.

Hint: First show that the inverse of an right triangular matrix is also

right triangular.
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6. Lagrange Multipliers and More Least Squares

There is more. We now consider solving minimization problems with

Lagrange Multipliers. For proofs see GIT 1.14 and the references men-

tioned there. The minimization we solved in Section 5 (5) was an example

of an unconstrained minimization in which we found the smallest pos-

sible value of a function. But suppose there is a side condition, called a

constraint, that must hold for all solutions. The Figure 6.1, taken from

GIT, show the general idea for single condition. If the constraint condi-

tion is expressed the in form:

g(x) = 0 (1)

then the minimum of the constrained problem

x ∈ IRm
min f (x) with g(x) = 0 (2)

occurs at a stationary point of the unconstrained function function

u(x, µ) = f (x) − µ g(x) (3)

where we must consider variations of x and µ; of course µ is called a

Lagrange multiplier. If there are n constraint conditions in the from

gk(x) = 0, k = 1, 2, . . . n, each would be associated with its own Lagrange

multiplier:

u(x, µ1, µ2, . . . µn) = f (x) −
n

k=1
Σ µk gk(x) .  (4)

Figure 6.1: An optimization problem in 2 unknowns with 1 con-

straint.
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As an example consider again the overdetermined LS problem

solved by 5(13). We wish to find the minimum of the function

f (r) = ||r||
2
, with r ∈ IRm. As an unconstrained problem the answer is

obviously zero. But we have the following m conditions on r:

0 = y − Ax + r (5)

where y ∈ IRm and A ∈ IRm × n are known, while the vector x ∈ IRn is also

unknown and free to vary. So, writing (5) out in components and giving

each row its own Lagrange multiplier, (4) becomes for this problem

u(r, x, µ l) =
m

j=1
Σ r2

j −
m

j=1
Σ µ j(y j −

n

k=1
Σ a jk xk + r j) .  (6)

Differentiating over ri, xi and µ i, the stationary points of u occur when

∂u

∂ri

= 0 = 2ri − µ i (7)

∂u

∂xi

= 0 = −
m

j=1
Σ a ji µ j (8)

∂u

∂µ i

= 0 = yi −
n

k=1
Σ aik xk + ri . (9)

Equation (7) says the vector of Lagrange multipliers µ = 2r; then using

this fact and translating (8), (9) into matrix notation:

AT µ = 2AT r = 0 (10)

Ax − r = y . (11)

If we multiply (11) from the left with AT and use (10) we get the normal

equations 5(12) again. But let us do something else: we combine (10) and

(11) into a single linear system in which the unknown consists of both x

and r:

Figure 6.2: An example of loss of sparseness in forming the normal

equations.
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−Im

AT

A

On








r

x




= 


y

0




(12)

where Im ∈ IRm×m is the unit matrix, where On ∈ IRn × n is square matrix

of all zeros. This system has the same content as the normal equations,

but solves for the residual and the coefficients at the same time. If A is

sparse, (12) can be a better way to solve the LS problem than by the nor-

mal equations or by QR, particularly as QR does not have a good adapta-

tion to sparse systems. The situation is illustrated for a common form of

overdetermined problem in Figure 6.2.

We turn next to the so-called underdetermined least-squares

problem. While the overdetermined LS problem occurs with monotonous

regularity in statistical parameter estimation problems, the underdeter-

mined LS problem looks quite a lot like an inverse problem. Instead of

trying to approximate the known y by a vector in the column space of A,

we can match it exactly: we have

y = Ax . (13)

where A ∈ IRm × n, but now m < n and A is of full rank. This is a finite-

dimensional version of the linear forward problem, in which the number

of measurements, y, is less than the number of parameters in the model

x. So instead of looking for the smallest error in (13), which is now zero,

we ask instead for the smallest model, x. We are performing a simplified

regularization, in which size, here represented by the Euclidean length,

stands for simplicity. This problem is solved just as the last one, with a

collection of m Lagrange multipliers to supply the constraints given by

(13), but with ||x||
2

being minimized instead of ||r||
2
. I’ll run through

the process quickly. The unconstrained function is

u(x, µk) =
n

j=1
Σ x2

j −
m

i=1
Σ µ i(

n

k=1
Σ aik xk − yi) (14)

∂u

∂x j

= 2x j −
m

i=1
Σ aij µ i (15)

∂u

∂µ i

= −
n

k=1
Σ aik + yi . (16)

Setting these derivatives to zero leads to a pair of linear systems which

can be written in matrix notation

x = ½AT µ (17)

Ax = y (18)

Equation (17) contains a key piece of information: the norm minimizer

lies in the range space of A or, in other words, x is a linear combination of

the column vectors of A. If we substitute the first of these into the second
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we have

½AAT µ = y . (19)

which we imagine solving somehow, then substituting for µ in the first

member of (17)

x = AT (AAT )−1 y . (20)

These are the normal equations for the underdetermined (smallest norm)

problem. Explicitly following equation (20) is rarely a good way to com-

pute the solution, however. First, if matrix A is sparse we loose that

property forming AAT : then it is better to combine (17) and (18) into a

large sparse system combining µ and x in a longer unknown vector as we

did in (12). Second, we can use QR to find a numerically stable result.

Like the normal equations, (19) too suffers from poor conditioning

numerically. And as before QR comes to the rescue, but in a cute way.

Recall that the classic QR factorization works only if m ≥ n, here that is

violated. So we write instead that

AT = QR or A = RT QT . (21)

Then (13) can be written

y = RT QT x = RT x̂ (22)

where x̂ ∈ IRm is just QT x. Then, since Q is an orthogonal matrix

x = Qx̂ (23)

and it follows that x and x̂ have the same norm, ie. Euclidean length.

Recall that R is upper triangular; so (22) is

y = [RT
1 O]




x̂1

x̂2




(24)

where R1 ∈ IRn × n, and x̂1 ∈ IRn. If we multiply out the partitioned matrix

we see that

y = RT
1 x̂1 + O x̂2 = RT

1 x̂1 . (25)

Because the second term vanishes, (25) shows that we can choose x̂2 (the

bottom part of x̂) in any way we like and it will not affect the match to

the data: only x̂1 influences that. So we match the data exactly by solving

the system

RT
1 x̂1 = y . (26)

Now observe that

||x||
2 = || x̂||

2 = || x̂1||
2 + || x̂2||

2
. (27)

So to match the data we solve (26), then to get the smallest norm we sim-

ply put x̂2 = 0. Thus x̂ has been found that minimizes the norm, and the

corresponding x is recovered from (23).
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The underdetermined LS problem is artificial in the sense that (13)

the condition that the model fit the data exactly is unrealistic: if there is

noise in the data y, we must not demand an exact fit. It is more realistic

to say that we would be satisfied with a reasonably close fit, as measured

by the Euclidean norm; so replace (13) with

||Ax − y|| ≤ γ (28)

where we get choose γ from a statistical criterion that depends on the

noise in y. Problems with a single inequality constraint turn out to be

very similar to those with equality constraints. One of two scenarios can

apply: (a) the unconstrained problem satisfies (28); (b) equality holds in

(28), in which case a Lagrange multiplier can be used for the minimiza-

tion. For the moment, let us concentrate on (b), which is the usual state

of affairs. We need a single Lagrange multiplier to apply (28). To compli-

cate things slightly more, instead of minimizing the norm of x, we will

minimize

f (x) = ||Px||
2

(29)

where P ∈ IRp×n is a matrix that suppresses undesirable properties, for

example, it might difference x to minimize slopes instead of magnitudes.

Now we have the unconstrained function

u(x, µ) = ||P x||
2 − µ(γ 2 − ||Ax − y||

2
) (30)

where I have squared the condition factor because it will simplify things

later. A trivial rearrangement gives:

u(x, µ) = ||P x||
2 + µ||Ax − y||

2 − µγ 2 . (31)

Figure 6.3: Minimization of ||Px|| subject to ||Ax − y|| ≤γ for x ∈ IR2.
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It can be shown (see GIT, Chapter 3) that µ > 0. Then for a fixed value of

µ, the function u can be interpreted as finding a compromise between two

undesirable properties, large P x, and large data misfit. If we minimize

over x with a small µ we give less emphasis to misfit and find models that

keep P x very small; and conversely, large µ causes minimization of u to

yield x with small misfit. This is an example of a trade-off between two

incompatible quantities: it is shown in GIT that decreasing the misfit

always increases the penalty norm, and vice versa.

We could solve this problem by differentiating in the usual tedious

wa y. Instead we will be a bit more clever. As usual, differentiating by µ
just gives the constraint (28). The derivatives on x don’t see the γ term in

(31) so we can drop that term when we consider the stationary points of u

with respect to variations in x:

û(x) = ||P x||
2 + µ||Ax − y||

2
(32)

= ||Px − 0||
2 + ||µ½ Ax − µ½ y||

2
. (33)

Both of the terms are norms acting on a vector; we can make the sum into

a single squared norm of a longer vector, the reverse of what we did on

equation 5(24):

û(x) =




P

µ½ A





x − 


0

µ½ y




2

(34)

= ||Cx − d||
2

. (35)

The matrix C ∈ IR( p+m)×n must be tall, that is p + m > n, or the original

problem has a trivial solution (Why?), (35) is just an ordinary overdeter-

mined least squares problem; indeed the matrix C is the one illustrated in

Figure 6.2. So for any given value of µ, we can find the corresponding x

through our standard LS solution. But this doesn’t take care of (28). The

only way to satisfy this misfit criterion is by solving a series of versions of

(35) for different guesses of µ in an iterative way, because unlike all the

other systems we have met so far, this equation is nonlinear. We will dis-

cuss the details later (see GIT, Chap 3).

What about scenario (a)? We need to verify that the unconstrained

problem, the minimizer of ||Px||
2

satisfies (28). When P is nonsingular,

that is easy, because then the unique solution is x = 0, and that can be

checked trivially in (28). If P is singular the solution to the unconstrained

problem is not unique, and we could set up the minimization of ||Ax − y||

over the null space of P. But in fact we will discover in solving (31) that

(28) is satisfied for all µ > 0  as part of the search in µ, so solving (28) with

an equality is all we need ever to do.
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7. Other Matrix Factorizations

The QR factorization is one of a number of matrix factorizations that

appear in the numerical analysis of linear algebra. The rule that numeri-

cal analysts repeat with great regularity is that to solve the linear system

Ax = y (1)

never, never, never calculate the inverse A−1 and multiply this into the vec-

tor y. The reasons are that it is numerically inaccurate, and inefficient.

The recommended way is via one of several factorizations. To solve (1) in

MATLAB you should always type:

x = A \ y;
Recall that when A ∈ IRm × n and the problem is overdetermined ( m > n),

this gets you the least-squares solution via QR. When m = n, the system

is solved, with QR, but by Gaussian elimination which can also be writ-

ten as a matrix factorization called LU decomposition:

A = LU . (2)

Here A, L,U ∈ IRn × n and L is lower triangular, while U is upper triangu-

lar, called U because for some unknown reason the word ‘upper’ is always

used here instead of ‘right’ (which is always the name used in QR). For-

mally the solution to (1), once you have the LU factors is to solve by back

substitute the two systems

Lz = y, and Ux = z . (3)

You don’t need to know this of course just to use back-slash. Unlike QR

factorization, LU decomposition of a sparse matrix A results in two

sparse factors L and U , which is a very important property for large sys-

tems of equations.

A special case arises when A is symmetric, and positive definite.

Then A can be factored with the Cholesky factorization

A = L LT (4)

where L is lower triangular. Notice that this factorization is almost like a

square root of A, and is handy in a number of situation when a matrix

square root could be useful. Cholesky factorization is one of the fastest

and must numerically stable schemes in numerical linear algebra.

Next let me briefly remind you about the elementary theory of eigen-

value systems for square matrices. You will recall that a square symmet-

ric matrix always has eigenvalues, which are the real numbers λ satisfy-

ing

Au = λ u, and u ≠ 0 .  (5)

When A ∈ IRn × n is not symmetric λ need not be real, and in some cases

there are no solutions to (5); the symmetric case covers almost all those of

practical interest. When A is symmetric, there are at most n distinct val-

ues of λ , call them λ k, and n corresponding eigenvectors uk.
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Conventionally, these are normalized so that ||uk|| = 1, in the 2-norm. A

most important property of the eigenvectors is that they are mutually

orthogonal:

uT
j uk = 0, when j ≠ k . (6)

When there are fewer than n eigenvalues, the system is said to be degen-

erate and can be treated as if there are repeated values of λ ; and then the

eigenvectors of the degenerate eigenvalues are not uniquely defined. But

they can always be chosen to be orthogonal so that (6) can be forced to be

true, and always is in computer programs. The simplest illustration of all

this is the unit matrix: every vector is an eigenvector of I with eigenvalue

1; so the eigensystem is n-fold degenerate, that is, there are n eigenval-

ues, all the same, all equal to one.

The eigenvalue problem can be written as a matrix factorization, as

we shall now see. Form the square matrix U from columns of the orthogo-

nal eigenvectors:

U = [u1, u2, . . . un] (7)

The matrix U is an orthogonal matrix, because its columns are mutually

orthogonal unit vectors. Then

AU = [Au1, Au2, . . . Aun] = [λ 1u1, λ 2u2, . . . λ nun] = UΛ (8)

where Λ = diag (λ 1, λ 2, . . . λ n). Now multiply on the right with UT and we

have the spectral factorization of A:

A = UΛUT (9)

This can be written another way that is most instructive:

A = λ 1u1uT
1 + λ 2u2uT

2 + . . . λ nunuT
n (10)

= λ 1 P1 + λ 2 P2 + . . . λ n Pn (11)

Here the outer product matrices ukuT
k are projection matrices each of

which maps a vector into the subspace comprised of the corresponding

eigenvector. Equation (11) is decomposing the action of A into compo-

nents in an orthogonal coordinate system, where each component receives

a particular magnification by the corresponding λ k. Think about what

this means when there is degeneracy. It should be observed that numeri-

cal techniques for discovering the eigenvalues and eigenvectors of sym-

metric matrices are based on performing the factorization (9), not on eval-

uating some huge determinant, which would take an eternity.

There is a spectral factorization for nonsquare matrices as well,

called singular value decomposition usually called SVD. Suppose

A ∈ IRm × n with m > n, then A can be factorized into the product of three

matrices, two orthogonal and one diagonal:

A = U Σ V T (12)
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where U ∈ IRm×m and V ∈ IRn × n are orthogonal and Σ ∈ IRm × n with

Σ = diag (s1, s2, . . . sn) (13)

The real numbers sk ≥ 0 are called the singular values of A. One can

solve LS problems with SVD. There are number of people who claim SVD

is the answer to almost all LS problems because of its great numerical

stability and because of its use in censoring the poorly resolved features

in simple minimization problems. I believe these advantages are usually

overstated; also the procedure is numerically very expensive, and not

readily adapted to sparse systems, and therefore not suitable for large

systems.


