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Supplementary Notes

8. A New Magnetic Problem

In GIT the first few chapters revolve around a marine magnetic problem

based on a small set of artificial ‘‘data’’, supposedly collected at the North

Pole. This example is too simple these days for two reasons: first, the

number of observations (thirty) is trivially small; second, the idealization

of the problem covers up so many of the real difficulties, particularly the

questions surrounding the proper form of the forward problem. I want to

work with a more realistic illustration, based on actual data, to give you a

better idea of how to handle real-life situations that you may come across.

However, I still want to stick to a one-dimensional geometry, to keep the

graphics simple. It is another marine magnetic problem, like the one in

GIT, except that the observations were taken near the sea floor in 1995 on

a deep-tow vehicle (the ‘‘fish’’) built by the Marine Physical Lab at SIO.

The profile runs across the Juan de Fuca rise (35°N, 130°W) off the coast

of Washington, with a strike direction of 107° east of true north; these

details will become important shortly. The profile in Figure 8.1 shows a

short section of 100 points taken out a much longer profile; the age of the

Figure 8.1: Magnetic anomaly and fish track.
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oceanic crust is about 0.2 Ma, so we are in the Bruhnes normal chron,

which ended 0.78 Ma ago.

In a moment we are going to make a number of simplifications to get

at the crustal magnetization here. Recall from 2(1-2) that the original

magnetization forward problem has a solution that looks like this:

∆B(r) =
V

∫ G(s, r) ⋅ M(s) d3s (1)

with G fully expanded now to

G(s, r) =
µ0

4π
B̂0 ⋅ ∇ ∇

1

R
=

µ0

4π





3B̂0 ⋅ (r −s)(r −s)

R5
−

B̂0

R3





(2)

and R = |r −s|. Remember the magnetization M is a vector-valued func-

tion of position s within the volume V ; the grad acts on the s coordinate

here, although since G(r, s) = G(s, r) that is unimportant in (2). In (1) G is

known and M is the function we seek. In fact we do not have continuous

values of ∆B, but samples at specific points on the sea surface

r1, r2, . . . rm. So we can specialize (1) to this situation

d j = ∆B(r j) =
V

∫ G j(s) ⋅ M(s) d3s, j = 1, 2, . . . m (3)

where we assign particular function G j(s) to each observation:

G j(s) = G(s, r j) =
µ0

4π
B̂0 ⋅ ∇ ∇

1

|r j − s|
(4)

Notice that each measured number d j is obtained in (3) via a linear

functional of the unknown M. The set of vector-valued magnetizations

within the volume V can be considered to be linear vector space V ; there

are obvious rules for adding two magnetizations and for multiplying a

given magnetization by a scalar. Suppose we equip V with the following

inner product:

(f, g) =
V

∫ f(s) ⋅ g(s) d3s (5)

The we automatically get a norm for the space; the new normed space

will be called H for Hilbert. The implied size of a given magnetization

function is this:

||M|| =√  V

∫ M ⋅ M d3s (6)

This is almost the RMS magnetization; to get ||M|| to be RMS magneti-

zation we have to normalize by the volume: MRMS = ||M||/V ½.

The key question is whether or not we can write (3) as an inner

product or not. It is a linear functional as we already stated, but is it a

bounded linear functional? Suppose I write (3) as an inner product:
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d j = (G j , M) (7)

Then (7) is a valid inner product if and only if ||G j|| < ∞, that is G j is a

proper element of H , the normed space. In this case that is easy to verify.

Equation (2) looks complicated, but r and s never become identical,

because the magnetometer is at the ocean surface r j and the sources at s

are under water. This means the function G j(s) never becomes infinite

anywhere in V ; and the volume V is finite too. Hence G j ∈ H . In this

wa y have put the seamount magnetization problem in a Hilbert space set-

ting, writing the solution to the forward problem in a natural manner as

an inner product, and using essentially RMS magnetization as a norm. I

must add that it would be possible to choose other forms for norm and

inner product here, (based on gradients, to smooth things out, for exam-

ple) but they add complications, best avoided for now.

The shape of seamounts is complex and the computational problem

rather large so we return to the profile I plotted earlier from the Juan de

Fuca Rise for another version of the magnetization inverse problem. To

simplify things we are going to assume next: (i) No variation of magneti-

zation into the plane of the profile, the y direction; (ii) Direction of magne-

tization constant, M̂0 ; (ii) The magnetized layer has a constant thickness

∆z ; (iii) Strength of magnetization varies only with x the horizontal coor-

dinate, and not with z within the layer. Then (1) becomes an integral of x

alone involving the magnetic intensity m(x) ; we evaluate the j-th mea-

surement made at the point r j :

Figure 8.2: Model of magnetic layer.
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d j = ∆B(r j) = ∫ g(r j , x) m(x) dx (8)

g(r j , x) =
µ0

2π





M̂0 ⋅ (r j −s+(x))

|r j −s+(x)|
2

−
M̂0 ⋅ (r j −s−(x))

|r j −s−(x)|
2




n̂(x) ⋅ B̂0 (9)

where s+ and s− are vectors in the plane pointing to the top and bottom of

a vertical column of magnetic material (see Figure 8.2), n̂ is the surface

normal at the top of the column. To get this equation we have integrated

(2) both vertically through the layer and from −∞ to ∞ in the y direction.

For the data shown in Figure 8.1, because the crust is young we can

assume M̂0 = B̂0, the ambient field direction at the site; both these vectors

must be projected onto the observation plane. Then, after finding the

inclination and dip at the Rise in 1995, (57.42°, 15.42°), we calculate that

B̂0 = (0. 018, − 0. 99986) in the plane of the profile, essentially vertically

downward. We will use the approximation that M̂0 = B̂0 = ẑ from now on.

This problem is interesting and we may return to it later in this form.

But to get a magnetization inverse problem so simple we can solve all the

integrals analytically we need even more drastic simplification.

We make two further approximations that will be relaxed later: first,

we will take the track and the surface of the basement to be horizontal,

flat lines. This looks like a serious error from Figure 8.1, but there is a

factor of 15:1 in the plot of the track and bathymetry. And finally, we will

take the layer thickness, ∆z to be small, so that the magnetization can be

treated as a thin sheet of dipoles. This assumption is highly suspect: mag-

netic layer thicknesses at oceanic rises are thought to be at least 500 m.

With these further approximations (8) and (9) become:

d j = ∫ g j(x) m(x) dx (10)

with

g j(x) =
µ0∆z

2π
h2 − (x − x j)

2

(h2 + (x − x j)
2)2

(11)

Here the height above the basement is the constant h = 174 meters on

average; measurements of the anomaly are taken at the horizontal coordi-

nates x j . This is the result used in GIT 2.06( 2), with the addition of the

factor ∆z, omitted there by oversight, because ∆z = 1 km in all the calcula-

tions!

We have to decide on an interval for the integration. In the idealized

problem we will pretend the magnetic layer extends over the whole real

line. This gross idealization does not get us into trouble until a bit later,

and is very handy for solving the integrals. If we like the norm

||m|| =




∞

−∞
∫ m(x)2 dx





½

(12)
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then the space of magnetization models becomes the classic Hilbert space

L2(−∞, ∞), with inner product

( f , g) =
∞

−∞
∫ f (x) g(x) dx (13)

Is (11) an inner product in this space? The answer is yes if we can show

that

||g j||
2 =

µ2
0∆z2

4π2

∞

−∞
∫

(h2 − (x − x j)
2)2

(h2 + (x − x j)
2)4

dz (14)

is finite. Later we will evaluate this messy integral exactly. For now we

can show it is bounded, by a couple of simple observations: the function

g j(x)2 is bounded and continuous (in fact it is analytic on the real line); as

|x| →∞ we can easily verify that g(x) → µ0∆z/2πx2 so that g(x)2 → con-

stant /x4. This dies awa y fast enough to have a finite integral and there

we can write (10) as

d j = (g j , m), j = 1, 2, . . . m (15)

Again, this may not be the only norm we will want to use, but to get

things started L2(−∞, ∞) is a good place to start.

You may be asking, when would the linear functions fail to be

bounded, and what would be the consequences of that failure? In this

problem, we can cause the integrals like (14) to be undefined simply by

setting h the height of the observation line, go to zero, effectively setting

the magnetometer directly on the sources, instead of above them; this is

not an impossible experimental geometry. One way to look at the failure

is to examine the limit as h tends to zero: we find the norm minimizing

magnetization becomes more and more closely concentrated around the

observation sites, and has a smaller and smaller norm, in the limit,

||m|| = 0. The model space L2 is inappropriate because it does not lead

to a geophysically plausible, let alone a simple solution. The original jus-

tification for norm minimizers was that they should select models with

the fewest extraneous features, to be as bland and unobjectionable as pos-

sible. When h is set to zero, L2 fails to do this, and we should look for a

different approach; the best way is to leave Hilbert space entirely.
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9. The Continuous Problem

Before getting into the application of our general Hilbert-space based

approach, let us look at a naive treatment of the 1-D, flat layer problem

that relies on its special characteristics. While the method in its bare

form fails miserably, it provides some useful insights of a general nature

and, as we shall see later, it can be modified to yield quite satisfactory

answers. First pretend that we have dense observations on the whole real

line. Then (8.10) becomes

d(y) =
∞

−∞
∫ k(y − x) m(x) dx (1)

where

k(x) =
µ0∆z

2π
h2 − x2

(h2 + x2)2
(2)

Written this way, it is clear that the solution to the forward problem when

the data d are known on (−∞, ∞) is a convolution.

Convolutions are very common in geophysics, and just as in this

case, we frequently want to undo them: this is called the deconvolution

problem. Geophysical examples include undoing the effects of an instru-

ment, like a seismometer, or a magnetometer (Constable and Parker,

1991), or removing path effects from a seismogram using the empirical

Green’s function (Prieto, et al, 2006).

Whenever you see a convolution (which you know can be written

d = k ∗ m) you should think of the Convolution Theorem, which says

F [k ∗ m] = F [k] F [m] = k̂ m̂ (3)

where of course F is the Fourier transform (FT) given by

F [ f ] = f̂ (λ ) =
∞

−∞
∫ f (x) e−2πiλ x dx (4)

Thus, if we take the FT of (1) we see

d̂ = k̂ m̂ (5)

and the solution to the inverse problem is obtained merely by division,

since the complicated integral in (1) has been converted into a simple mul-

tiplication. (Mathematicians would say the convolution has been diago-

nalized.) The result for m is just

m(x) = F
−1





d̂

k̂





(6)

The inverse problem is apparently finished, since the solution has been

reduced to three FTs and a division.

In fact we can go one step further: the FT of k(x) can be found in

terms of elementary functions. Those of you who took SIO-239 from me
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should think about how to go about this calculation, starting from the

well-known FT of 1/(h2 + x2). I will just give you the answer, the amaz-

ingly simple:

k̂(λ ) = π µ0∆z |λ | e−2πh|λ | (7)

This function is shown in Figure 9.1; it is obviously even in λ .

At first glance, equation (6) seems to imply there is a unique solution

to the inverse problem: for every function d, there is a unique d̂ and so

there is just one m̂ and one m that results: in other words, complete and

exact data provide a single, one-dimensional magnetization model m(x).

That is in complete contrast to the 3-D problem considered at the begin-

ning of the class, where exact data can be matched with a enormous array

of different internal magnetizations. However, things aren’t quite so

straightforward. Look at (7): notice that k̂(0) = 0. This means that the

integral of k(x) over all x vanishes, and therefore any constant magnetiza-

tion generates zero magnetic anomaly. A constant magnetization may be

present in any amount and it will always be undetectable: it is the mag-

netic annihilator for the problem. Hence the solution to this inverse

problem is not unique — there is a single uncontrolled degree of freedom.

We conclude that the many additional assumptions and simplifications we

introduced have almost, but not quite, suppressed the vast ambiguity of

the original problem posed in Section 2 of these notes.

The analytic solution also highlights the instability associated with

short-wavelength anomalies. Equation (6) states that to obtain the mag-

netization function we must apply a spatial filter with transfer function

k̂(λ )−1, a function shown in Figure 9.1. Because k̂(λ ) decays essentially

exponentially, small-scale components of d are magnified with an expo-

nentially growing factor as the scale decreases. With realistic signals,

noise does not decay exponentially with wavenumber, and so above some

value of λ , noise will be preferentially amplified by this deconvolution.

Figure 9.1: The function k̂(λ ) and its reciprocal. The constant

γ = π µ0∆z/h.
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And the same thing happens, though less explosively at small wavenum-

bers. So both the longest and the short wavelengths are amplified in a

singular way, making them the least reliable parts of the solution.

Applying (6), an ‘‘exact’’ solution, to real data presents serious diffi-

culties. We don’t have a continuous function d(x) for all real x, but finite

set of numbers. If we interpolate the samples to create values at short

scales, we are introducing values just where the filter 1/k̂ generates the

greatest exaggeration. If we extend the finite profile by some other kind

of extrapolation, the longest wavelengths are invented, and yet these are

given the unbounded emphasis by the filter! So, while we could attempt

to approximate the analytic inversion with a Fast Fourier Transform of

the actual data, we will turn instead to a process that takes into account

the finiteness of the data set, and its uncertainties.
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10. The Minimum Norm Solution

Staying with the very idealized 1-D problem in a flat, thin layer, we

address directly the question of a finite data set using the Hilbert space

theory. In the previous Section we found that trying to complete the set of

observations to make them suitable for the exact solution automatically

introduced artificial values exactly where the wavenumber filter put the

most emphasis, the longest and shortest wavelengths. To get around this

problem we acknowledge from the start the finite of the data set by writ-

ing

d j =
∞

−∞
∫ g j(x) m(x) dx. j = 1, 2, . . . N (1)

Notice that the model is still defined as a real function on (−∞, ∞). How-

ever, the price to be paid is the fact that there cannot now be a unique

solution, since only finitely many conditions result from (1), but a function

is needed. So we invoke the principle of minimum complexity, and look

only for models that are small in some sense to avoid the exponential

magnifications implied by the deconvolution study. The sense will be the

norm, and for simplicity of calculation we shall say that m ∈ L2(−∞, ∞).

Therefore we write (1) as a set of inner products in L2:

d j = (g j , m), j = 1, 2, . . . N (2)

where from (8.11)

g j(x) =
µ0∆z

2π
h2 − (x − x j)

2

(h2 + (x − x j)
2)2

(3)

These N elements of L2 are the representers for the problem, although

it has not yet been proved that the linear functionals in (2) are in fact

bounded (they are), or equivalently that ||g j|| exists. Figure 10.1 depicts

a typical representer; they are all the same shape, just shifted in x

because (1) is a convolution.

Figure 10.1: A typical representer for the simplified magnetic prob-

lem.
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Recall the result from GIT that the element that achieves the small-

est norm while satisfying (2) is the linear combination of representers:

m0 =
N

j=1
Σ α j g j (4)

The coefficients α j are found by substituting this expansion back into (2)

and solving the linear system

N

k=1
Σ Γ jkα k = d j , j = 1, 2, . . . N (5)

where Γ jk are the entries of the Gram matrix of representers:

Γ jk = (g j , gk), j = 1, 2, . . N ; k = 1, 2, . . N (6)

It is shown in GIT that if the representers are linearly independent, Γ is

nonsingular and so (6) has a unique solution. We will prove that at the

end of this Section.

To make progress we must evaluate the Gram matrix; the integrals

seem at first sight to be quite daunting. But if we recall the result that an

inner product is invariant under Fourier transformation:

(g j , gk) = ( ĝ j , ĝ j) (7)

the task becomes more tractable, especially in view of the simplicity of the

FT in (8.7). We find after a modest amount of work (see GIT, p 80) that

Γ jk =
µ2

0∆z2h

π
4h2 − 3(x j − xk)2

[4h2 + (x j − xk)2]3
(8)

Since Γ jj = ||g j||
2
, this result proves the norms of the representers are

finite, and the integrals in (1) are bounded linear functionals as we have

assumed.

Before applying an inversion to real data it is wise to test it on an

artificial set generated from a known model. So that is what we do next,

the data set is drawn from Chapter 2 of GIT and is shown below. Here

the scale is very different from the near-bottom data shown in Section 8.

Figure 10.2: Fake marine magnetic anomaly data.
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the water depth h = 2 km and the layer thickness ∆z = 1 km. The mini-

mum L2 norm solution is obtained by a few lines of MATLAB:

h=2; dz=1; muo=4*pi*100;
c = muoˆ2*dzˆ2*h/pi;

x = [ -15 : 15]’;
d =[-168.72,-192.57,-197.78,-199.79,-188.49,-135.62,-104.91,-137.87, ...
-28.557,138.00,195.60,192.36,177.66,165.33,157.87,155.41,157.87, ...
165.33,177.66,192.36,195.60,138.00,-28.557,-137.87,-104.91, ...
-135.62,-188.49,-199.79,-197.78,-192.57,-168.72]’;

% Build Gram matrix
[X Y]=meshgrid(x,x);
G=c*(4*hˆ2-3*(X-Y).ˆ2)./(4*hˆ2+(X-Y).ˆ2).ˆ3;

% Solve linear system
a=G\d;

% Represents are columns of g
y=linspace(-30,30,200);
[X Y]=meshgrid(x,y);
g=(muo*dz/(2*pi))*(hˆ2-(X-Y).ˆ2)./(hˆ2+(X-Y).ˆ2).ˆ2;

% Solution is a linear combo of representers
mo = g*a;

The norm minimizer, m0, is plotted below. You can guess what the origi-

nal model was that generated the data from this solution. The result is

fairly wiggly, though it has small amplitude as it should. We should now

think about suppressing these wiggles, say by finding the solution that

minimizes ||dm/dx||. This is discussed in GIT, using a pure Hilbert

space method. We will look at this from a numerical view point in a later

Figure 10.3: L2 norm minimizing magnetization from artificial data

shown in Figure 10.2.
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Section. The results are not very impressive — the wiggles are still there.

In GIT the linear independence of the representers for the 1-D mag-

netic anomaly inverse problem was proved using the Fourier transform. I

will present here an alternative proof, which is more useful because it

gives a method that I have found works for a number of linear inverse

problems, especially those arising out of potential theory like this one.

The approach is successful for problems in two and three dimensional

problems too.

Here we have a set of N functions on the real line given by:

g j(x) =
h2 − (x − x j)

2

(h2 + (x − x j)
2)2

, j = 1, 2, . . . N (9)

where all the x j are different (why?). I have dropped all the constant fac-

tors for obvious reasons. Although the setting of the original problem is

the space L2(−∞, ∞), we can use properties of g j that functions in L2

don’t all possess for our proof. The normal way to prove this kind of

proposition is by contradiction: we shall assume the set is linearly

dependent and then show that leads to a contradiction. The statement

for LI is that there are scalars β j not all zero, such that

N

j=1
Σ β j g j(x) = 0, for all x . (10)

If this is true, we can choose one of the functions gk multiplied by a

nonzero coefficient, and move it onto the other size thus:

gk(x) =
j ≠ k
Σ (− β j /β k) g j(x) (11)

which says that the representer gk can be built from a linear combination

of the others.

To get a contradiction we need to focus on a value of x where gk(x)

goes to infinity. There is no such place on the real line, but never mind —

we can choose x to be complex if we wish! Looking at (9) we see that the

denominator vanishes whenever (x − x j)
2 = −h2 or

x∗ = x j ± ih . (12)

These are the singularities of g j in the complex x plane. Suppose now I

consider the function gk(x) in (11) when x − xk = ih + ε where ε is a small

real quantity of our choosing; in other words, x is very near a singular

point of the function gk(x). From the definition of gk we see that

gk(x) =
h2 − (ih + ε )2

(h2 + (ih + ε )2)2
= −

2h2 +2ihε + ε 2

ε 2(2ih + ε )2
(13)

=
1

2ε 2


1 + O(ε )


. (14)

It is clear that by making ε small enough we can get the magnitude of
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gk(x) as large as we wish. For the same x on the other side of (11) we look

at the denominators and we see a value that does not go to zero as ε gets

small:

(h2 + (x − x j)
2)2 = ((xk − x j + ε )2 +2ih(xk − x j + ε ))2 (15)

= (xk − x j + ε )2(xk − x j + ε +2ih)2 . (16)

This number is not zero for small ε because x j ≠ xk and both of the xs are

real. The same thing is true for every j on the right of (11). This means

that as ε tends to zero, the left size of (11) grows and grows, while the

right side tends to some constant value. That is a contradiction, which

means that constants like β j do not exist.

Almost exactly this argument works for the representers in the more

complicated magnetic problems considered in Section 8 of the Supplemen-

tary Notes, while the Fourier treatment probably could not be made to

apply. Setting up an equation like (11) in which one side is constant,

while the other grows to infinity (or shrinks to zero) is a classic way to

show linear dependence of a set of functions. Doing this in the complex

plane is a very natural thing, because every analytic function has a singu-

larity in the complex plane, except the constant.


