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g(r j , x) =
µ0

2π
Î(B̂0, M̂0) ⋅





r j −s+(x)

|r j −s+(x)|
2

−
r j −s−(x)

|r j −s−(x)|
2





(9)

where Î is the unit vector given by

Î =




sin(I B + I M )

− cos(I B + I M )





(9a)

and the angles I B and I M are the inclinations of the field and magnetiza-

tion vectors in the x-z plane. Also s+ and s− are vectors in the plane point-

ing to the top and bottom of a vertical column of magnetic material (see

Figure 8.2). To get this equation we have integrated (2) both vertically

through the layer and from −∞ to ∞ in the y direction. For the data

shown in Figure 8.1, because the crust is young we can assume M̂0 = B̂0,

the ambient field direction at the site; both these vectors must be pro-

jected onto the observation plane. Then, after finding the inclination and

dip at the Rise in 1995, (57.42°, 15.42°), we calculate that

B̂0 = (0. 018, − 0. 99986) in the plane of the profile, essentially vertically

downward. We will use the approximation that M̂0 = B̂0 = ẑ from now on.

This problem is interesting and we may return to it later in this form.

But to get a magnetization inverse problem so simple we can solve all the

integrals analytically we need even more drastic simplification.

We make two further approximations that will be relaxed later: first,

we will take the track and the surface of the basement to be horizontal,

flat lines. This looks like a serious error from Figure 8.1, but there is a

factor of 15:1 in the plot of the track and bathymetry. And finally, we will

take the layer thickness, ∆z to be small, so that the magnetization can be

treated as a thin sheet of dipoles. This assumption is highly suspect: mag-

netic layer thicknesses at oceanic rises are thought to be at least 500 m.

With these further approximations (8) and (9) become:

d j = ∫ g j(x) m(x) dx (10)

with

g j(x) =
µ0∆z

2π
h2 − (x − x j)

2

(h2 + (x − x j)
2)2

(11)

Here the height above the basement is the constant h = 174 meters on

average; measurements of the anomaly are taken at the horizontal coordi-

nates x j . This is the result used in GIT 2.06( 2), with the addition of the

factor ∆z, omitted there by oversight, because ∆z = 1 km in all the calcula-

tions!

We have to decide on an interval for the integration. In the idealized

problem we will pretend the magnetic layer extends over the whole real

line. This gross idealization does not get us into trouble until a bit later,

and is very handy for solving the integrals. If we like the norm
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||m|| =




∞

−∞
∫ m(x)2 dx





½

(12)

then the space of magnetization models becomes the classic Hilbert space

L2(−∞, ∞), with inner product

( f , g) =
∞

−∞
∫ f (x) g(x) dx (13)

Is (11) an inner product in this space? The answer is yes if we can show

that

||g j||
2 =

µ2
0∆z2

4π2

∞

−∞
∫

(h2 − (x − x j)
2)2

(h2 + (x − x j)
2)4

dz (14)

is finite. Later we will evaluate this messy integral exactly. For now we

can show it is bounded, by a couple of simple observations: the function

g j(x)2 is bounded and continuous (in fact it is analytic on the real line); as

|x| →∞ we can easily verify that g(x) → µ0∆z/2πx2 so that g(x)2 → con-

stant /x4. This dies awa y fast enough to have a finite integral and there

we can write (10) as

d j = (g j , m), j = 1, 2, . . . m (15)

Again, this may not be the only norm we will want to use, but to get

things started L2(−∞, ∞) is a good place to start.

You may be asking, when would the linear functions fail to be

bounded, and what would be the consequences of that failure? In this

problem, we can cause the integrals like (14) to be undefined simply by

setting h the height of the observation line, go to zero, effectively setting

the magnetometer directly on the sources, instead of above them; this is

not an impossible experimental geometry. One way to look at the failure

is to examine the limit as h tends to zero: we find the norm minimizing

magnetization becomes more and more closely concentrated around the

observation sites, and has a smaller and smaller norm, in the limit,

||m|| = 0. The model space L2 is inappropriate because it does not lead

to a geophysically plausible, let alone a simple solution. The original jus-

tification for norm minimizers was that they should select models with

the fewest extraneous features, to be as bland and unobjectionable as pos-

sible. When h is set to zero, L2 fails to do this, and we should look for a

different approach; the best way is to leave Hilbert space entirely.


