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11. The Numerical Alternative

The functional analysis approach to the norm minimization problem in

Hilbert space shows how an exact theory can be worked out retaining the

essential asymmetry between data and model: data are finite in number,

but the model is a function that lives on an infinite-dimensional space.

But real-world situations in which the Gram matrix can be calculated

exactly, while not nonexistent, are in the minority. I mention for your edi-

fication two of my papers where exact Gram matrices are in fact found:

Shure, L., Parker, R. L., and G. E. Backus: Harmonic splines for geomag-

netic modeling, in Phys. Earth Planet. Inter., 28, 215-29, 1982 and Parker,

R. L.: Calibration of the pass-through magnetometer-I. Theory, in Geo-

phys. J. Internat., 142, 371-83, 2000. Numerical methods will in any case

appear at some point in every calculation and so we will now develop a

treatment based on linear algebra that is founded on a finite-dimensional

approximation for the forward problem.

The key is that the linear functional that captures the solution to

the forward problem, written in Chapter 2 of GIT as

(g j , m) = d j , j = 1, 2, . . . M (1)

can be written in an approximation as a finite sum

gT
j m = d j , j = 1, 2, . . . M (2)

where g j , m ∈ IRN ; so now the model and representers are vectors of

dimension N . Of course (2) is more compactly written

Gm = d (3)

where G ∈ IRM×N and d ∈ IRM and the rows of the matrix G are the (row)

vectors gT
j . At this point in the class when the models are simple, we

tend to think of M, the number of data, being a lot smaller than the N

the dimension of the model space, but when big data sets are involved

that isn’t always the case.

In the vast majority of practical cases the inner product in (1) is rep-

resenting an integral, as in the inner product of L2. To make the transi-

tion to (2) one must discretize the underlying continuous problem. The

most primitive way of doing this which, quite honestly I prefer, is to break

the model space up into boxes and replace the integral by a simple sum.

On the real line, for example, in the simple one-dimensional magnetiza-

tion problem, we could use uniform sampling, ∆x, and then

b

a
∫ f (x) dx =

N

k=1
Σ wk f (a + (k −1)∆x) + ε (4)

where ∆x = (b − a)/(N −1), wk are a set of weights, and ε is the error

approximation. The easiest, and in most circumstances least accurate for-

mula of this kind is the trapezoidal rule where one takes:
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w1 = wN = ½∆x, w2 = w3 = . . . wN−1 = ∆x (5)

which has the effect of replacing the original function f (x) by the straight-

line approximation, show in Figure 11.1. The error term then tends to

zero as ∆x2, provided f is smooth enough to be twice differentiable.

Another favorite is Simpson’s rule; here

w1 = wN = 1

3
∆x, w2 = w4 = . . . wN−1 = 4

3
∆x (6)

w3 = w5 = . . . wN−2 = 2

3
∆x

and the number of samples N must be odd. Now instead of straight lines

between sample points, the effective approximation is that of parabolic

arcs (quadratic interpolation). The error decreases as ∆z4 but the func-

tion must be four-times differentiable. If one relaxes the constraint the

sample in x be even, one can increase the accuracy of the approximation

considerably, with Gaussian quadrature. Here one looks for the highest

degree polynomial approximation to the integral; this idea is dealt with in

every text on numerical analysis. Less well known are the rules for inte-

grating over surfaces and volume elements, often by building upon the

Gaussian method. For these see Stroud, A. H., Approximate Calculation

of Multiple Integrals Prentice-Hall Book Co. 1971.

Another idea is to say the model itself consists of a piece-wise con-

stant or a piece-wise linear function, and to perform the integral analyti-

cally over the chosen region. This can be done for many 3-dimensional

polyhedral shapes for potential fields (gravity and magnetism), and has

the advantage of avoiding large errors that can arise when the observer is

very near, or actually in contact with, the source material. See Blakely, R.

J., Potential Theory in Gravity and Magnetic Applications, Cambridge

University Press, New York, 1995, for lots of messy formulas, and

Figure 11.1: Trapezoidal and Simpson quadrature.
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FORTRAN code too! This approach may be necessary when the representer

is unbounded (as it is with gravity or magnetic measurements made on

the surface of the source region) because then trapezoidal or Simpson

quadrature can give infinite answers.

Let us try some of these ideas out on the 1-dimensional crustal mag-

netization problem. First consider the norm minimizing model. We are

going to numerical approximations of the norm:

|| f || =




∞

−∞
∫ f (x)2 dx





½

(7)

and the corresponding inner product. The first thing that must go is the

infinite interval of integration, which was a mathematical fiction anyhow.

To represent the integral by a finite sum we will have at least two ways:

(a) we can just truncate the interval to a finite one; (b) we could use a

change of variable, that maps the real line onto some interval (a, b) and

then we use (4)—a possible candidate might be x = h tanθ which sends

the real line into (−½π, ½π). Here I will pursue (a). We will simply

assume that the magnetization is confined between ±25 km, adding 2.5

times the water depth h to each end of the interval containing the mea-

surements. So now the model norm is found from

||m||
2 = mTWm (8)

where m ∈ IRN a vector of evenly spaced samples of the model, and

W ∈ IRN×N is the diagonal matrix:

W = diag (w1, w2, . . . wN ) (9)

and we choose the weights wk according some integration rule, say Simp-

son. Then the statement that the model fits the data looks like this

GW m = d . (10)

Here each row of G ∈ IRM×N is a vector of samples of the representer g j

and the N points ξ k:

G jk = g j(ξ k) =
µ0∆z

2π
h2 − (ξ k − x j)

2

(h2 + (ξ k − x j)
2)2

, j =1, 2, . . . M, k =1, 2, . . . N . (11)

The matrix W is doing the integration here. It is natural to choose

N > M, more model points than data, and so we have an underdetermined

LS problem to solve. It is not quite in the form we considered earlier in

sections 5 and 6, but that can easily be fixed by a simple substitution.

Suppose I introduce n ∈ IRN as

m = W−½n (12)

where by W−½ I mean the diagonal matrix diag(w−½
1 , w−½

2 , . . . w−½
N ). Then

in terms of n (8) becomes
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||m||
2 = (W−½n)TW (W−½n) = nT (W−½)TWW−½n (13)

= nT n . (14)

So the norm of m is L2 becomes the Euclidean length of the vector n. And

putting n into (10) gives

(GW½) n = d (15)

This is an ordinary underdetermined LS problem for n with the

matrix A = GW½ ∈ IRM×N . We can use QR on this for example if we need

extra stability. If we use the normal equations, recall the solution 6(20):

n = AT (A AT)−1

d = (GW½)T [GW½(GW½)T ]−1d (16)

= W½GT [G W  GT]−1

d . (17)

The matrix GWGT ∈ IRN×N is the numerical approximation of the Gram

matrix. So a = [G W  GT]−1

d is the approximation for the vector of coeffi-

cients α in 10(4), for example, and you will easily verify that after we mul-

tiply through by W−½ as indicated in (12), we get

m = GT [G W  GT]−1

d = GT a (18)

the equation which is the numerical equivalent to

m =
M

j=1
Σ α j g j (19)

the standard solution from the recipe from Hilbert space.

The numerical results for the idealized magnetic profile are shown

in Figure 11.2; here I have chosen the number of sample points N to be

101. Three solutions are plotted superimposed: the two numerical models

using Simpson’s rule and trapezoidal rule and the analytic result found by

solving the system in L2(−∞, ∞). A surprising result is that the analytic

model and trapezoidal rule track almost exactly, and the Simpson rule

solution is slightly different, visible as the slightly less wiggly curve in the

magnified picture. The 2-norm of all of these solutions is 15.4; the dis-

tance between the Simpson solution and the exact one is 0.51 in the norm,

while it is only 0.0079 between the trapezoidal solution and the exact

result.

When we come to a seminorm minimization, one that could penalize

the gradient for example, we can replace (8) by

||Pm||
2 = (Dm)TW1 Dm = mT (DTW1 D) m (20)

where D ∈ IRN−1×N is the upper triangular matrix approximating the first

difference:
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D =
1

∆x








−1 1

−1 1

−1 1

. . .

−1 1








(21)

where entries that are not ±1 are zeros. And, since D is not square, W1 is

a weight matrix in IRN−1×N−1. We cannot perform the same trick as in the

norm minimization, because the matrix (DTW1 D) is not of full rank, (a

constant vector is mapped to zero) and cannot therefore be inverted.

Inversion is implied when one forms W−½ from W . So we have a form of

LS problem that we did not meet earlier:

x0 = arg
Ax = y
min xT Bx (22)

where A ∈ IRM×N , with N > M, B ∈ IRN×N and B is not necessarily of full

rank. We can solve this with the introduction of M Lagrange multipliers,

or equivalently a vector µ ∈ IRM . Then the unconstrained function is

u(x, µ) = xT Bx − µT (Ax − y) .  (23)

The usual differentiation leads to a linear system to be solved:





2B

A

−AT

OM








x

µ



= 


0

y




. (24)

Figure 11.2: Numerical and analytic solutions.
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This is a rather large matrix, but in our example B = DTW1 D is tridiago-

nal, and therefore mostly zeros, and the lower right matrix is all zeros, so

sparse techniques are applicable to speed up the solution if the M and N

get large. The relationship between this solution and the one found in

Hilbert space in GIT pp 74-78 is not at all obvious. I will not get into the

correspondence, because we will hardly ever use (24) in future.

Now that we have machinery for solving more realistic problems, let

us return to the real magnetic anomaly profile taken near the seafloor at

the Juan de Fuca Rise, plotted in Figure 8.1 of the notes. The forward

problem is solved with 8(8-9), which I will repeat here for convenience,

but you will need to look at Figure 8.2 also.

d j = ∫ g(r j , x) m(x) dx =
k
Σ wk g(r j , xk) m(xk) (25)

where wk are the quadrature weights, and the representer is

g(r j , x) =
µ0

2π





ẑ ⋅ (r j −s+(x))

|r j −s+(x)|
2

−
ẑ ⋅ (r j −s−(x))

|r j −s−(x)|
2




. (26)

Notice I have inserted the approximation that M̂0 = B̂0 = ẑ, so that Î = ẑ.

We form the matrix G ∈ IRM×N , whose rows are the representers:

G jk = g(r j , xk), j = 1, 2, . . . M, k = 1, 2, . . . N . (27)

As before I am going to sample evenly, and it is important to have more

model points than data. Also we cannot go to infinity, in x, and as before I

take a modest extension of 0. 5 km, a small multiple of the observation

height, at each end. Below I give you a code fragment of MATLAB that

generates the matrix G. On entry to this part of the code, the are vectors

xo, zo ∈ IRM containing the observer coordinates, and xb, zb, ∈ IRN

holding coordinates of the basement topography. What I want to illus-

trate is how the MATLAB function meshgrid makes it possible to prepare

a matrix like G in a way that almost exactly mirrors the algebra: compare

the code with (26). The only somewhat odd feature is that the arrays like

Zo etc have a row dimension inherited from the second vector in the argu-

ment, where I would expect the row dimension to be defined by the first

vector.

[Zo Zb] = meshgrid(zo, zb);
[Xo Xb] = meshgrid(xo, xb);

G1 = (Zo - Zb) ./((Zo-Zb).ˆ2 + (Xo-Xb).ˆ2);
Zb = Zb - dz;
G2 = (Zo - Zb) ./((Zo-Zb).ˆ2 + (Xo-Xb).ˆ2);
G = (muo/(2*pi)) * (G1 - G2);

So now G has columns of representers, which is convenient if one wishes

to plot them. What do the representers for the realistic problem look like?
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In Figure 11.3 I plot every fifth one. Notice they resemble the simple g j

representers of the original L2 problem, but with variable amplitudes and

irregular shapes. To speed execution it would be reasonable to set the

small-amplitude portions to zero thus making G sparse.

Next we calculate the smallest m in L2. I use the trapezoidal rule for

simplicity, and for stability apply QR to equation (15). The horrible result

appears in Figure 11.4. This is the smallest norm model, yet the mag-

netic intensities are two orders of magnitude larger than those typically

found in marine basalts! What has gone wrong? This inverse problem

was based on real field data, not artificially generated exact numbers. We

see here the effect of instability in the presence of noise in the measure-

ments—quite small errors have been amplified grotesquely, even though

are we attempting to find small solutions. It is time to lift the artificial

demand that the data must be fitted exactly.

Figure 11.3: Representers from equation (26) plotted with vertical

offsets.
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