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12. Estimating the Noise Parameters

In Chapter 3 of GIT we saw that the concept of an adequate fit of model

predictions to the measured values depends on having a quantitative esti-

mate of the measurement uncertainty, most conveniently, an estimate of

the noise variance. This is often very difficult to do objectively, and in

seismology in particular, people often say it’s too difficult to do. In ordi-

nary parameter estimation in statistics, fitting a straight line for example,

we have many more data than parameters, and the misfit to the model

gives a measure of uncertainty all on its own. A standard result for linear

parameter estimation, used to estimate the noise, is

E [
N

j=1
Σ (d j − Θ j)

2] = (N − P) σ 2 (1)

where Θ j are the predictions of the linear model, P is the number of

parameters in the model, and σ is the standard error of the noise in the

measurements d j . The number N − P is often called the number of

degrees of freedom in the data. In the linear inverse problem, this result

presents us with a difficulty: in principle P is infinite! With linearly inde-

pendent representers (the normal situation) we can always reduce the

misfit to zero if necessary.

How can we get a value for σ ? In some inverse problems there data

themselves are often composites estimated by averaging over large num-

bers of actual measurements. The best example of this electromagnetic

sounding, in which the response of the Earth is obtained by time-series

Figure 12.1: Global electromagnetic response with one-standard-

deviation error bars.
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analysis of long data series of electric and magnetic fields. Those field

measurements themselves are never used directly. In this subject a com-

plex function of frequency (called an admittance or a transfer function) is

found statistically, and comes with error bars already; consult Egbert, G.

D., and Booker, J. R., Robust estimation of geomagnetic transfer functions,

Geophys. J. R. Astron. Soc., 87, 173-94, 1986. Alternatively, when Steve

Constable wanted to calculate a global transfer function, he averaged

together responses from several independent studies made in scattered

locations, and came up with response whose uncertainties were estimated

by their deviation from the mean; see Figure 12.1 and Constable, S., Con-

straints on mantle electrical conductivity from field and laboratory mea-

surements, J. Geomag. Geoelectr., 45, 707-9, 1993.

If we are to identify and quantify noise in data, we need a character-

istic that separates it from signal. When the noise is uncorrelated from

point to point, it will have a flat power spectral density; even if it is not

completely uncorrelated, the noise spectrum is usually much flatter than

Figure 12.2: Travel-time picks from geophones in a well: the check-

shot data.
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that of the signal. When the measurements are made serially in time, or

in space (along a profile, for example) it is usually possible to estimate the

power spectrum, or power spectral density (PSD), from the data set.

There is no space to go into how PSD are calculated here; that will be cov-

ered in the course on geophysical data analysis in the Spring Quarter.

For a good reference see: Priestley, M. B., Spectral Analysis and Time

Series, Academic Press, New York, 1981.

On the previous page we see an example of seismic ‘‘check-shot’’

data. These are first-arrival travel time picks from geophones in an oil

well, from a charge fired at the surface. If we want to invert this record

we will need an estimate of uncertainties. One way would be to look at

the original traces, and to take a guess at how accurately the first pulse

emerges from the ambient noise, but I don’t have the original records, just

the time picks. So we take the power spectrum, from the 169 data. The

result, show in Figure 12.3 is remarkably revealing. The two curves

belong to different estimation methods for the PSD. What we see is a

steeply falling part (a red spectrum), out to a wavenumber of around

0.006 m−1 , and then a plateau. The flat portion is characteristic of white

noise, or an uncorrelated random signal. A very compelling interpreta-

tion of this spectrum is that the red part comes from the geophysical sig-

nal, and the white spectrum is the result of noise in the data. We will

assume the noise spectrum continues to the smallest wavenumbers, but is

Figure 12.3: Power spectral density of checkshot data.
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completely overwhelmed by signal below 0.006 m−1. Then we use the

famous result that

var [X ] =
kmax

0

∫ P X (k) dk (2)

The variance is just the area under the PSD curve. This gives us approxi-

mately σ 2 = 0. 03 ×4 ×10−6 = 1. 2 ×10−7s2; hence σ = 0. 00035 s, or 0.35 mil-

liseconds. The uncertainty in these data would plot as an error bar too

small to see on Figure 12.2. A completely different approach leads to

almost exactly the same error estimate: see Malinverno, A., and Parker,

R. L., Two ways to quantify uncertainty in geophysical inverse problems,

Geophysics, 71, 15-27, 2005.

We will use the same technique on the near seafloor magnetic data,

since it is part of a long serial record. The PSD of our magnetic anomaly

is shown as the solid curve in Figure 12.4. At first the picture is not as

convincing as it is for the checkshot seismic data, where there is a com-

pletely clear division between a red and a flat spectrum, but in this case

there is a bit of theory to guide us in what to expect; see Parker, R. L., and

O’Brien, M. S., Spectral analysis of vector magnetic field profiles, J. Geo-

phys. Res., 102, 24815-24824, 1997. If the track were level and the base-

ment were flat and contained a random magnetization, we would expect

Figure 12.4: PSD of a segment of the near-bottom magnetic anomaly

profile.
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the magnetic anomaly PSD to fall approximately exponentially, like

exp (−4πkh). The elevation of the magnetometer above the basement lies

roughly between 116 m and 200 m, and the lower level will dominate at

the higher wavenumbers; the long dashed line shows the exponential fall-

off for the lower value of h, and it fits the spectrum rather well. There is

a break at about 6 km−1, which I will interpret as the point where noise

begins to exceed signal. In marine magnetic surveys the noise is caused

by other environmental magnetic fields, such as time-varying fields due to

currents in the ionosphere, and also those from electric currents in the

water caused by induction. I will assume the PSD of the noise is approxi-

mately white, and follows the horizontal grey line. The corresponding

variance from (2) is 8. 5 × 25 = 210 nT2 which yields a value for

σ = 14. 5 nT. Remarkable confirmation for this model comes from the sec-

ond PSD, shown with short dashes. Unusually in a survey of this kind, a

second magnetometer was tethered to the cable 300 m higher up than the

one we have been using. By the theory I mentioned, its spectrum falls

much faster, so the PSD hits the noise level at a lower wavenumber, and

as we see in the figure, it levels out at the same value, because it is in

essentially the same noise environment as the lower instrument. Thanks

to the second magnetometer we can be confident in our estimate for the

uncertainty.

The spectral approach requires a number of additional assumptions

about the noise, primarily, that it is statistically stationary. This means

that the random process responsible for the noise is the same everywhere

in the data series. That is often a plausible assumption, and would be

accepted for the marine data. The message I want to leave you with is

that the power spectrum usually gives an important clue about the noise,

because the noise persists out to the highest frequencies, while most natu-

ral processes have a red spectrum, and the components of the signal at

the high frequencies (or wavenumbers) are usually attenuated, thus per-

mitted the noise spectrum to show itself. If this doesn’t happen the data

are not being sampled at a high enough rate, and there is danger of alias-

ing, which means the signal is being sampled too slowly to capture its

true behavior.
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13. Fitting within a Tolerance

The statistical theory of the early sections of Chapter 3 in GIT tell us that

a good fit to the observations can be expressed in the form

||Σ−1(d − Θ(m))|| ≤ T (1)

where d, Θ ∈ IRM are vectors containing the measurements and the pre-

dictions of the model m ∈ IRN ; Σ ∈ IRM×M is usually a diagonal matrix of

standard errors (for the rare case of correlated errors something else

replaces the diagonal matrix); and T is tolerance that we arrive at by a

subjective decision about what we regard as acceptable odds of being

wrong. For mere model building, a loose 50% level is just fine. We will

almost always use the 2-norm on the data space, and thus the chi-squared

statistic will be our guide.

From here on in our discussion we will take the purely practical

road, and so the vector of theory, Θ will not be a collection of inner prod-

ucts in a Hilbert space, but instead

Θ(m) = GWm (2)

where m ∈ IRN is a vector representing the model itself, and G ∈ IRM×N is

a matrix with rows sampling the representers, and W ∈ IRN×N is the

quadrature matrix, another diagonal matrix.

We seek the smallest model, or the simplest solution, and for now

that idea will be encapsulated in the minimization of penalty function,

a norm or seminorm:

||Rm|| (3)

where R ∈ IRL×N is a regularizing matrix, which might not be of full rank,

and might penalize only part of the solution, so that L < N as in 11(20);

recall the brief discussion on pp 51-52 in the Notes, where we differenced

m. A welcome feature of the numerical approach (as opposed to the ana-

lytic one) is that the treatment is indifferent to which of the two choices,

norm or seminorm, is made. At first glance the normal strategy of calling

in a Lagrange multiplier to handle the constraint (1) is inapplicable

because of the inequality. But as GIT demonstrates at great length, we

can still use this useful tool after all, with the caveat that we must first

check that a model satisfying

Rm = 0 (4)

cannot satisfy (1). If such a model does exist, then clearly zero is the min-

imum of the penalty function. In practice, this will almost never happen,

and so then the problem to be solved is to find the stationary value of the

unconstrained function

u(m, ν ) = ||R m||
2 + ν [||Σ−1(d − GW m)||

2
] − T2] (5)

where ν is the Lagrange multiplier accompanying the constraint:
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||Σ−1(d − GW m)|| = T . (6)

To reduce the clutter I introduce a couple of abbreviations: let

d̂ = Σ−1d, and B = Σ−1GW . (7)

This gives us the new unconstrained function

u(m,ν ) = ||R m||
2 + ν [||d̂ − B m||

2
] − T2] .  (8)

Notice that, for a fixed value of T , minimization of this expression can be

regarded as seeking a compromise between two undesirable properties of

the solution: the first term represents model complexity, which we wish to

keep small; the second measures model misfit, also a quantity to be sup-

pressed as far as possible. By making ν > 0  but small we pay attention to

the penalty function at the expense of data misfit, while making ν large

works in the other direction, and allows large penalty values to secure a

good match to observation. Let us continue.

We can differentiate (8) with respect to m by writing out the expres-

sion in terms of components; I will spare you the intermediate steps

which we have seen several times in slightly different contexts. At a sta-

tionary point of (8) the gradient of u vanishes and we find the vector m0

obeys

RT R m0 + ν BT B m0 − ν BT d̂ = 0 .  (9)

Or, equivalently, m0 satisfies the linear system

(BT B +
1

ν
RT R) m0 = BT d̂ . (10)

Differentiating with ν returns the constraint, now written as

||d̂ − B m0|| = T . (11)

If we knew the value of ν , we could find the model by solving (10). So the

tactic for solving (10) and (11) together, as we must, requires solving (10)

for a sequence of ν s seeking the vector m0 that gives (11). We need to

show that as ν increases, the misfit norm in (11) decreases. This result is

intuitive from our discussion after (8), but it also is useful to have the de-

rivative itself. Consider the squared misfit in (11) to be purely a function

of ν :

F(ν ) = ||d̂ − B m0(ν )||
2

. (12)

Then differentiating on ν

dF

dν
= − 2 (d̂ − B m0(ν ))T B

dm0

dν
= −2 (BT (d̂ − B m0))T dm0

dν
. (13)

By rearranging (9) we see that

BT (d̂ − B m0) =
1

ν
RT Rm0 (14)
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and hence

dF

dν
= −

2

ν
(RT Rm0)T dm0

dν
. (15)

Now to get dm0/dν , differentiate both sides of (10):

(BT B +
1

ν
RT R)

dm0

dν
−

1

ν 2
RT Rm0 = 0 .  (16)

Solving for dm0/dν and plugging the answer into (15) gives the glorious

result

dF

dν
= −

2

ν 3
(RT Rm0)T (BT B +

1

ν
RT R)−1(RT Rm0) .  (17)

The inverse matrix in the middle is positive definite, because it is com-

posed of the sum of positive definite pieces; then, since ν > 0  the whole

thing must be negative.

This simplifies the strategy for solving the pair (10)-(11), because

now we know that when a guess for ν yields a value of F that is too high,

we must increase ν , and conversely. Better yet we can even use Newton’s

method, which you will recall can be used for solving equations in a sin-

gle variable: in this case the equation is

F(ν 0) = T2 . (18)

We begin with an initial value ν 1 > 0, and we perform a one-term Taylor

expansion on (18) as follows:

T2 = F(ν 1 +ν 0 −ν 1) = F(ν 1) + (ν 0 −ν 1)F ′(ν 1) + ε (19)

where F ′ denotes the derivative, and ε is error due to the neglect of higher

order terms in the series. Rearranging this expression gives

ν 0 = ν 1 −
F(ν 1) − T2

F ′(ν 1)
+

ε
F ′(ν 1)

. (20)

If the ε , the second order term in the Taylor expansion is neglected, (20)

gives a recipe for the next step in an iterative process which we write

ν n+1 = ν n −
F(ν n) − T2

F ′(ν n)
, n = 1, 2, . . . . (21)

It is shown in GIT that this procedure always converges, provided the ini-

tial guess obeys ν 1 < ν 0. But surprisingly perhaps, a faster rate of conver-

gence is usually obtained by writing (18) as

ln (F(ν 0)) = 2 ln T (22)

and solving this equation with Newton’s method.

Let us summarize the process. Recall the abbreviations introduced

in (7). We wish to discover the solution vector m0 and the Lagrange mul-

tiplier ν 0 which solve simultaneously the linear system (10) and the misfit

constraint (11). We make an initial guess for ν which we call ν 1, and with
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it we solve (10). We take the resultant model vector and put it into (12)

which gives us F. We also solve the system (17), which provides us with

dF/dν . If F is close enough to T2 we stop. Otherwise we use (21) to

obtain a revised version of ν , with which we can begin the cycle again.

There are a number of points, before we examine this process in an

illustration. Equation (10) can be written as the solution to an overdeter-

mined least-squares approximation problem:





B

ν −½ R





m0 ˜




d̂

0





(23)

you will easily verify that the normal equations for this overdetermined

least squares problem is exactly (10). We can write a similar equation for

dm0/dν





B

ν −½ R





dm0

dν ˜




0

ν −3/2 Rm0





(24)

There are two possible reasons for treating (10) as the solution of (23).

First, when the size of the system is modest, we can solve (23) by QR fac-

torization and avoid poor numerical stability. Second, R is almost always

sparse, so when the system is large we can take advantage of the sparse

LS form of the solution, 6(13) in our notes on linear algebra. And if the

system is very large, that form can be conveniently solved by the method

of conjugate gradients, as we will see later.

Let us now apply this approach to our near-bottom magnetic anom-

aly problem. You may recall that we looked for the smallest magnetiza-

tion model in L2 that fit the measured values exactly and obtained a

mess, plotted in Figure 11.4. The model is one hundred times larger than

a reasonable solution should be, yet it is the smallest model. The fault is

the demand of an exact fit. In Section 11 of these Notes I obtained a noise

estimate of σ = 14. 5 nT, a quantity too small to be distinguished in a plot

showing the full range of the data; can such a small misfit reduce the size

of the solution to a reasonable level? We decide in advance what will be

acceptable as a plausible size of misfit. I suggest that we take the

expected value of error norm as a trial value. Thus, as shown in GIT on p

124

E [||d − Θ|| /σ ] = √  N



1 −

1

4N
+ . . .





(25)

where we have used the fact that noise will be treated as iid. Then since

N = 100, we calculate that the misfit tolerance in 11(6) is T = 9. 975. The

target misfit for Newton’s method is T2. We will minimize the L2 norm as

before, using trapezoidal rule for all the integrations.

In the figure on the next page we see the progress of the iterative

solution, which starts with ν = 0. 001 and then goes down in F and up in

ν . The starting guess lies below the solution ν 0, and so Newton is
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Figure 13.1: Squared misfit vs Lagrange multiplier.

guaranteed to converge. If the guess had been too high, we could not reli-

ably use the Newton iterate, because it can ask for negative values, which

are forbidden; so in those circumstances we just divide the guess by ten

and try again. In this example the procedure took 10 steps to converge to

about 4 significant figures. It is obvious we could get much more rapid

convergence if logarithmic values (both ln F and lnν ) were used, because

the curve is nearly straight in these variables, and Newton’s method is

based on a linear approximation. I leave the details for a homework exer-

cise.

The norm of the new model m0 is considerably smaller than the one

obtained by an exact fit: now ||m0|| = 6. 26, while a precise match yields a

norm of 697. The new model is considerably more reasonable in size, as

we had hoped. And this is confirmed in Figure 13.2, where the solid line

is the L2 norm minimizer. This solution is spiky but keeps its magnetiza-

tion in a range of perfectly acceptable numbers. Notice the sign is pre-

dominantly positive, which we might perhaps expect as the profile is the

Bruhnes normal magnetic period. The strongly reversed section between

1.6 and 2.5 km is interesting, because it is not a well recognized brief

reversal. Are any of the model’s reversed magnetization sections real, or

can they be dispensed with while still matching the measurements? This

is a question we must wait to answer.

In the same figure shown dashed is the minimizer of the 2-norm of

dm/dx; it is noticeably smoother, and a little larger. The nasty spike in

m0 near 3.2 km has been greatly reduced, but that is hard to see in this
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Figure 13.2: Minimum norm and seminorm magnetizations with

plausible misfits.

graph. We probably can conclude that the crustal magnetization is far

from constant along this profile, and that big swings in the original field

are not due to effects of topography (changes in range of the magnetome-

ter from the sources), but are a genuine reflection of variable magnetic

intensity in the basement. But whether or not reversed magnetization is

required has not been established; it certainly looks like it on the present

evidence.


