
-69-

14. Resolution in the Marine Magnetics Example

We carry out the resolution analysis for the model on the Juan de Fuca

Ridge that has been our standard vehicle in the linear theory. As

explained in class, one of the fairly traditional ways of doing this is to cali-

brate the regularization process by testing it with artificial data, gener-

ated from special models, often delta functions, at various points. This

must be done using exactly the same parameter settings as were used in

making the regularized model. Then we see at each point how badly

smeared out a very sharp feature would be after being processed through

the inversion machinery. This gives us a qualitative assessment of the

length scales resolved in the solution.

Figure 14.1 shows the results for five locations of the test function.

We see the resolution varies by quite a large factor from place to place,

but is reasonably satisfactory everywhere. At x = 2 km we may be resolv-

ing structure only down to about 0.5 km, while near 3 km the resolution

improves to almost 0.1 km. The cause of the variation is easy to discover

in this case: resolving scale is apparently proportional to the distance to

the nearest source material, as you can easily see by comparing this fig-

ure with Figure 8.1.

Figure 14.1: Top: L2-norm minimizing magnetization. Bottom: Reso-

lution functions for various sites.
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15. Practical Calculation of a Bound

In Section 4.03 of GIT I treat the question of finding the range of a linear

functional subject to constraints from data (linear functions) and a nonlin-

ear conditions, that the norm be restricted as well. There in the noise-free

case an elegant theory is developed for the noise-free case (data matched

exactly by the model), and a number of predictions, also in the form of lin-

ear functionals. The problem with noise seems to be much more clumsy.

Here I want to give a simpler for numerically formulated problems.

To motivate the discussion look again at Figure 14.1 and the nega-

tive magnetization near x = 2 km. According to the resolution calcula-

tions, the regularized model should be trustworthy on the scale of a kilo-

meter, and so we are inclined to accept the reality of reversed magnetiza-

tion in this region. But is that truly required by the data? As GIT 4.03

shows us, we cannot be sure without introducing some further informa-

tion. Suppose we say we know the L2 norm of m. If we confine all mag-

netic material to −0. 5 ≤ x ≤ 6 then ||m||/√ 6. 5 = MRMS, and we might be

willing to specify an upper limit on plausible RMS magnetizations, from

samples of fresh marine basalts. Then one way we might answer the

question of a possible record of magnetic reversal is to consider the aver-

age value of magnetization over the x interval (x1, x2) where the regular-

ized model dips negative; numerically this is (1.8, 2.4) km. We will call

this <m>:

<m> =
1

x2 − x1

x2

x1

∫ m(x) dx . (1)

We challenge the hypothesis that the negative <m> is required: if the

every model that adequately matches the anomalies and has a positive

average possesses an implausibly large RMS magnetization then a rever-

sal is demanded in the interval. The converse, a positive average consis-

tent with a reasonable RMS, does not mean the absence of a reversal how-

ever, because negative segments might still be needed, even with a posi-

tive average—it is just an average; we’ll return to this later.

The idea then is to seek the smallest norm of the discretized model

m ∈ IRN :

m ∈ IRN
min ||Rm|| (2)

subject to an adequate fit to the measurements:

||d̂ − B m|| ≤ T (3)

and the constraint on a linear functional of the model, in the example the

average given in (1):

lT m = b (4)

where the scaled data d̂ and matrix B ∈ IRM×N are given in 13(8); l ∈ IRN
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is vector which approximates averaging the model over a region. If the

smallest norm found in (2) is too large when (2) and (3) hold, we know

that (3) cannot be supported. How does one apply the equality constraint

(4)? Obviously one approach is introduce a second Lagrange multiplier, in

addition to the one needed to account for (3). Let me describe a simpler

approach. We treat (4) as another fictitious "observation" to be fitted

(almost) exactly by including it in (3). Write a data vector d̂1 ∈ IRN+1 and

a new B1 ∈ IR(M+1)×N and a scalar γ :

B1 =




γ lT

B




; d̂1 =





γ b

d̂





(5)

where γ > 0  is a very large constant. This clearly has the effect in the fit-

ting problem of giving (4) a heavy weight, so that it will be fit more accu-

rately than the rest of the data. Now we solve the standard norm mini-

mization problem (2) subject to misfit (3) achieving a specified tolerance

exactly as in (3), where B and d̂ are replaced by B1 and d̂1. But wait a

minute—shouldn’t we have to designate a new T as well? We have

messed up the fitting process by including a very accurate fake datum.

The answer is no: it can be shown (in Chapter 22, of Solving Least

Squares Problems, by Lawson and Hanson, 1974) that if γ is large enough,

the misfit component introduced by the new row in B1 is negligible! How

large is that? Lawson and Hanson give a very conservative figure; I find

that if γ ||l|| = 100||B|| we can get very good results. Too large a value

for γ leads to numerical instability, unfortunately. The advantage of this

approach is that we use exactly the same code when we bound the linear

function l as when we find a regularized model.

We apply these ideas to the near-bottom magnetic anomalies. The

linear functional we are interested in is the average value <m> in the

interval where the regularized model goes negative, so if the length of

that interval is D = x2 − x1 and the spacing in the discretized model is ∆x,

the vector l in (4) looks like this if we use the trapezoidal rule to approxi-

mate (1):

l =
∆x

D
[0, 0, . . . 0, ½, 1, 1, 1, 1, . . . 1, ½, 0, 0, . . . 0]T . (6)

The first choice for b the bound in (4) might be zero, but in fact consider-

able insight is gained if we sweep b through a range of values. The

results are plotted in Figure 15.1. For each value of <m> we plot the min-

imum possible norm, normalized to be RMS magnetization. That means
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models exist with values above the point, but not below. Thus the curve of

all such points is the boundary between models possessing the possible

pairs of average-magnetization/RMS-magnetization and impossible pairs.

So if we draw a horizontal line at some value of the RMS, the correspond-

ing segment in the feasible zone gives us the largest and smallest <m> for

that RMS, the bounds on the linear functional (4). So we have solved the

problem for finding the upper and lower bounds on the linear functional.

When we refer to the Figure we see that the value of <m> must certainly

be negative if the RMS magnetization is less than 7.07 A/m, the orange

region. Unfortunately, RMS magnetizations might easily be larger than

this—it is not a very high value. The calculation is inconclusive. Note

that this result does not back up the resolution analysis, which seems to

say that we can trust the average value of the model in a 1-km interval.

Apparently models with reasonable norms exist that have positive aver-

ages <m>.

What value of tolerance T should be use here? In fact we should use

a larger T because we want to be really sure the misfit is not accidental.

But as in earlier examples the choice makes hardly any difference: in the

graph I have plotted the curves for expected value of T , and for a value

that would not be exceeded in 95 percent of random realizations. The

curves can only just be distinguished near the top of the graph; one is red,

the other blue.

Let us look next at a model with a non-negative (i.e., slightly posi-

tive) mean value and reasonable norm, computed in the course of this

Figure 15.1: Minimum norm for specified value of the average mag-

netization <m>.
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Figure 15.2: Model with reasonable RMS, fitting the data, and pos-

sessing a positive mean <m> = 1 A/m. The L2 norm minimizer is

shown light.

solution. The model with <m> = 1 A/m and RMS value 8.2 A/m is shown

in Figure 15.2. Despite having an overall positive average over the inter-

val of interest, the function is still negative in places, and a reversed mag-

netization is required. Furthermore, the model has large peak values,

both negative and positive that make it seem unreasonable. Particularly

troubling are the large negative swings, just outside the averaging inter-

val. All of this strongly suggests that in this problem the use of the aver-

age value to test a hypothesis is not very effective. If we could test the

hypothesis that any magnetization that is positive everywhere on the

interval will not fit the data, then we might have a really strong test.

That is the direction we are heading.

We have been pursuing the possibility that our magnetic data may

demand a reversely magnetized section of crust, which would be quite

interesting if it turned out to be true; in fact, because such a reversed seg-

ment has not been documented elsewhere, we want to be particularly cer-

tain it is required. So far, the evidence is not convincing. A reason pecu-

liar to marine magnetic studies, is the very small response of the system

to long wavelength magnetizations. Recall from Section 9, in the ideal-

ized case of a flat layer and horizontal observation track, a constant mag-

netization is completely invisible in the data: then (g j , c) = 0 for
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c = constant. In the more realistic model, this will not be true, but a long

wa velength annihilator (a magnetization without a magnetic anomaly)

is surely present. How can we find it? If one exists, it means the whole

model m can be shifted up or down by arbitrary amounts without affect-

ing the fit. This a problem we already know how to solve: if u the uniform

(that is constant) magnetization, we seek n ∈ H as close as possible to u

while satisfying (g j , n) = 0. When closeness is measured in the usual way

by the norm, we have the problem of finding a model near to a preferred

structure, subject to constraints from data, here all zero in value. In sym-

bols

n =
m ∈ H

argmin ||m − u||, with (g j , m) = 0, j = 1, 2, . . N (7)

The solution of this problem is one we have looked at briefly early on in

class and in GIT (p 73). The result is rather too irregular, and so we

weaken the demand requiring exactly zero magnetic signal, to that of an

RMS signal of 0.73 nT. The result is shown below,. The solution is rather

irregular, and so we weaken the demand from requiring exactly zero mag-

netic signal, to having an RMS signal of 10 nT. The result is shown below.

While the function is far from constant, it is certain;y positive, and can be

added to any solution with a weight of up to 20 before reaching a signifi-

cant misfit.

Figure 15.3: Annihilator approximating a constant 1 A/m with RMS

misfit 0.73 nT.




