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16. NNLS and BVLS

Linear programming is able to solve linear inverse problems, with

inequality constraints imposed, provided we can tolerate a different norm

for measuring the misfit between model predictions and observations.

While the sup norm || ⋅ ||∞ and || ⋅ ||1 can both be treated in the LP set-

ting, only the latter is really useful, because relying on the sup norm gives

too much leverage to the noisiest data, clearly an inadvisable state of

affairs. To exploit a quadratic measure of misfit, like the familiar

X [m]2 =
M

j=1
Σ

(d j − L j[m])2

σ 2
j

(1)

requires us to consider Quadratic Programming. Those QP problems

which are convex are much easier to solve reliably than the non-convex

ones, and I shall concentrate on two special convex cases that I have

found invaluable in my scientific career. First, is the special QP problem

called Non-Negative Least Squares (NNLS). This is simply the regular

least-squares problem with the positivity constraint attached:

x∗ = arg
x ≥ 0
min ||Ax − y||2 (2)

where this notation, used extensively in the optimization literature,

means that x∗ is the vector x that achieves the minimum value (assuming

it is unique); here x, x∗ ∈ IRN , y ∈ IRM , and A ∈ IRM×N . In (2) there is no

restriction on the relative sizes of M and N ; the problem is interesting

and nontrivial whether N > M, which is the natural geophysical situation,

or not. There is a general property of optimization problems, somewhat

similar to the Fundamental Theorem of LP called the Kuhn-Tucker condi-

tions, which in NNLS leads to an interesting and valuable result: a solu-

tion to (2) exists in which no more than M −1 components of x∗ are posi-

tive (and so by implication, at least N − M +1 of them must be zero, when

M < N ). When the dimension of the model space is large, as it will be in a

discretized version of a continuous problem, this means the same thing as

it did in the LP examples, that the solution vector x is mostly zeroes, with

a few positive spikes, delta functions in the limit of a continuum. In many

practical problems we find that the number of positive elements in the

solution vector, while it can be as large s M −1, often much smaller than

M.

Let me give a little graphical demonstration of the ideas as illus-

trated in Figure 16.1, which I will explain. First, consider the domain of

the solution set in RN , the set x ≥ 0, called the positive orthant. It is a

convex region in the space, whose edges comprise the positive extensions

of all the positive unit vectors. In three dimensions, the edges of the posi-

tive orthant (called the positive octant in IR3) are the positive x, y, and z

axes. Now consider mapping the positive orthant into RM with the linear

map A, where we will assume that M < N . The image of the orthant will

will be a fan-shaped region as shown in the Figure, where M = 2 and
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Figure 16.1: Image of the positive orthant and its edges under a lin-

ear map A taking IR4 into IR2. The point Ax∗ is the closest point in

the image set to y.

N = 4. The boundary of the image of the orthant comprises surfaces in

RM , and a surface in RM locally is of dimension one less: M −1; most of

the positive axes are mapped into the interior of the image, the shaded

region. Now consider the minimization problem (2). If an exact fit cannot

be found, the point y lies outside the image. Then the smallest distance

is achieved at a point in the boundary of the image, as shown, which is

Ax∗ . In the Figure, where M = 2 it is clear the point x* falls on the image

of one of the positive axes in IRN ; in higher dimensions x∗ lies in the sub-

space spanned by no more than M −1 images of the positive axes, because

the others are not in the boundary in RM . If several of the positive axes

are mapped into a single line in the range space, we can always choose

just one of them. This illustrates the assertion that the norm minimizer

in (2) need have no more than M −1 positive components.

The solution to the NNLS problem can be extended like the LP prob-

lem to include nonpositive unknowns. One can add linear equality con-

straints on the unknowns by including them in the A matrix with large

positive weights, so that the minimization process essentially satisfies

those rows exactly and, as before, if the weight is large enough, the contri-

bution from those rows to the misfit budget is negligible.

In MATLAB an algorithm for NNLS is provided called lsqnonneg.

It is very slow since it is written as a MATLAB M-file and not optimized as

the linear system solution is or the QR and eigenvalue codes are. There is

a bug in the MATLAB code concerning the "warm start" feature—it doesn’t

work and generates wrong answers! For homework problems the
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MATLAB code is fine, but any realistic problem you will need a Fortran

program called nnls.f by Lawson and Hanson which you can get from

me.

Suppose instead of merely demanding positivity of the unknown in

(2) we wanted some (or all) of the components to lie between specified

bounds:

l j ≤ x j ≤ u j (3)

This can be accomplished with NNLS; I leave this as an exercise for the

student. However, the size of the problem to be solved is greatly

increased and causes unnecessary waste of computer time, because there

exists a specific Fortran program for this task called bvls.f which stands

for Bounded Variable Least-Squares. Again I can provide you with

the source should you ever need it.

As I mentioned in my discussion of ideal bodies, once we introduce

inequality constraints even with a linear forward problem we face the pos-

sibility that solutions to the constrained optimization system may not

exist at all; the data and the conditions may be inconsistent. In LP lan-

guage this is a statement that there is no feasible solution. The NNLS

and BVLS problems always have solutions, but are set up in a way to test

whether the imposed conditions are consistent with observation. Return-

ing to the near-bottom magnetic anomaly problem, we can now ask the

question, "Are there any magnetization models that fit the data without

going negative somewhere?" This we do by simply minimizing the data

misfit with NNLS over the set of non-negative m:

Figure 16.2: Minimum misfit, all positive magnetization solution.
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m ≥ 0
min ||d̂ − Bm||2 (4)

If this value is larger than a reasonable tolerance T according to the χ 2

distribution, then we have demonstrated the need for a magnetic reversal

in the section. Notice that we now don’t specify a particular interval—

we’ll allow the model complete freedom. The Figure shows the results of

this calculation. An amazingly small misfit can be achieved, but at the

expense of some rather large amplitudes. We should not be too worried

about the peak on the left, since it is in a zone not controlled by data since

the magnetic field measurements begin at x = 0. We could use BVLS to

check how large the positive amplitudes need to be. Instead, however, I

will demonstrate an alternative, perhaps more familiar looking approach:

regularization. We simply add to (4) a term penalizing the size of the

model in the 2-norm:

m ≥ 0
min ||d̂ − Bm||

2 + w||m||
2

(5)

where the 2-norm is implied, and w > 0  is a weight, which we can treat as

a Lagrange multiplier. We rewrite (5) as

m ≥ 0
min





B

w½ I




m −





d̂

0





2

(6)

which is exactly in the from of the NNLS problem. Now sweep though

positive values of w: for small values we get misfits close to the one shown

in Figure 16.2, but as w increases the misfit term increases as (5) pays

more attention to the size of m. When the misfit reaches the expected tol-

erance, we inspect the solution, which is of course still everywhere non-

Figure 16.3: Regularized, all positive magnetization solution.
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negative. The result is plotted in Figure 16.3, where the misfit has been

allowed to rise to χ 2 = 100 the expected value for 100 data. The model

magnetizations are not extraordinary, and we must conclude that there

are reasonable-looking solutions without negative segments: the reversed

magnetization is not demanded by these data.


