
-80-

17. Steepest Descent Optimization

In geophysical inverse theory, and in many other geophysical contexts, we

need to find the minimum of a real function F of many variables. (Let us

say F : IRN → IR.) This is an example of an optimization problem,

because the function F is regarded as a penalty of some kind, and mini-

mizing it represents doing the best possible job in some sense. We have

already come across a simple example of this kind in section 3, the least-

squares problem, where F = ||Ax − y||
2
, and we are minimizing the dis-

tance between a data vector y and model predictions Ax. Sometimes the

minimization must be carried out subject to side conditions, or con-

straints, and then the problem is a constrained optimization. Again

the underdetermined least squares systems is an example of this kind.

Now we consider briefly general methods for solving these problems,

though in fact we will look only at the unconstrained system for simplic-

ity. The standard reference for numerical techniques is by Gill, P. E.,

Murray, W. and M. H. Wright, Practical Optimization, Academic Press,

New York, 1981; Philip Gill is on the UCSD math department faculty.

Our books on reserve, by Strang and by Golub and Van Loan also provide

a lot of information about the topic too.

We shall assume the function F is smooth, at least twice differen-

tiable, for otherwise things get messy. We will also assume that we can

obtain an analytic expression for the derivatives of F, the gradient of F:

g = ∇ F =

∂F

∂x1

,
∂F

∂x2

, . . .
∂F

∂xn

T

. (1)

Then the condition that we are at a local minimum is of course that the

gradient vanishes, that is all the components:

∇ F(x) = 0 . (2)

This is a system of n equations in n unknowns, and unless F is quadratic

(which it is for least-squares problems) (2) may be impossible to solve in

terms of elementary functions; when F is quadratic (2) is a set of linear

equations. We will return to the quadratic case later, because it is sur-

prisingly important. Notice (2) locates any local minimum, maximum or

saddle; if there are multiple minima, they will all satisfy the system, and

we must pick the best one, a fundamental difficulty in general optimiza-

tion problems.

We examine first a very simple-minded idea called steepest

descent. Suppose we are the vicinity of a local minimum, at the point

x0 ∈ IRN (Because subscripts denote components of a vector, we have to

use superscripts, which do not mean powers of x; there should be no con-

fusion since we normally do not exponentiate vectors). Then as usual we

write the local behavior of F using a Taylor expansion:

-81-

F(x) = F(x0 + s) = F(x0) + sT ∇ F(x0) + O||s||
2

. (3)

If we take s = −γ ∇ F(x0) with small γ , then

F(x) = F(x0) − γ ||∇ F(x0)||
2 + O(γ 2) (4)

and from this we see that for some choice of γ > 0 we must be able to find a

value of F(x) smaller than F(x0), and therefore better, because from small

enough γ the linear term will dominate the quadratic one. (This is pro-

vided ∇ F(x0) does not vanish, but then we would be at a stationary point.)

Looking at the 2-dimensional example in the figure below we see that tak-

ing the new x = x0 −γ ∇ F(x0) is to select a value on the line perpendicular

to the local contour, that is to head downhill as rapidly as possible, hence

the name steepest descent). But what value of γ should be selected?

The answer to this question is fairly obvious: we keep going until F

starts to increase again. In other words we go to the minimum along the

direction of initial steepest gradient, as illustrated below. In general this

point must be determined by numerical experiment: in a systematic way

we try various values of γ in a line search until the least value has been

found in the direction of ∇ F(x0). Clearly it is most unlikely that the

result will be the true minimum, and so the process will have to be

repeated. But the analysis guarantees an improvement will be obtained

for every iteration, and so if there is a local minimum, the procedure will

converge to it.

So the algorithm is as follows: at the k-th step we compute the next

approximation from

Figure 17.1: Contours of F from (6), and values of F on the line of

steepest descent starting at x0.

-82-

xk+1 = xk − γ ∇ F(xk), k = 0, 1, 2, . . . (5)

where γ > 0 is chosen to minimize F(xk+1), by a line search; x0 is an arbi-

trary initial guess vector.

Below we illustrate the continuation of the iterations, using the solu-

tion from the previous line search as a starting point for another, and

repeating for several steps. Incidentally, the function used for illustration

is:

F(x1, x2) = (x1 −0. 5)2 + x2
2 + ln (x2

1 +0. 1) (6)

∇ F = [2x1 −1 + 2x1/ (x2
1 +0. 1), 2x2]T . (7)

After a little thought it should be clear that the steepest descent path

must be orthogonal to the previous one, and therefore the trajectory con-

sists of a zig-zag path downhill. The error in the minimum decreases geo-

metrically as you can see from the right panel, and while this looks fairly

impressive, it is not very good for a simple two-dimensional minimum;

recall every point on the graph requires a separate line search.

It is easy to write a crude line-search program, as you can imagine.

But a fair amount of care is needed to be efficient and avoid blunders. See

Numerical Recipes for a classic algorithm.

To understand, and then perhaps correct, this poor behavior we

study the simplest system, the quadratic form. If the second derivative

∇∇ F = H does not vanish at x∗ , the local minimum, then the behavior of

any smooth function of many variables is quadratic and is modeled by

Figure 17.2: Steepest descent path and convergence of objective

function for (6).

-83-

F(x) = F(x∗) + ½(x − x∗)T H(x − x∗) (8)

where we have dropped the terms from the third and higher derivative in

a Taylor series expansion. If x∗ truly is the site of a local minimum then

H is positive definite. Then it can be proved that the error in the esti-

mate of the minimum value at the k-th step behaves like c [1 − 1/κ 2(H)]k

where c is a constant, and κ 2 is the condition number in the 2-norm

(Recall κ 2 = λ max/λ min). For example, condition numbers greater than

1,000 are commonplace, and then the convergence would be as 0. 999k.

This is very poor behavior.

Before discussing the most popular remedy for this ailment, we

should notice that (8) is essentially identical to the function minimization

arising from the underdetermined least-squares problem: we must mini-

mize

G(x) = ||Ax − b||
2 = (Ax − b)T (Ax − b) (9)

= bT b − 2bT Ax + xT AT Ax (10)

= bT b − yT y + (x − y)T AT A(x − y) (11)

where y = (AT A)−1 AT b (we arrived at y by completing the square). Com-

paring (9) with (11) we see they are the same (up to an additive constant),

after identifying AT A with ½H and y with x∗ . For sparse systems, in

which lots of elements in A might be zero, QR is unable to take much

advantage of sparsity. So when the system is large (> 1000 unknowns) it

might be very useful to minimize G in (9) directly by an iterative method,

since one evidently only needs to be able to perform the operation Ax a lot

of times, and it is often possible to simply skip large chunks of the array,

both in storage and in arithmetic, associated with zero entries. Further-

more, QR attempts to get an "exact" solution (up to limitations of round-

off), but an iterative approach might find a less accurate, but for many

purposes completely satisfactory, answer in a much shorter time. For

these reasons, large linear systems, even the solution of Ax = y for square

matrices A, are converted to quadratic minimizations. But they cannot be

efficiently solved by steepest descent; we need a better tool: conjugate gra-

dients.

-84-

18. Conjugate Gradients

The steepest descent path is clearly the best one can do if one is per-

mitted only a single operation. But each stage of the scheme behaves as

though we have been given a completely new problem — it doesn’t use

any information from the earlier steps, and as the Figure 17.2 shows, the

procedure seems condemned to repeat itself, zig-zagging back and forth

instead of heading down the axis of the valley in F. The conjugate gradi-

ent method takes advantage of earlier steps. It modifies the steepest

descent direction in the light of previous history, and achieves remarkable

gains, as we shall soon see. First let me simply describe the algorithm

without attempting to justify it.

The conjugate gradient algorithm chooses a search direction s for

a line search based on the local gradient, and on previous search direc-

tions like this:

xk+1 = xk + γ pk, k = 0, 1, 2, . . . (1)

where

pk = − ∇ F(xk) + β pk−1, k > 0 (2)

and

β =
∇ F(xk)T (∇ F(xk) − ∇ F(xk−1))

||∇ F(xk−1)||
2

. (3)

For the initial iteration, k = 0, when there is no previous search direction,

p0 = − ∇ F(x0), the steepest descent direction. At each step γ in (1) is

determined as before by minimizing F(xk+1) along the line.

Figure 18.1: Conjugate gradient and objective convergence for (6).

-85-

On the prevous page we show the results of the application to the

minimization of (5). The improvement on steepest descent is extraordi-

nary, as the right panel shows. Notice also that the convergence is not a

steady exponential decline in error; the rate varies. This is a feature of

conjugate gradient optimization: it may chug along reducing the penalty

only modestly, then make a huge gain, then settle back to slower progress.

Such behavior makes a termination strategy difficult to devise, because

one cannot tell when the penalty has been reduced to its minimum value.

Remember, the convergence plots in these notes are cheats, because I

know the real answer, something obviously not normally available.

The design of the conjugate gradient method is centered on the goal

of solving a problem with a quadratic penalty function, like (8), exactly

after precisely n iterative steps, where n is the dimension of the space of

unknowns. When solving a very large system (with n > 1000, say), one

would not want to have to take so many steps, but it is often the case that

an exact answer is not required, and a perfectly satisfactory reduction in

the penalty function will have been achieved long before k = n. It also

turns out that for very large systems, exact answers cannot be obtained in

practice even after n iterations, because of the accumulation of round-off

error in the computer arithmetic.

Here is an explanation of how conjugate gradients work, taken from

Gill et al., Chap 4. Strang, and Golub and Van Loan, offer different

derivations which are longer. As just remarked the procedure is set up to

solve a quadratic problem, which we will take to be the minimization of

F(x) = c ⋅ x + ½x ⋅ Gx (4)

where G ∈ IRn×n and is positive definite and symmetric. For this last

proof we will use the familiar notation x ⋅ y to be the inner product of two

vectors because it is much cleaner: so recall x ⋅ y = xT y = yT x. Also, since

G is symmetric, note that x ⋅ Gy = y ⋅ Gx.

The exact minimum of F is easily seen to be the point x∗ = − G−1c, so

solution of (4) by conjugate gradients is equivalent to solving that linear

system of equations. You will easily verify that

∇ F(x) = c + Gx . (5)

We look at the process at iterative step k; we assume we have an approxi-

mation for the minimizer xk and we are going build the next approxima-

tion by a linear combination of vectors, p0, p1, . . . pk collected over previ-

ous iterations, together with the current approximation to the solution;

we will explain later how the vectors pk are chosen. For now we assert:

xk+1 = xk +
k

j=0
Σ w j p j (6)

= xk + Pkw (7)

-86-

where the matrix P = [p0, p1, . . . pk] and the vector w contains the

weights. Our first job is to find w so that xk+1 in (7) minimizes F. This is

a straightforward least-squares problem, details omitted. We find

w = − (PT
k GPk)−1 PT

k gk (8)

where the vector gk is defined as the gradient:

gk = ∇ F(xk) = c + Gxk . (9)

Plugging (8) into (7) gives

xk+1 = xk − Pk(PT
k GPk)−1 PT

k gk . (10)

At this point we note a useful property of the process: the gradient at the

k + 1-st approximation is orthogonal to all the current vectors pi. Proof —

calculate:

PT
k gk+1 = PT

k ∇ F(xk+1) = PT
k (c + Gxk+1) (11)

= PT
k (gk − Gxk + G(xk − Pk(PT

k GPk)−1 PT
k gk)) (12)

= PT
k gk − PT

k GPk(PT
k GPk)−1 PT

k gk (13)

= 0. (14)

By expanding Pk into column vectors we see this means:

PT
k gk+1 = [p0 ⋅ gk+1, p1 ⋅ gk+1, . . . pk ⋅ gk+1]T = [0, 0, . . . 0]T (15)

and therefore

pi ⋅ gk+1 = gk+1 ⋅ pi = 0, i = 0, 1, 2, . . . k . (16)

Now if we assert that all the xk to this point have been found in the same

wa y, it must be true that for j = 1, 2, . . . k

pi ⋅ g j = g j ⋅ pi = 0, i < j . (17)

Thus the gradient vector g j is orthogonal to every earlier pi vector, as

advertised.

With this information let us calculate the product PT
k gk at the end of

(10):

PT
k gk = [p0 ⋅ gk, p1 ⋅ gk, . . . pk ⋅ gk]T = [0, 0, . . . 0, α]T (18)

where α = pk ⋅ gk.

So far the only property assumed of the pi has been linear indepen-

dence, needed for the inverse in (8). Let us now assert that we would like

another property (which we will have to build into process somehow): let

us propose that the vectors pi are mutually conjugate under the action

of G. This means that they orthogonal in the G inner product, or explic-

itly that

-87-

(pi, p j)G = pi ⋅ Gp j = 0, i ≠ j . (19)

Then the matrix PT
k GPk in (10) becomes a diagonal matrix. Combining

that fact with (18), which is always true, the expression xk+1 in (10) sim-

plifies to

xk+1 = xk + γk pk (20)

which is (1). In other words, when we started, the search for the mini-

mum at step k was over the complete set of previous vectors p j , but with

conjugacy we find only the most recent vector need be searched over to

achieve the optimal result. The parameter γk which we happen to know is

γk = −
α

pk ⋅ Gpk
= −

pk ⋅ gk

pk ⋅ Gpk
(21)

could be found by a line search, and would have to be if this were a lin-

earization of a nonquadratic system.

To summarize: if we can somehow arrange the vectors pi to be

mutually conjugate, they are the search directions at each iterative step,

and at the end of that step, F has achieved its minimum over the space

spanned by the vectors p0, p1, . . . pk. Since these vectors are linearly

independent and at step n −1 there are n of them, they must span IRn,

and therefore at this last step we must have the global minimum of F

over all vectors in IRn. Our task is to set up a scheme for producing

search direction vectors pi with the property of conjugacy under G.

We set about building the pi from the available gradients as follows.

First we take p0 = − g0 (the steepest descent direction; why?). Subse-

quently we say

pk = − gk +
k−1

j=0
Σ β kj p j (22)

that is, the new direction is found from the current gradient and a linear

combination of previous search directions. In what follows we work

towards determining the values of the unknown coefficients β kj in this

expansion. By a simple rearrangement, it follows from the recipe (22)

that gk is a linear combination of the p j up to j = k: Consider i < k and

dot a gradient vector with any earlier gradient vector:

gk ⋅ gi = gk ⋅
i

j=0
Σ σ j p j =

i

j=0
Σ σ j gk ⋅ p j (23)

= 0 (24)

because of (17). So the gradient vectors are mutually orthogonal too!

To discover the coefficients β kj we make use of the mutual conjugacy

of the pi vectors — we pre-multiply (22) by G, then dot on the left with pi:

-88-

pi ⋅ Gpk = − pi ⋅ Ggk +
k−1

j=0
Σ β kj pi ⋅ Gp j . (25)

Then for i < k, because of the conjugacy, (19), the left side vanishes and so

do most of the terms in the sum:

0 = − pi ⋅ Ggk + β ki pi ⋅ Gpi, i < k (26)

= − gk ⋅ Gpi + β ki pi ⋅ Gpi . (27)

From (9), the definition of gi, and using (20) we see

gi+1 − gi = G(xi+1 − xi) = γiGpi . (28)

This allows us to substitute for Gpi in (27):

0 = −
1

γi

gk ⋅ (gi+1 − gi) + β ki pi ⋅ Gpi . (29)

But now the orthogonality of the gradients, (24), means that when i < k −1

the first term on the right automatically vanishes too; since pi ⋅ Gpi must

not be zero,

β ki = 0, i < k −1 . (30)

Hence we have just shown that to get conjugacy of search directions, the

new search direction at each step involves the current gradient and the

previous direction only; (22) has become:

pk = − gk + β k,k−1 pk−1 (31)

which is of course (2). Finally we need to find the coefficient β k,k−1 explic-

itly. Premultiply (31) by G then dot with pk−1; conjugacy makes pk−1 ⋅ Gpk

on the left side vanish, and so, rearranging we find

β k,k−1 =
pk−1 ⋅ Ggk

pk−1 ⋅ Gpk−1
(32)

=
(gk − gk−1) ⋅ gk

gk−1 ⋅ gk−1
(33)

=
gk ⋅ gk

gk−1 ⋅ gk−1
=

||gk||
2

||gk−1||
2

(34)

where (33), (34) follow from applications of (16), (24) and (28). The form

(33) is used in the nonquadratic application (3) rather than (34) because

when the problem is not quadratic, orthogonality of the successive gradi-

ents is only approximate.

Powerful as CG certainly is, it still may require a lot of numerical

work when the dimension of the system becomes very large. Then there a

further tricks that can improve the convergence rate, but they are depen-

dent on special structure a particular problem may exhibit, and are not

-89-

generally available. The concept is called preconditioning, and is cov-

ered in Golub and Van Loan, Chapter 10.

Bibliography

Gill, P. E., Murray, W. and Wright, M. H., Practical Optimization, Aca-

demic Press, New York, 1981.

A treasure trove of numerical methods for every kind of optimization

problem: linear, nonlinear, constrained, unconstrained, sparse, full, linear

programming.

Golub, G., and Van Loan , C., Matrix Computations, 3rd Edition, Johns

Hopkins Univ. Press, 1996.

The one reference for matrix linear algebra.

Lawson, C. L., and Hanson, R. J. , Solving Least Squares Problems, 1974.

Classic text for full analysis of QR and SVD in least squares.

Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge,

1986.

Readable treatment of many topics, though sometimes a little off base.

-90-

19. Application to the Gravity Anomaly Problem

The nonlinear gravity inversion problem in GIT was solved there by

means of Occam and by B-G creeping. As a finale we will apply steepest

descents and conjugate gradients to it. We have already computed (in

GIT) the Fréchet Derivative for the problem, but as I want to stress here,

those derivatives do not all need to be stored, or a Gram matrix inverted

for SD or CG. This makes them more suitable for very large problems,

which the gravity problem is not, of course.

First we need a scalar function to minimize. This immediately

points up one of the disadvantages of these optimization methods: they

are designed for unconstrained optimization. If we are seeking a regular-

ized solution we will need to minimize something like

U (h, λ) =
N

j=1
Σ (d̂ j − F j[h])2 + λ ||h||

2
(1)

where λ is the unknown Lagrange multiplier whose value we discover by

achieving the appropriate misfit. In nonlinear problems, however, the

first order of business is to get any solution at all, and so initially we

might choose λ to be very small, or zero. In case of the gravity problem

we first want to fit the data almost exactly, and since the topography is

order of magnitude unity, setting λ = 0. 01 will insure most emphasis is

placed on the first term. The derivative of U is just a vector in the dis-

cretized form: ∇ U ∈ IRL, where L = the number sample points in h(x);

while the Fréchet derivative is approximated by the matrix D ∈ IRN×L.

We easily calculate that

∇ U = 2DT (d̂ − F) + 2λ h (2)

where d̂ − F ∈ IRN is the vector of misfits. We should not forget to note

that:

d j = F j[h] = G ∆ρ
a

0

∫ ln

(x − x j)
2 + h(x)2

(x − x j)
2

dx (3)

D j(x) =
2G ∆ρ h(x)

(x − x j)
2 + h(x)2

(4)

The discretized form of (3) and (4) follows easily by replacing the function

h(x) with the vector of samples [h1, h2, . . . hL]. In the calculations that fol-

low we take L = 50.

First we perform the minimization using steepest descent steps,

starting at the model that is a constant h(x) = 1 km; λ = 0. 01. The

squared norm of misfits is shown in Figure 19.1, plotted against step

number: each step involves the line search along the steepest descent

direction. At the end of 50 line searches the penalty function U in (1) was

reduced to 0. 327 mGal2 and the norm of misfits was 0.391 mGal. Next we

perform the conjugate gradient minimization, starting at the same initial

-91-

Figure 19.1: Penalty function U after n line searches with (+) steep-

est descents; (o) conjugate gradients.

guess. This is shown in the Figure too. Notice how the initial perfor-

mance is worse than steepest descents, but then the method beats steep-

est descents: after 50 steps we have a penalty of 0. 272 mGal2 and a misfit

2-norm of 0.300 mGal. The models are shown on the next page in Figure

19.2.

At first glance these methods appear to be at a severe disadvantage

to Occam, which needed only four line searches to reach a similar misfit

level. But that is not necessarily the case, as we now discuss. Each line

search in Occam requires the solution of the linear system of equations

1

µ
I + D DT

α = d̂ (5)

(This is (25) on p 315 of GIT.) This uses on the order of N3 computer oper-

ations, since D DT ∈ IRN . Whereas the single line search in SD or CG

involves nothing more than operations of addition and subtraction of vec-

tors, for which the computer costs are only order N . In fact, the largest

cost in each step is the evaluation of ∇ U , which here takes order N2 oper-

ations. For large data sets CG (or SD) have a much lower cost per step.

In this light, the cost for 50 steps of CG is about the same as 4 steps of

Occam, since N = 12. So when N is very large, say hundreds or even

thousands, CG may be the only practical approach.

-92-

Figure 19.2: Valley profiles obtained by steepest descents (blue); con-

jugate gradients (red).

