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6. Gibbs’ Phenomenon

We keep meeting this issue and it is unsatisfactory for you not to have a treatment,

particularly since Riley et al. duck the problem too. So I will give you a brief tour.

The question revolves around any Fourier series expansion of a function with a

(finite number of) simple jump discontinuities. We saw them in Figure 2, page 6

because the function f (x) = x is not continuous on a circle, and so there is an effec-

tive jump between x = − π and x = π. Here I examine the simplest case. We work on

the interval (0, + 1) and use the complex basis en(x) = e2πinx with n = 0, ± 1, ± 2, . . .

which is complete, and we have ||en|| = 1.

First we write out the expansion of a function f , taking the terms out to

|n| = N :

SN ( f ) =
N

n=−N
Σ cnen(x) =

N

n=−N
Σ ( f , en) en(x) (6.1)

=
N

n=−N
Σ





1

0

∫ f (y) e−2πiny dy




e2πinx (6.2)

=
1

0

∫ dy


f (y)

N

n=−N
Σ e2πin(y − x)


=

1

0

∫ dy f (y) DN (y − x) .  (6.3)

The integral is an example of a convolution, an operation we will see more of with

Fourier transforms. We can evaluate the function DN :

DN (u) =
N

n=−N
Σ e2πinu = e−2πiΝ

2N

n=0
Σ e2πinu . (6.4)

Suppose we set w = e2πiu. Then (6.4) becomes very simple, a geometric series,

1 + w + w2 + . . . w2N , which we can sum exactly:

DN (u) = w−N (1 + w + w2 + . . . + w2N ) = w−N




w2N+1 − 1

w − 1





(6.5)

=
wN+½ − w−N−½

w½ − w−½
(6.6)

=
sin π(2N +1)u

sin πu
. (6.7)

In the present context this function is called the Dirichlet kernel. We are inter-

ested in DN (x) for large values of N , when we have taken a lot of terms in (6.1). A

graph of the Dirichlet kernel is shown in Figure 5, with N = 25.
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Returning to (6.3), let us now choose a particular function for f . We will treat the

unit step, or Heavisde function, in this case at x = ½: let

f (x) = H(x −½) =




0,

1,

x < ½

x ≥ ½ .
(6.8)

Let us call the sum for this function QN (x); then

QN (x) =
1

0

∫ H(y −½) DN (y) dy =
1

½

∫ DN (y − x) dy =
x−½

−1+x

∫ DN (t) dt (6.9)

since DN (t) = DN (−t). We are interested in the behavior near the jump at x = ½, so

we write x = ξ +½ and

QN (ξ +½) =
ξ

−½+ξ
∫ DN (t) dt =

ξ

−½+ξ
∫

sin (2N + 1)πt

sin πt
dt . (6.10)

We see from the figure that all the interesting behavior occurs from small ξ ; it is

time to make a few approximations: near ξ = 0 we can write sin πt = πt and we sup-

pose N is large that we can replace 2N + 1 with 2N .

QN (ξ +½) ˜
1

π

2Nπ ξ

−π N

∫
sin s

s
ds ˜

1

π

2Nπ ξ

−∞
∫

sin s

s
ds (6.13)

Figure 5: The Dirichlet kernel



ORTHOGONAL FUNCTIONS 20

= = ½ +
1

π

2Nπ ξ

0

∫
sin s

s
ds (6.14)

I have also used the fact that the integral on (0, ∞) is ½π something we will show

later on. The integral of sin t/t is called si(t) and is a commonly used function − in

MATLAB it is called sinint. I plot (6.14) in Figure 6 below. Notice how the result

depends on the number of terms N only on the way the x axis is scaled. As N

becomes large the picture is compressed in x, but its fundamental shape never

changes: there is always an overshoot and an undershoot of the same magnitude,

which turns out to be about 8.94 percent. This means that the maximum difference

between the original step function and the sum of the series does not tend to zero

with increasing N ; in other words the Fourier series S( f ) is not uniformly conver-

gent for this function.

The same analysis applies at any jump discontinuity, not just the unit step, and

not just at x = ½.

Figure 6: Gibbs’ overshoot function.


