The Addition Theorem and Coordinate Rotation

Here are some notes to clarify what I said about the Addition Theorem being a special case of the a more general coordinate rotation. Suppose we refer all the $Y_{l}^{m}(\theta, \phi)$ to a particular fixed coordinate system with north pole along $\hat{\mathbf{z}}$. Let the unit vector $\hat{\mathbf{u}}$ be fixed too, but allow $\hat{\mathbf{s}}$ to move around. Then we can view the Spherical Harmonic Addition Theorem

$$
\begin{equation*}
P_{l}(\hat{\mathbf{s}} \cdot \hat{\mathbf{u}})=\sum_{m=-l}^{l} \frac{4 \pi}{2 l+1} Y_{l}^{m}(\hat{\mathbf{s}}) Y_{l}^{m}(\hat{\mathbf{u}}) * \tag{1}
\end{equation*}
$$

as a statement that the function of $\hat{\mathbf{s}}$ on the left has a spherical harmonic expansion of the form

$$
\begin{equation*}
f(\hat{\mathbf{s}})=P_{l}(\hat{\mathbf{s}} \cdot \hat{\mathbf{u}})=\sum_{m=-l}^{l} c_{m} Y_{l}^{m}(\hat{\mathbf{s}}) \tag{2}
\end{equation*}
$$

where the coefficients are simply

$$
\begin{equation*}
c_{m}=\frac{4 \pi}{2 l+1} Y_{l}^{m}(\hat{\mathbf{u}}) * . \tag{3}
\end{equation*}
$$

But now, suppose that we view the vector $\hat{\mathbf{u}}=\hat{\mathbf{z}}^{\prime}$ as the z axis of another system of coordinates. We know that in that system, the function $f(\hat{\mathbf{s}})$ in (2) in in fact a spherical harmonic of degree l and order zero. In that coordinate system we have that

$$
\begin{equation*}
f(\hat{\mathbf{s}})=\left(\frac{2 l+1}{4 \pi}\right)^{1 / 2} Y_{l}^{0}(\hat{\mathbf{s}})^{\prime} \tag{4}
\end{equation*}
$$

where the prime () means the coordinates θ and ϕ are measured in the primed coordinate system. Of course the transformation from z to z^{\prime} is a rotation. So (2) can be written

$$
\begin{equation*}
Y_{l}^{0}(\hat{\mathbf{s}})^{\prime}=\sum_{m=-l}^{l}\left[c_{m}\left(\frac{2 l+1}{4 \pi}\right)^{1 / 2}\right] Y_{l}^{m}(\hat{\mathbf{s}})=\sum_{m=-l}^{l} C_{m} Y_{l}^{m}(\hat{\mathbf{s}}) \tag{5}
\end{equation*}
$$

which says how the order-zero spherical harmonic function referred to the z^{\prime} system looks when it is referred to the z coordinate system.

