
Orthogonal Functions

Class Notes by Bob Parker

1. Orthogonality and the Inner Product

You are surely familiar with the ordinary dot product between two vectors in ordi-

nary space: if x, y ∈ IR3 then

x ⋅ y = x1 y1 + x2 y2 + x3 y3 = x j y j (1.1)

where x j and y j are components in a Cartesian reference system; the second form is

of course the one using Einstein summation. As we can easily show the dot product

also can be written:

x ⋅ y = |x| |y| cosθ (1.2)

where |x| = (x j x j)
½, the Euclidean length of x, similarly for |y|, and θ is the angle

between the two vectors. This is very simple. Obviously, these ideas generalize

effortlessly to vectors x, y ∈ IRn for integer n > 3. Then the concept of the angle

between to vectors is harder to grasp intuitively, but we can simply use (1.2) as its

definition.

When two vectors in space are at right angles, we see that their dot product is

zero. So in general we will define the condition of orthogonality as the situation

when x ⋅ y = 0, and both |x|, |y| > 0.

Suppose in the n-dimensional space IRn we have a Cartesian coordinate system

defined by the directions x̂k and an origin somewhere, O. My notation here is that

the hat .̂ means a vector of unit length, so |x̂k| = 1. A Cartesian axis system is one

where all the axes are orthogonal, and so obviously

x̂ j ⋅ x̂k =




1, j = k

0, j ≠ k .
. (1.3)

This is more compactly written with the Kronecker delta:

x̂ j ⋅ x̂k = δ jk . (1.4)

The vector x can be written in terms of this system:

x = (x1, x2, x3, . . . xn) .  (1.5)

Another way of writing this is as an expansion of the original vector in terms of the

Cartesian axes, an expansion in an orthogonal basis:

x = x1x̂1 + x2x̂2 + x3x̂3 + . . . + xnx̂n = x jx̂ j . (1.6)

If we wanted to find the k-component of x we could take x and form the dot product

with the unit x̂k:

x ⋅ x̂k = x1x̂1 ⋅ x̂k + x2x̂2 ⋅ x̂k + . . . + xkx̂k ⋅ x̂k + . . . + xnx̂n ⋅ x̂k (1.7)

= 0 + 0 + 0 + . . . + xk + . . . + 0 = xk . (1.8)
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All the dot products vanish except the one with the x̂k (and I assume that k ≠ 1, 2 or

n). Again this is very simple, so simple it seems quite unnecessary to go through it

in such detail.

Let us now move onto something a bit more advanced. In place of the space IRn

we will introduce the space L2(a, b), pronounced "ell two". This is a linear vector

space, a set of real-valued functions with the property that

|| f || =




b

a
∫ f (x)2 dx





½

< ∞ . (1.9)

(Strictly speaking, L2 is the completion of this space, but we will not go into that

here.) As you should already know the notation || ⋅ || is read as the norm. The

norm of f , which by (1.9) is always finite for members of L2, is a measure of the size

of the function f , clearly by analogy with the Euclidean length of a vector.

We are going to treat the functions in L2 as if they were vectors. We already

have an idea of the length of the vector through the norm. We will define an analog

for the dot product called the inner product:

( f , g) =
b

a
∫ f (x) g(x) dx (1.10)

defined for any two functions f and g in L2(a, b). We can see that this definition has

the same properties as the dot product; for example, it commutes: ( f , g) = (g, f ),

and so on. It has the same relationship to the norm as the dot product does to the

length:

|| f || = ( f , f )½ and |x| = (x ⋅ x)½ . (1.11)

And now we can say that two elements of L2 are orthogonal if

( f , g) = 0, and || f ||, ||g|| > 0 . (1.12)

Let us prove something now: Schwarz’s inequality. This states that

|( f , g)| ≤ || f || ||g|| . (1.13)

For ordinary vectors the analogy is that |x ⋅ y| ≤ |x| |y|, which is obvious from

(1.2). The result (1.13) is clearly true when g = 0, meaning the function g(x) van-

ishes everywhere on the interval (a, b). So we only need examine the case ||g|| ≠ 0.

Consider the function given by h = f − γ g where γ is a real number. By the (1.9)

and the left half of (1.11) applied to h:

0 ≤ ||h||
2 = || f −γ g||

2 = ( f −γ g, f −γ g) (1.14)

0 ≤ ( f , f ) − 2γ ( f , g) + γ 2 (g, g) .  (1.15)

We get (1.15) by treating the inner product algebraically just like a dot product, or

ordinary multiplication, which is allowed if one looks at the definition (1.10). Now in

(1.15) simply choose the value of γ = ( f , g)/(g, g) which exists because the denomina-

tor does not vanish by assumption; then



ORTHOGONAL FUNCTIONS 3

0 ≤ ( f , f ) − 2( f , g)2/(g, g) + ( f , g)2/(g, g) = ( f , f ) − ( f , g)2/(g, g) .  (1.16)

And tidying up this is

( f , f ) (g, g) ≥ ( f , g)2 (1.17)

and hence (1.13). QED

We should mention there are many variants of L2; this is the family of Hilbert

spaces. Because Hilbert spaces must have an inner product (and therefore a norm)

the idea of orthogonality and expansions in an orthogonal basis works in all of them.

A simple variant is weighted L2, in which the norm is

|| f || =




b

a
∫ f (x)2 w(x) dx





½

(1.18)

where w(x) > 0. Another important Hilbert space is one based on complex valued

functions, where the inner product is

( f , g) =
b

a
∫ f (x) g(x)∗ dx (1.19)

where the asterisk is complex conjugate; we discuss this further in Section 5. See

Section 7 for another Hilbert space, this one defined for functions on a sphere.

Exercises

1. How many parameters must one specify to change from one Cartesian coordinate

system to another in three-dimensional space? How many in IRn?

Hint: You must move the origin and rotate the axes.

2. Use Schwarz’s inequality for L2 to prove

|| f + g|| ≤ || f || + ||g||

which is known as the triangle inequality, a property obvious in IR2 and

needed for every norm.

3. Which of the following functions belongs to the space L2(−1, + 1)? Explain care-

fully how you reach your conclusion.

f1(x) = cos x; f2(x) =
sin πx

πx
; f3(x) =

1

|x|
½

; f4(x) =
cos x

|x|
¼

.

Which of these functions belongs in L2(−∞, ∞)?
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2. Infinite Sets of Orthogonal Functions

We are going to look at the analog of (1.6) in which we take a function in L2 and

expand it in a (usually infinite) sequence of orthogonal functions, a kind of basis for

L2. The idea is to write

f =
∞

n=1
Σ cn gn (2.1)

where cn are real numbers (the ‘‘components’’ of f ) and gn comprise an infinite

sequence of mutually orthogonal functions, corresponding to the Cartesian basis in

(1.6). In ordinary space or in n-dimensional space there are infinitely many different

Cartesian axis systems. There are infinitely many ways of performing the expansion

(2.1) as well.

Several questions arise that do not have analogs in finite-dimensional spaces.

(As I have hinted L2(a, b) is an example of an infinite-dimensional linear vector

space, one whose members cannot be built up by linear combinations of a finite

number of basis functions.) For example, (2.1) is an infinite sum; when does it con-

verge and does a converged sum always give the right answer? Not every infinite

collection of orthogonal functions is rich enough to expand every function in L2; this

is the question of completeness. How do we generate suitable sets of orthogonal

functions? How do we get the coefficients cn when we know the function f and the

basis functions gn?

This last question is easy to answer. We can use the same process as I used in

equations (1.7-8). Take the inner production of both sides of (2.1) with the function

gk. Then

( f , gk) = (
∞

n=1
Σ cn gn, gk) (2.2)

=
∞

n=1
Σ cn(gn, gk) (2.3)

= ck||gk||
2

. (2.4)

Every one of the inner products in the sum in (2.3) vanishes, except the one with

n = k. Rearranging (2.4) we have the result that

ck = ( f , gk)/||gk||
2

. (2.5)

We could make (2.5) even simpler if we had ||gn|| = 1, and this is sometimes the

case, but convention does not demand it.

Before discussing the more complicated issues of generation and completeness,

let us look at an example or two. The first example is that of the ordinary Fourier

Series, discussed at length in Chapter 12 of Riley et al. We choose a concrete inter-

val (a, b) to work on. It is convenient to pick a = − π and b = π. Now the functions

we need are the cosines and sines that are periodic on (−π, π) plus the constant func-

tion g0(x) = 1. For this case it is more tidy to let the sum in (2.3) begin at n = 0
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rather than 1; there is some arbitrariness in labeling here, but please be tolerant. I

will say for n = 0, 1, 2, . . .

g2n(x) = cos nx, and g2n+1(x) = sin (n +1)x . (2.6)

We need to show that these functions are indeed mutually orthogonal. The cosines

are all even functions, which means g2n(x) = g2n(−x) and the sines are all odd func-

tions, with g2n+1(x) = − g2n+1(−x); see Figure 1. So

(g2n, g2n+1) =
π

−π
∫ g2n(x) g2n+1(x) dx (2.7)

=
π

0

∫ g2n(x) g2n+1(x) dx +
π

0

∫ g2n(−x) g2n+1(−x) dx (2.8)

=
π

0

∫ g2n(x) [g2n+1(x) + g2n+1(−x)] dx = 0 .  (2.9)

That takes care of sines multiplied by cosines. Even though we are using a real vec-

tor space for L2 (and the complex version is in fact more elegant; see the Exercises)

it is worth knowing that complex variables almost always simplify calculations with

sines and cosines. So we use them here. First, we have the elementary and nearly

obvious result that for integer n ≠ 0:

π

−π
∫ einx dx =

einx

in
π

−π
=

einπ −e−inπ

in
=

2 sin nπ
n

= 0 .  (2.10)

Write cos nx = Re einx. Then when m ≠ n we have

(g2n, g2m) = Re

π

−π
∫ cos mxeinx dx = ½Re

π

−π
∫ (eimx + e−imx) einx dx (2.11)

Figure 1: The first 10 members of the Fourier basis (2.6).
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= ½Re




π

−π
∫ ei(m + n)x dx +

π

−π
∫ e−i(m − n)x dx





= 0 .  (2.12)

A similar calculation works for the sines. Finally, we need

||g0||
2 =

π

−π
∫ 1 dx = 2π (2.13)

||g2n||
2 =

π

−π
∫ cos2 nx dx = π, n ≥ 1 (2.14)

||g2n+1||
2 =

π

−π
∫ sin2(n +1)x dx = π, n ≥ 0 .  (2.15)

This rather messy collection of results allows us to find the ordinary Fourier expan-

sion of a function on (−π, π). We just use (2.5) and the definition of the inner product

(1.10). The expansion (2.1) is then the Fourier series for f :

S( f ) =
∞

n=0
Σ ( f , gn)

||gn||
2

gn (2.16)

Let us calculate the expansion coefficients for a simple function, and study how

the Fourier series converges experimentally. Almost the simplest function I can

think of is f (x) = x, obviously in L2(−π, π). Then, because this is an odd function in

x, all the cosine terms vanish. You will see in Exercise 1 that a complex basis is

much simpler than the real one we are using here, but I will just use the complex

exponential to help us evaluate the integral again; from (2.5) and (2.16):

c2n+1 =
1

π
Im

π

−π
∫ x ei(n+1)x dx (2.17)

=
1

π
Im





xei(n+1)x

i(n +1)
π

−π
−

π

−π
∫ 1 ⋅

ei(n+1)x

i(n +1)
dx





(2.18)

= Im
1

π





−2(−1)n+1π
i(n +1)

− 0




=
2(−1)n

n +1
(2.19)

Figure 2: Partial sum of the series in (2.20).
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where I integrated by parts to get (2.18) and used eiπ = − 1 in (2.19). So rearranging

slightly we conclude that

S( f ) = 2



sin x −

sin 2x

2
+

sin 3x

3
−

sin 4x

4
+ . . .




. (2.20)

In Figure 2 we see partial sums of this series. Notice how the series converges (triv-

ially) at x = ± π, but not to the correct answer. Also observe the persistent overshoot

near the ends, something known as Gibbs’ phenomenon. See Section 6 (but not

Riley et al.!) for the theory: the overshoot never goes awa y, no matter how many

terms are taken. It can be proved that S( f ) is convergent pointwise to f (x) in this

case, except at the ends of the interval. It is not uniformly convergent to f (x). In

uniform convergence, one measures the maximum deviation of the partial sum from

the true function. There is a sense in which the series does converge to f , which we

describe briefly in Section 3.

Another example of a complete family in L2 is the set of sine functions on a dif-

ferent interval, (0, π): let

gn(x) = sin nx, n = 1, 2, 3, . . . (2.21)

which are shown in Figure 3. Even if we shift the origin back to the center of the

interval, this is a different set of functions from the sines and cosines in the first

example; for example, the constant function f (x) = 1 is not in the set. With the

Fourier basis in (2.6) exactly one term is needed in the series expansion, whereas

with (2.21) an infinite number of terms is required. Without going into details of the

derivation we find that here if f (x) = 1 for x on (0, π) then

cn =




4/πn,

0,

n odd

n even
(2.22)

and thus

S( f ) =
4

π




sin x +

sin 3x

3
+

sin 5x

5
+

sin 7x

7
+ . . .




. (2.23)

So far it looks as if the only functions available for orthogonal sets are sines and

cosines, but that is not the case, although they do have special properties. For exam-

ple, if one insists on extending the interval outside the original (a, b) the function

f (x) is reproduced periodically by the periodic trigonometric functions.

Figure 3: The sine Fourier basis (2.21) with n = 1, 2, . . . 5.
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As a final example in this section, I introduce a set of orthogonal polynomials,

functions that are composed of sums of the powers xn. You will be familiar with the

ordinary Taylor series for elementary functions, for example:

ln (1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ . . . (2.24)

valid when −1 < x ≤ 1. The powers x, x2, etc are not orthogonal on (−1, 1), or any

other interval for that matter, so we cannot use (2.16) to form a power series like

(2.24). But powers can be built into an orthogonal set and do form a basis for

L2(a, b) for finite intervals. There are the Legendre polynomials: for x in (−1, 1)

we define

Pn(x) =
1

2nn!

dn

dxn


(x2 − 1)n


, n = 0, 1, 2, . . . (2.25)

Here are the first few:

P0(x) = 1; P1(x) = x; P2(x) = ½(3x2 − 1); P3(x) = ½(5x3 − 3x) .  (2.26)

I show a few more in Figure 4. The polynomial Pn(x) is always of degree n, is com-

posed of even powers when n is even, and odd powers when n is odd, and most

important, these polynomials are orthogonal functions: (Pm, Pn) = 0 when m ≠ n.

How do we obtain these functions, and others like them, since there are infinitely

many such sets? I will discuss this question in the Section 4. But first a very brief

section on convergence.

Exercises

1. It is easy to extend the definition of the inner product to functions f : IR → C| , that

is, complex-valued functions with a real argument. Here is how it is done:

( f , g) =
b

a
∫ f (x)g(x)∗ dx

where * means take the complex conjugate. This ensures that ( f , f ) is positive

and real, so that (1.11) still works. Show that with this inner product the

Figure 4: The first five Legendre polynomials (2.25).
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functions

en(x) = e2πinx, n = 0, ± 1, ± 2 , . . .

are orthogonal on (0, 1). Show that ||en|| = 1. Show the Fourier series

S( f ) =
∞

−∞
Σ cne2πinx

is exactly equivalent for real functions to the one obtained from (2.6), after a

suitable scaling and change of origin in x.

2. Show that the set of functions

gn(x) = cos nx, n = 0, 1, 2, . . .

are orthogonal on the interval (0, π), and find ||gn||. Assuming this set to be

complete (it is), find the coefficients cn in a Fourier expansion for the function

f (x) = x. Plot partial the partial sums of this series as shown in Figure 2. Is

there evidence of Gibbs’ phenomenon here?

3. In the Taylor series (2.24), set x = eiθ and compare the imaginary part with the

result (2.20). Is the real part of this function so defined in L2(−π, π)? If so, is

the real part of the right side a valid Fourier series? Plot the partial sums of

the real part and compare them with the function.

4. Prove Parseval’s Theorem for an expansion in an orthogonal basis:

|| f ||
2 =

∞

n=1
Σ c2

n ||gn||
2

where f and cn are as in (2.1).

In Question 3 the Fourier series for the real and imaginary parts have the

same coefficients. Use this fact and Parseval’s Theorem to prove:

∞

n=1
Σ 1

n2
=

π2

6

and

π

−π
∫ ln2 2(1 + cosθ ) dθ =

2π3

3
.
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3. Convergence

In elementary calculus courses there is usually a discussion of convergence of series,

giving tests and conditions to cover the case of a sequence of numbers; here we have

a sequence of functions. New issues arise in this case that have no counterpart in

the simpler theory: for example, there are several different ways in which a sequence

of functions can converge.

The question of the precise conditions under which a Fourier series converges

and in what manner was an important topic of analysis in the 19th century. Before

discussing this I state, but not do prove (of course), the general result for complete

orthogonal series. If the set of functions gn form an orthogonal basis (that means

the set is complete) then it can be shown that:

N→∞
lim || f − SN ( f )|| = 0 (3.1)

where

SN ( f ) =
N

n=1
Σ cn gn (3.2)

and where cn defined in the usual way, by (2.6). Thus the distance in the 2-norm

between the partial sums and the original function always shrinks to zero; thus we

have guaranteed convergence in the sense of the norm of L2. Doesn’t this mean the

two functions are equal? Not quite. Because the norm (1.9) depends on an integral,

and it does not ‘‘see’’ differences if they occur at isolated points, like the end points of

the interval in Figure 2. That series never gets the values right at the end points,

yet measured by the norm, the two functions are the same. In fact, examples can be

cooked up in which S( f ) and f differ at an infinite number of points, yet satisfy (3.2).

Equation (3.1) is the definition of convergence with respect to a norm, in this

case the 2-norm defined in (1.9).

This gets us into the idea of different kinds of convergence. The most natural-

seeming is pointwise convergence, where we examine the discrepancy at every point.

It is difficult (maybe impossible) to provide general results about pointwise conver-

gence for general orthogonal functions, but for Fourier series a lot has been done.

We have to ask that f be a lot smoother than just belonging to L2 which is a "big"

space of functions. You might think having f (x) continuous would be enough, but

that obviously doesn’t work: look at Figure 2 again and consider that f (x) = x, surely

a continuous function! But we know the sine and cosines are really defined in a peri-

odic way, and perhaps we should consider function defined on a circle, so that the

value (and derivatives if they exist) at x = 0 match those at x = 2π. Then the func-

tion f (x) = x isn’t continuous because it jumps from one value to another across the

end points. It turns out that even functions continuous on a circle do not always

have pointwise convergent Fourier series! See Ko
..
rner’s book for examples. We need

stronger conditions. Riley et al. (p 421) give the Dirichlet conditions. Here is a

slightly different statement of the conditions copied from Keener:
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Suppose f (x) is in PC1[0, 2π], that is, piecewise C1, which means f has continu-

ous first derivatives on the interval, except possibly at a finite number of points

at which there is a jump in f (x), where left and right derivatives must exist.

Then the Fourier series of f converges to ½( f (x+) + f (x−)) for every point in the

open interval (0, 2π). At x = 0 and 2π, the series converges to ½( f (0+) + f (2π−)).

Notice this statement answers two questions: first, the series under these conditions

always converges pointwise; second, it tells us what the series converges to: the cor-

rect value most of the time, giving possibly incorrect answers only at the discontinu-

ities and the ends of the interval. This kind of convergence is called convergence

in the mean.

Another form of convergence is uniform convergence. This used to be the

gold standard of convergence. For continuous functions, you can measure the maxi-

mum difference between the series and the function written:

N →∞
lim || f − SN ( f )||∞ = 0 .  (3.3)

The maximum discrepancy is another kind of norm, called the uniform norm (also

called the sup norm, for supremum, which is the mathematically wa y of defining a

maximum for discontinuous functions). Pointwise convergence does not imply uni-

form convergence! The Gibbs’ phenomenon, which we discuss later, is the most

famous example of this. But uniform convergence does include pointwise.

Figure 4a: Convergence in the mean.



ORTHOGONAL FUNCTIONS 12

4. Where Do Orthogonal Functions Come From?

The first thing to be looked at is the Gram-Schmidt process. Suppose we have an

infinite set of functions u1, u2, u3, . . . in L2 and they are not orthogonal. We can cre-

ate an orthogonal set from them in a clever way. It is helpful to create the new set to

be of unit norm: ||gn|| = 1. We start with the first one, and say g1 = u1/||u1||. Next

we take u2 and remove any part parallel to g1:

g = u2 − g1(g1, u2) .  (4.1)

The function g1(g1, u2) is called the orthogonal projection of u2 onto g1. Observe

that g has zero inner product with g1:

(g1, g) = (g1, u2) − (g1, g1)(g1, u2) = 0 .  (4.2)

Now it could be that ||g|| vanishes, and if it does we don’t get a new function. But

if ||g|| > 0 we say this is the next orthogonal element: g2 = g/||g||. We repeat the

process, starting with u3 and removing the components parallel to u1 and u2:

g = u3 − g1(g1, u3) − g2(g2, u3) (4.3)

and if this g doesn’t vanish we add to the set, building up an orthogonal series of

functions, g1, g2, . . ..

Thus from any infinite sequence of functions we can get an orthogonal set.

That set might be infinite, or it might not; it might be a basis for L2 or not. These

are hard questions. For example, if we start with the functions un(x) = xn for

n = 0, 1, 2 . . ., the powers of x on (−1, 1), the Gram-Schmidt process gives us an infi-

nite set of orthogonal polynomials and, yes, they are the Legendre polynomials

(scaled to get a unit norm). They are a basis. Suppose now that you decide to omit

u0, the constant. Performing Gram-Schimdt on the reduced set gives another series

of orthogonal polynomials, not the Legendre polynomials. Are these complete, even

though we dropped a function from the first list? They are! But if we dropped the

constant function P0 from the list of Legendre polynomials, that orthogonal set

would not be complete.

So we now know how to get an orthogonal set of functions out of any sequence.

But that is not the way the orthogonal functions arise most often. Their most com-

mon appearance is in connection with the eigenvalue problem of special linear oper-

ators, called self-adjoint operators or when the functions are complex, Hermitian

operators. You will be seeing this theory properly in Chapter 17 of Riley et al. The

basic idea can be appreciated again by analogy to finite-dimensional spaces, where

there are linear mappings of vectors into each other, the matrices. The self-adjoint

property of operators corresponds with matrix symmetry. Let us write

g = Lf (4.4)

where f and g are in a smoother subspace of L2. Self-adjointness of L is by defini-

tion that

( f , Lg) = (Lf , g) (4.5)

for all f and g for which L may act. When a matrix is symmetric ( A = AT ) and ei-

genvalues of A are distinct, this implies two things: real eigenvalues and orthogonal
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eigenvectors. It means the same thing for self-adjoint operators, and the proof is

quite easy. So any self-adjoint operator naturally generates an infinite orthogonal

sequence of functions. If it is a basis (that is, the set is complete, which is not always

true), this a good way to solve differential equations, because L is frequently a differ-

ential operator we are interested in. Eigenfunction expansions are used extensively

in scattering problems and of course in normal mode seismology. They essentially

convert the differential equation into an algebraic one.

To give a specific example, consider the operator L = d2/dx2 for functions on

(0, π); to define L properly we must also specify boundary conditions for L at the

endpoints, and so I will take f (0) = f (π) = 0. For eigenvalue problems the boundary

conditions need to homogeneous. We can now verify L is self-adjoint according to

(4.5):

( f , Lg) − (Lf , g) =
π

0

∫



f (x)

d2 g

dx2
− g(x)

d2 f

dx2





dx (4.6)

=



f (x)

dg

dx
− g(x)

df

dg





π

0

−
π

0

∫




df

dx

dg

dx
−

dg

dx

df

dx





dx = 0 .  (4.7)

I integrated by parts to get (4.7), then applied the boundary conditions to make the

first bracketed term vanish. The eigenvalue problem for L is:

Lu = λ u, with u(0) = u(π) = 0. (4.8)

You will easily verify that because L sin nx = −n2 sin nx the eigenvalues and eigen-

functions for (4.8) are

λ n = − n2, un(x) = sin nx, n = 1, 2, 3, . . . (4.9)

So we have recovered the Fourier sine orthogonal family of (2.21)! As you may wish

to verify, the other kinds of Fourier basis arise from different homogeneous boundary

conditions. So Fourier series are really eigenfunction expansions.

The eigenvalue problem for Legendre polynomials is given by

(1 − x2)
d2 Pn

dx2
− 2x

dPn

dx
= λ n Pn(x) (4.10)

for x on the interval (−1, + 1). The ‘‘boundary values’’ are that the solution be regular

at x = ± 1, because as you can see there are singular points in the operator at the end

points, and singular solutions do exist, but these are not the ones required. The ei-

genvalues are λ n ∈ {0, − 2, − 6, − 12, . . . − l(l +1), . . . }.

One of the odd things at first sight is that the domain of an operator like d2/dx2

(that is, the functions that it can act on, twice-differentiable functions), is so much

smaller than the space L2 which merely have to be square integrable, yet the eigen-

functions of L provide a basis for all of L2. This is very useful, because it means

nonsmooth functions that may arise in a differential equation, for example as a forc-

ing term, can still be expanded in the basis.
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The question of how one proves completeness is quite difficult. For special

cases, like Fourier series and Legendre polynomials, authors often appeal to the

completeness of the powers of x and use something called Weierstrass’ theorem.

For self-adjoint operators, a sufficient condition is that the operator be compact, a

notion connected to the property of producing a convergent sequence from a merely

bounded one. But differential operators are not compact, so to use this general prop-

erty one must find a related compact operator that shares the same eigenfunctions;

this isn’t so hard as it sounds because any two commuting operators have the same

eigenfunctions. See Keener’s book for a good treatment.

Exercises

1. Consider the infinite set of functions on the interval (0, π) given by

un(x) = cosn x, n = 0, 1, 2, . . .

Use the Gram-Schmidt process to generate the first four orthogonal functions

gn(x) in an infinite sequence under the inner product of L2(0, π). Use MATLAB

to graph these four. From your result make a guess for the general form of gn,

and then prove it.

Hint:

π

0

∫ cos2n x dx = √  π Γ(n +½) / Γ(n +1), with integer n ≥ 0.

Books

Dym, H. and H. P. McK ean, Fourier Series and Integrals, Academic Press, New York,

1972.

A mathematician’s version of the theory; modern compact notation; terse but ele-

gant. Chapter 1 is on Fourier series, giving dozens of applications and proofs of all

the standard results.

Ko
..
rner, T. W., Fourier Analysis, Cambridge University Press, Cambridge, 1988.

Another mathematician’s book, full of great applications, rigorous proofs, but hap-

hazardly organized.

Keener, J. P., Principles of Applied Mathematics: Transformation and Approxima-

tion, Addison-Wesley, Redwood City, 1988.

The general book you should turn to after Riley et al. Unfortunately, it’s currently

out of print.

Riley, K. F., Hobson, M. P., and Bence, S. J., Mathematical Methods for Physics and

Engineering, Cambridge Univ. Press, 2002.

Covers a lot of ground; useful introduction. Not my favorite, but chosen for the class.

Notation is old-fashioned or nonstandard, generally low level of rigor.
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5. The Complex Fourier Basis

It is time to expand our treatment to complex-valued functions of a real argument,

typically things like eiθ which we a already familiar with. This Section was offered

as an Exercise earlier, but it is important enough to write out in full here. Complex

L2(a, b) is defined as the set of complex functions on (a, b) such that

|| f || =




b

a
∫ | f (x)|

2
dx





½

< ∞ . (5.1)

Notice this is gives exactly the same answer as real L2 if f happens to be real. The

inner product is slightly different:

( f , g) =
b

a
∫ f (x) g(x)∗ dx (5.2)

where (⋅)∗ means complex conjugate. This definition requires some care, because it is

no longer true that the inner product commutes; instead we see

( f , g) = (g, f )∗ . (5.3)

The greatest use for us will be the complex Fourier basis for L2(0, 1). We will show

that the following functions are orthogonal:

en(x) = e2πinx, n = 0, ± 1, ± 2, . . . (5.4)

We calculate the required inner products from their definition:

(em, en) =
1

0

∫ em(x) en(x)∗ dx =
1

0

∫ e2πimx (e2πinx)∗ dx (5.5)

=
1

0

∫ e2πimx e−2πinx dx (5.6)

=
1

0

∫ e2πi(m−n)x dx . (5.7)

When m = n the integrand is obviously 1, so

(en, en) = ||en||
2 = 1 .  (5.8)

When m ≠ n we have

(em, en) =




e2πi(m−n)x

2πi(m − n)





2π

0

=
1

2πi(m − n)



1 − e2πi(m−n)


(5.9)

=
1

2πi(m − n)
(1 − 1) = 0 (5.10)

because e2πiN = 1 for any integer N . Hence the en are orthogonal and of unit norm.
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They are also a complete set in L2(0, 1), so we can expand arbitrary functions in that

space with them. In fact they are exactly equivalent to the sine and cosine basis we

discussed earlier on the interval (−π, π), after a bit of shifting and scaling.

To show the equivalence we write out the sum in complex form, then rearrange

a little:

S( f ) =
∞

−∞
Σ cne2πinx = 


−1

−∞
Σ +

∞

0
Σ


cne2πinx (5.11)

= c0 +
∞

n=1
Σ 


c−ne−2πinx + cne2πinx


(5.12)

= c0 +
∞

n=1
Σ [c−n(cos 2πnx − i sin 2πnx) + cn(cos 2πnx + i sin 2πnx)] (5.13)

= c0 +
∞

n=1
Σ [(c−n + cn) cos 2πnx + i(−c−n + cn) sin 2πnx] .  (5.14)

If we demand cn + c−n to be real and cn − c−n to be imaginary, this sum is an expan-

sion almost (2.6) except for the interval. But you can easily see that by making

y = 2π(x −½), the new interval becomes (−π, π) and the basis functions are then

exactly the same. The complex form is much easier to work with in general, is

strongly recommended.

Another important result that we should mention is Parseval’s Theorem; this

was an exercise in Section 2 . One way to look at it is as a conservation of energy as

we shall see. The result is straightforward to show if we don’t worry too much about

rigor: in complex L2

|| f ||
2 = ( f , f ) = (

n
Σ cn gn,

n
Σ cn gn) (5.15)

=
m
Σ

n
Σ (cm gm, cn gn) =

m
Σ

n
Σ cm(cn)∗ (gm, gn)

=
n
Σ |cn|

2
(gn, gn) =

n
Σ |cn|

2
||gn||

2
. (5.16)

This Parseval’s Theorem. It is exactly the same in real L2, absent the magnitude on

cn. With the complex Fourier basis en, which is an orthonormal set, this result is

even simpler. The physical interpretation, as I hinted earlier, is that the energy in

the system, as given by the squared norm, is the same as the energy summed over

the orthogonal modes.

Parseval’s Theorem is a neat way of summing some difficult looking infinite

series. For example, recall the Fourier sine series for the constant function f (x) = 1

on the interval (0, π), equation (2.23).

gn(x) = sin nx, n = 1, 2, 3, . . . (5.17)

Then ||gn||
2 = ½π, and with f (x) = 1, we found

cn = 4/nπ, n odd, = 0, otherwise . (5.18)
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Therefore, according to Parseval

|| f ||
2 =

n odd
Σ 


4

nπ



2

||gn||
2

(5.19)

=
16

π2

π
2 n odd

Σ 1

n2
=

8

π




1 +

1

9
+

1

25
+ . . .




. (5.20)

But the integral for the norm of f is really easy:

|| f ||
2 =

π

0

∫ 1 dx = π . (5.21)

From which we conclude

π2

8
= 1 +

1

9
+

1

25
+ . . . (5.22)
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6. Gibbs’ Phenomenon

We keep meeting this issue and it is unsatisfactory for you not to have a treatment,

particularly since Riley et al. duck the problem too. So I will give you a brief tour.

The question revolves around any Fourier series expansion of a function with a

(finite number of) simple jump discontinuities. We saw them in Figure 2, page 6

because the function f (x) = x is not continuous on a circle, and so there is an effec-

tive jump between x = − π and x = π. Here I examine the simplest case. We work on

the interval (0, + 1) and use the complex basis en(x) = e2πinx with n = 0, ± 1, ± 2, . . .

which is complete, and we have ||en|| = 1.

First we write out the expansion of a function f , taking the terms out to

|n| = N :

SN ( f ) =
N

n=−N
Σ cnen(x) =

N

n=−N
Σ ( f , en) en(x) (6.1)

=
N

n=−N
Σ





1

0

∫ f (y) e−2πiny dy




e2πinx (6.2)

=
1

0

∫ dy


f (y)

N

n=−N
Σ e2πin(y − x)


=

1

0

∫ dy f (y) DN (y − x) .  (6.3)

The integral is an example of a convolution, an operation we will see more of with

Fourier transforms. We can evaluate the function DN :

DN (u) =
N

n=−N
Σ e2πinu = e−2πiΝ

2N

n=0
Σ e2πiν . (6.4)

The sum now is just 2N +1 terms of a geometric series (like 1 + x + x2 + . . . x2N )

whose sum is (x2N+1 −1)/(x −1). Hence:

DN (u) = e−2πiNu e2πi(2N+1)u − 1

e2πiu − 1
(6.5)

= e−2πiNu eπi(2N+1)u(eπi(2N+1)u − e−πi(2N+1)u)

eπiu(eπiu − e−πiu)
(6.6)

= e−2πiΝ+πi(2N+1)u−πiu (eπi(2N+1)u − e−πi(2N+1)u)/2i

(eπiu − e−πiu)/2i
(6.7)

=
sin π(2N +1)u

sin πu
. (6.8)

In the present context this function is called the Dirichlet kernel. We are inter-

ested in DN (x) for large values of N , when we have taken a lot of terms in (6.1). A

graph of the Dirichlet kernel is shown in Figure 5, with N = 25.
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Returning to (6.3), let us now choose a particular function for f . We will treat the

Heavisde function, in this case, a step at x = ½: let

f (x) = H(x −½) =




0,

1,

x < ½

x ≥ ½ .
(6.9)

Let us call the sum for this function QN (x); then

QN (x) =
1

0

∫ H(y −½) DN (y) dy =
1

½

∫ DN (y − x) dy . (6.10)

We are interested in the behavior near the jump at x = ½, so we write x = ξ +½ and

QN (ξ +½) =
1

½

∫ DN (y −ξ −½) dy =
1

½

∫
sin π(2N +1)(y −ξ −½)

sin π(y −ξ −½)
dy . (6.11)

We make the change of variable: t = π(2N +1)(y −ξ −½); then

QN (ξ +½) =
(2N+1)π(½ −ξ )

−(2N+1)π ξ
∫

sin t

t
⋅

t/(2N +1)

sin t/(2N +1)

dt

π
. (6.12)

Up to this point we have made no approximations whatever! Now we let N become

very large and ξ be small so that Nξ ˜ 1. Then the second factor in the integrand

tends to one since t/(2N +1) is of the order of ξ which is small, and we get the

approximation:

Figure 5: The Dirichlet kernel
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Q̃N (ξ +½) =
1

π

∞

−2π Nξ
∫

sin t

t
dt =

1

π





τ

0

∫ +
∞

0

∫




sin t

t
dt (6.13)

= ½ +
1

π

τ

0

∫
sin t

t
dt (6.14)

where I have written τ = 2π Nξ , and I have used the fact that sin t/t is even in t. I

have also used the fact that the integral on (0, ∞) is ½π something we will show

later on. The integral of sin t/t is called si(t) and is a commonly used function − in

MATLAB it is called sinint. I plot (6.14) in Figure 6 below. Notice how the result

depends on the number of terms N only on the way the x axis is scaled. As N

becomes large the picture is compressed in x, but its fundamental shape never

changes: there is always an overshoot and an undershoot of the same magnitude,

which turns out to be about 8.94 percent. This means that the maximum difference

between the original step function and the sum of the series does not tend to zero

with increasing N ; in other words the Fourier series S( f ) is not uniformly conver-

gent for this function.

The same analysis applies at any jump discontinuity, not just the unit step, and

not just at x = ½.

Figure 6: Gibbs’ overshoot function.
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7. Geophysical Examples of Orthogonal Functions

Any time one encounters a periodic phenomenon, a Fourier series is appropriate.

Tides might seem to be an example, but really they are not because the different

tidal frequencies are not multiples of some fundamental frequency. There are plenty

of Fourier series in signal processing: for example in electromagnetic sounding in the

marine environment, Steve Constable uses a square wave signal in the source elec-

tric current, which is analyzed in terms of its separate components as sine waves;

see equation (2.23).

Another signal processing example is a set of orthogonal functions used in the

estimation of power spectra. The power spectrum (or, PSD for power spectral den-

sity) is the means of representing the frequency content of a random signal. The

modern way of computing the PSD involves first multiplying the original time series

by a succession of orthogonal functions, called prolate spheroidal wavefunctions,

eigenfunctions of a certain self adjoint operator. These will be covered in the Geo-

physical Data Analysis class. They are illustrated below.

The most common set of orthogonal functions in geophysics are the spherical

harmonics. We can easily define an inner product and norm using integrals over

regions other than the real line, for example, over the surface of the sphere. This

gives rise to the space L2(S2), where S2 is just a symbol for the surface of the unit

sphere. If we write the inner product and norm for complex-valued functions as

( f , g) =
S2

∫ f (r̂) g(r̂)∗ d2r̂, || f ||
2 =

S2

∫ | f (r̂)|
2

d2r̂ (7.1)

then we can build orthogonal functions on the sphere. The most common of these

are the spherical harmonics, eigenfunctions of the self adjoint operator ∇ 2
1; they are

the equivalent of the Fourier series on a sphere. Gravitational and magnetic fields

around the Earth are always expanded in spherical harmonics. In seismology, the

Figure 7: Prolate spheroidal, or Slepian, functions.
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free oscillations of the Earth as a whole are computed and classified in terms of their

expansions as spherical harmonics. Almost every quantity considered globally is

decomposed into its spherical harmonic series, including topography, heatflow, sur-

face temperature, etc:

f (r̂) =
∞

l=0
Σ

l

m=−l
Σ clm Y m

l (r̂) (7.2)

clm = ( f , Y m
l ) .  (7.3)

Notice there are two counters, l and m, instead of the familiar single index in the

expansion for reasons we will not go into here.

Below we illustrate two typical spherical harmonic basis functions. As illus-

trated on the right, when the index m = 0, we obtain axisymmetric functions; these

functions are can be expressed as the Legendre polynomials defined in (2.25):

Y 0
l = P l( cosθ ) where θ is the colatitude.

Figure 8: Two of the spherical harmonic basis functions.
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8. The Reproducing Kernel

The picture we saw in the discussion of Gibbs’ phenomenon (Section 6) has a mild

generalization worth mentioning here. Consider any complete set of orthogonal

functions, arranged in a specific order in the usual way: g1, g2, . . . gn
. . . . Also we

will take these to be of unit norm: ||gn|| = 1. Now consider forming the following

function from the first N of them:

K N (x, y) =
N

n=1
Σ gn(x) gn(y) .  (8.1)

This is known as the reproducing kernel because of the following property. Take

the inner product with some other arbitrary element in the Hilbert space, say f

which varies in the argument x. Then

(K N , f ) = (
N

n=1
Σ gn(x) gn(y), f (x)) (8.2)

=
N

n=1
Σ (gn, f ) gn(y) (8.3)

=
N

n=1
Σ cn gn(y) = SN ( f ) .  (8.4)

In other words, the inner product (8.2) is the version of the function f obtained by

truncating the orthogonal expansion (2.1) to N terms.

What this means is that for any fixed position y the function K N (x, y) looks, as

N becomes large, like a narrower and narrower spike concentrated at y, and it is

therefore an approximation to a delta function. We have seen how this looks for the

Fourier basis in Section 6, the Dirichlet kernel. Exactly the same behavior will be

found for any complete expansion. For example, for a Hilbert space based on a

sphere, the spherical harmonics provide a reproducing kernel, which can be used for

deriving the Spherical Harmonic Addition Theorem.

When the gn are orthogonal functions arising as the eigenfunctions of a self-

adjoint differential operator, then K N can be used to derive Green’s function for

the operator since we can write:

LxGN (x, y) = K N (x, y) (8.5)

and upon expanding GN in the eigenbasis we easily see that

GN (x, y) =
N

n=1
Σ gn(x) gn(y)

λ n

(8.6)

and Green’s function results as N →∞.


