
FOURIER TRANSFORMS

Class Notes by Bob Parker

1. What is the Fourier Transform?

For a suitable function f of a single real variable the definition of the Fourier

transform is:

f̂ (ν ) = F [ f ] =
∞

−∞
∫ dt e−2π iν t f (t) .  (1.1)

This operation takes a real function and generates from it another complex-valued

function, that is, a function of a single variable (here ν ) that has a real part and

imaginary part. We can think of this as a kind of linear mapping: a function goes in,

and another (complex) function comes out.

It is easier to start with the idea of synthesizing a complex function f rather

than a real one. What does the transform mean? In loose physical terms the

Fourier transform (we’ll write FT, from now on) produces a complex amplitude spec-

trum that shows how large the amplitude of the cosine and sine functions must be at

each frequency ν , in a decomposition of the function into periodic parts, parts that

each have a definite frequency. When the independent variable is a coordinate is

space, wavenumber, which we will write as k, is more appropriate. Imagine build-

ing up the function f from (an infinite) sum of sines and cosines; this may sound

implausible for an infinite interval, and indeed, not every function can be built like

this, but many can. Because we must allow every possible frequency of sine and

cosine, the sum must be an integral, which we would write:

f (t) =
∞

−∞
∫ dν e+2π iν t f̂ (ν ) .  (1.2)

For a particular frequency ν , the contribution to the sum is just

e2π iν t f̂ (ν ) = (cos 2πν t + i sin 2πν t) f̂ (ν ) .  (1.3)

You can see this function is a sine wave, but it has real and imaginary parts. As a

function of t, the function in (1.3) repeats itself exactly, with period 1/ν ; for func-

tions in space the corresponding quantity is of course the wavelength, λ = 1/k. If

the magnitude of the amplitude function | f̂ (ν )| is large at some frequency ν0 com-

pared to that at any frequency, we would expect f (t) built by (1.2) to approximate a

complex cosine wave with frequency ν0. As an illustration, consider the function ĝ

which is a Gaussian hump with its peak at ν0 shown in Figure 1a:

ĝ(ν ) = e−(ν −ν0)2/2σ 2

(1.4)

where σ is a standard measure of the width. If we plug this into (1.2) we get (by

methods we shall describe later on)

g(t) = √ 2π σ e−2π 2σ 2t2

e2π iν0t . (1.5)



FOURIER TRANSFORMS 2

You see g is a product of two exponential factors, a Gaussian hump of width 1/2π σ ,

and a complex cosine term with frequency ν0. As σ becomes small, and the ampli-

tude of ĝ is more and more concentrated at ν0, g looks more and more like a pure

complex cosine, since the width of the Gaussian factor grows larger.

If you accept the plausibility of the idea that you can build a non-periodic func-

tion from a sum of periodic parts, the next question is, Given a function f , how do we

find the corresponding amplitude function f̂ ? Of course, the answer has already

been provided by (1.1). Remarkably, the amplitude calculating formula, (1.1) is

almost the same as the synthesizing expression, (1.2). The only difference is the

sign change in the exponential. Equation (1.2) is called the inverse Fourier trans-

form, and can be written

f (t) = F
−1[ f̂ ] .  (1.6)

Obviously, if you take the FT of a function and then take the inverse FT of the

result, you should get back the function you started with. This is exactly true only

for moderately well behaved functions, as we will discuss shortly.

A brief discussion of notation is in order. There are several slightly different

conventions for the FT. I use the one with the factor 2π in the exponent, which has

always been the engineering practice and has become the standard in the applied

math literature. Riley et al. use a physicists’ form with a (2π )−½ outside. There are

good reasons for preferring my notation, and I strongly recommend using it. First,

there no other factors of 2π to remember in any of the other related results, the Con-

volution Theorem, Parseval’s Theorem, etc., while all other notations have random

factors; second, the parameter ν is a frequency, not an angular frequency in radians

per second, and 1/ν is a period or a wavelength, and so much easier to identify with a

physical scale, not six times the scale. I use the notation f̂ for the FT, which is com-

mon in the mathematical work, while Riley and company have f̃ , which is

Figure 1a: The FT of a shifted Gaussian.



FOURIER TRANSFORMS 3

completely unheard of! Some authors will use F for the FT of f .

Two physical realizations of the FT that come to mind. The acoustical idea of

decomposing a sound into its component frequencies, something suggested by musi-

cal tradition for sounds that are nearly periodic. If the pressure time series is p(t),

and its FT is p̂(ν ), then the magnitude squared | p̂(ν )|2 dν is the acoustical power

(or energy, these terms seem to be interchangeable in this context) in the frequency

band ν to ν + dν ; conventionally, we might use f or ν for frequency, not ν ; for us f is

unsuitable because I like to reserve this letter for the name of a function. A second

familiar illustration comes from optics: the spectrum of a light source. Here we usu-

ally think of the intensity of the light as a function of wavelength, but a light signal

in space f (x) can be Fourier transformed and the magnitude squared | f̂ (k)|2 is the

spectrum as a function of wavenumber k = 1/λ . However, a proper model of light

requires the concept of the FT of a random process, called the power spectrum,

something we will be spending a lot of time on later in the course.

You will probably be troubled by the fact that, even when we start with a real

function in (1.1), we get a complex one out (though not always, as we shall see).

What does this mean? Looking again at the process of building up a function from

its Fourier spectrum, equation (1.2), and thinking about all the functions that can be

built by summing the real part, you will see that cosine functions of the form

cos 2πν t with different real amplitudes can make only even functions of t. An even

function must satisfy F(t) = F(−t), but obviously not all functions are even. Simi-

larly, sums of sines are always odd functions, with F(t) = − F(−t). While in general a

function is neither even nor odd, every real function can be written uniquely as a

sum of an odd and an even part. So it turns out that the real part of the FT copes

with the even part of the function and the imaginary part with the odd part; in gen-

eral both parts are necessary. While on this topic, we note the following easily

demonstrated symmetry: when f (t) is real, then the real part of f̂ (ν ) is always an

even function, and the imaginary part is always odd.

Before going into further details we must ask, Under what conditions is (1.2)

valid? It turns out things can go wrong in several ways: for example, the integral

might not exist, or it might exist, but give the wrong answer. It is impractical to for-

mulate a set of sufficient and necessary conditions on f guaranteeing the validity of

the inverse formula. We can however come up with a lot of useful restrictions — suf-

ficient conditions. For example, if f is smooth (having derivatives of arbitrary order)

at every point, and it decays awa y faster than any negative power of t, then f̂ has

the same properties and (1.2) holds; the set of functions with these properties is

called S . The Gaussian function in (1.5) is a member of S , for example. This is a

very bland set of functions, however, and we often need to go outside it.

Another class, commonly used, which contains more lively functions is complex

L2(−∞, ∞), which we have met on a finite interval; now we need the set of functions

for which

|| f ||
2 =

∞

−∞
∫ | f (t)|

2
dt < ∞ . (1.7)

Notice the magnitude | f | in the integrand, because f may be complex valued. The
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result here is that every f in L2, that is obeying (1.7), has an FT f̂ also in L2. But

now (1.2) is not precisely true, unless we agree to modify what is meant by equality

of two functions! If we agree that two functions, f and g, are essentially the same if

|| f − g|| = 0 (1.8)

then f is essentially equal to F
−1[ f̂ ] for f in L2. How could f and g differ in (1.8)?

They can differ at points of discontinuity: for example, it could be that f is zero for

all t ≤ 0, and is equal to cos t otherwise — a discontinuous function. If g vanishes for

all t < 0  and is cos t when t ≥ 0, then f and g differ only at one point, t = 0, where

f (0) = 0 and g(0) = 1. But the integral in (1.8) cannot "see" the difference between

such functions even though they are different. The set of all functions g that differ

from a function f while (1.8) is true is called an equivalence class. Members of an

equivalence class can be treated as single objects; here they are elements in the com-

plete normed space L2.

We can restore exact equality if we add further constraints, that f , in addition

to (1.7), must be piecewise continuous and differentiable, and at any points of discon-

tinuity we require

f (t) =
h = 0
lim ½[ f (t + h) + f (t − h)] . (1.9)

In other words, at jumps, the function takes the mean value of its limiting values on

either side. Members of L2(−∞, ∞) with these additional properties have FTs in L2

with the same properties.

But even this is not a big enough class, because sometimes we want to study

functions that die awa y at infinity too slowly to fit in L2, functions like sin t/|t|
½

.

And sometimes we would like to take the FT of sin t itself, which leads to an asym-

metric arrangement where the functions f belong to one class, and their transforms

belong to another set of objects that are not functions at all! They are distributions

or generalized functions, and are treated rigorously by using the idea of an equiv-

alence class again, this time a class of sequences of functions. Riley et al. and

Bracewell give a sloppy treatment of distributions (things like delta functions)

which is perhaps useful as an introduction. I will not dwell on these issues, but refer

you to the many books on this subject. The property that (1.2) is truly the inverse of

(1.1) needs a proof — it is not obvious — but we will not provide one. And as we

have hinted, the conditions under which (1.2) is valid, are the subject of a rich math-

ematical literature, which you should consult If you are interested in such things.

For rigorous proofs of many things, see Dym, H. and H. P. McK ean, Fourier Series

and Integrals, 1972, or Ko
..
rner, T. W., Fourier Analysis, 1988. I have mentioned

these two books earlier in our discussion of the Fourier series. For a survey of the

Fourier universe, but without proofs, see Champeney, D. C., A Handbook of Fourier

Theorems, 1987. The all-time favorite for nonmathematicians is by Bracewell, R. N.,

The Fourier Transform and its Applications, 1986.

Exercises

1. Prove every real function of a real variable can be written uniquely as the sum of

an even part and an odd part. Show the Fourier transform of a real, even
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function is also real and even. What about the Fourier transform of a real, odd

function?

2. Show that taking the Fourier transform of a function twice results in the original

function, but with sign of the argument reversed:

F [F [ f (t)]] = f (−t) .

What do you get if you Fourier transform a function four times? What do you

deduce about the Fourier eigenvalue problem: F [φ ] = λφ?

3. By taking the complex conjugate of (1.1) prove that for real function f

F [ f (−t)] = f̂ (ν )∗

where ∗ denotes complex conjugation. Also show that if g is an even function

F [g] = F
−1[g] .

Does this result need g to be real?

Books

Most books covering Fourier transforms give a very watered down version of distri-

bution theory, including Riley et al., and Bracewell. Keener’s book gives a much bet-

ter treatment. But the standard reference in applied mathematics remains

Bracewell, R. N., The Fourier Transform and its Applications, McGraw-Hill Book

Co., 1986.

The favorite for engineers and nonmathematicians. Lots of pictures and helpful

examples. In later editions Bracewell becomes obsessed with something called the

Hartley transform!

Champeney, D. C., A Handbook of Fourier Theorems, Cambridge Univ. Press, 1987.

A thin book explaining the major theorems about Fourier transforms without going

into their proofs. One of the few treatments in one book that deals with the analyti-

cal function theory and distributions in a truly rigorous way.

Dym, H. and H. P. McK ean, Fourier Series and Integrals, Academic Press, New

York, 1972.

Modern mathematical treatment, often terse, but in concise notation.

Ko
..
rner, T. W., Fourier Analysis, Cambridge Univ, Press, 1988.

Rigorous yet approachable because of a clear intent in explain, but with a mathe-

matical bias. Not very systematic in organization, more or less random, in fact.

Lighthill, M. J., Fourier Analysis and Generalized Functions, Cambridge Univ. Press,

1964.

A thin but dense treatment of Fourier transforms from the perspective of distribu-

tion theory (generalized functions as Lighthill calls them).

Keener, J. P., Principles of Applied Mathematics, Perseus Books, 1988.

Covers a lot of ground and shows the use of distributions in other contexts besides

the Fourier setting.
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2. More Properties, a Few Derived

The first property of the FT concerns what happens if we move the origin or scale

the independent variable. Bracewell calls these the shift and the similarity theo-

rems. They are trivial to prove: just make a change of variables in the integral and

we find that, with real a:

F [ f (a(t + t0))] =
1

|a|
f̂




ν
a




e2π iν t0 . (2.1)

Thus, translating the origin just introduces a multiplying complex exponential fac-

tor, while compressing a signal (which would mean making a large), stretches out

the FT, and conversely. Another easily proved result that is very useful is a kind of

converse of (2.1):

F [ f (t) e2π iν0t] = f̂ (ν −ν0) .  (2.2)

Recall from the exercise in the last section that for real functions f

F [ f (−t)] = f̂ (ν )∗ (2.3)

and so combining this result with (2.1) gives

f̂ (−ν ) = f̂ (ν )∗ (2.4)

but only for real f (t). An important result for mathematicians is that the FT of a

function in L2 is also in L2 and therefore the FT maps the space L2 onto itself. In

fact the result is even stronger: the Fourier transform preserves the 2-norm:

∞

−∞
∫ dt | f (t)|

2 =
∞

−∞
∫ dν | f̂ (ν )|

2
or || f || = || f̂ || . (2.5)

This very important result appears under a variety of names. It is sometimes called

the Plancherel Identity for Fourier transforms; Bracewell calls it Rayleigh’s Theorem;

to Riley et al. it is Parseval’s Theorem. The result (2.5) is far from obvious, and we

leave the proof to the experts. Recall the inner product for complex L2:

( f , g) =
∞

−∞
∫ dt f (t) g(t)∗ (2.6)

Then it is also the case that the inner product is preserved under the FT:

( f , g) = ( f̂ , ĝ) .  (2.7)

This can be proved from (2.5); see the Exercise at the end of the Section. Unfortu-

nately, (2.7) is also called by some (eg, Champeney) Parseval’s Formula, and to

Bracewell it is the Power Theorem.

Suppose that we now take the derivative of f in (1.2) and assume that f̂ is

smooth and otherwise well behaved (say a member of S ), so that we can take the dif-

ferential inside the integral; then

df

dt
=

∞

−∞
∫ dν

d

dt
e+2π iν t f̂ (ν ) (2.8)
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=
∞

−∞
∫ dν 2π iν e+2π iν t f̂ (ν ) = F

−1[2π iν f̂ ] .  (2.9)

When we take the FT of this equation we see

F




df

dt





= F [F −1[2π iν f̂ ]] = 2π iν f̂ (ν ) .  (2.10)

Thus the FT of the derivative is just a multiplication by 2π iν times the FT of the

original function. This result is very useful for solving certain kinds of differential

equations, because the differential equation becomes a simple algebraic equation.

You will be able to convince yourself that differentiating again just multiplies by the

factor 2π iν again. Equation (2.10) is in agreement with intuition about functions:

when one differentiates a function, the resultant is rougher, more spiky, and more

wiggly; but this is synonymous with the presence of more power at high frequencies.

Our result says the same thing, but much more precisely: there is an amplification of

the spectrum by the factor ν , which obviously grows linearly with increasing ν .

The same manipulations, but applied now to (1.1) give us the converse result:

F [t f (t)] = −
1

2π i

d f̂

dν
. (2.11)

So multiplying a function by t results in an FT that is, within a scalar factor, the de-

rivative of the original FT.

Exercises

1. We need the complex inner product for FTs:

( f , g) =
∞

−∞
∫ f (t)g(t)∗ dt .

Notice now that the inner product is not commutative: (g, f ) = ( f , g)∗; also note

that while (α f , g) = α ( f , g), inner product ( f , α g) = α ∗( f , g). From the norm

invariance property (2.5) show that

( f , g) = ( f̂ , ĝ) .

Hint: Consider || f + λ g||
2
.

2. The classical cosine transform of the real function f is defined as

C [ f ] =
∞

0

∫ cos 2πν t f (t) dt .

Show that this transform is its own inverse. What is the inverse of the sine

transform, define in the analogous manner to C ?
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A Short Table of Properties

Name Property Comments

1 Scale and shift F [ f (a(t + t0))] =
1

|a|
f̂




ν
a




e2π iν t0

2 Exponential factor F [ f (t) e2π iν0t] = f̂ (ν −ν0)

3 Double transform F
2[ f ] = f (−t)

4 Time reversal F [ f (−t)] = f̂ (ν )∗ Real f

5 Freq reversal f̂ (−ν ) = f̂ (ν )∗ Real f

6 Norm preservation || f || = || f̂ || Known by many names

7 Inner prod preservation ( f , g) = ( f̂ , ĝ) Complex inner prod

8 FT of derivative F [df /dt] = 2π iν f̂

9 Factor of t F [t f (t)] = −
1

2π i

d f̂

dν
10 Convolution F [ f ∗g] = f̂ ĝ See Section 4
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3. Several Fourier Transforms

Before proceeding any further we should have before us a few simple FTs of actual

functions. What appear at first sight to be the simplest examples, the FT of the sine

or cosine, are in fact complicated, because the integrals in (1.1) diverge. Special

arrangements need to be made to get an answer for such functions. For classical

integration to converge, we need a function that dies awa y to zero for large t. Let us

start with a function that decays exponentially:

f1(t) = 



e−at,

0,

t ≥ 0

t < 0 .

(3.1)

In the following a, b, and c are always real positive numbers. Notice that this func-

tion is not smooth: it has a discontinuity at t = 0. We can perform the integral of

(1.1) very easily:

f̂ 1(ν ) =
∞

−∞
∫ f1(t) e−2π iν t dt =

∞

0

∫ e−(a + 2π iν )t dt . (3.3)

Here the integrand is just exp(−γ t) for a constant complex γ with positive real part,

and answer is quite elementary: 1/γ . Hence

f̂ 1(ν ) =
1

a + 2π iν
(3.4)

=
a

a2 + 4π 2ν 2
− i

2πν
a2 + 4π 2ν 2

. (3.5)

Notice how the real part of f̂ 1 is even and the imaginary part is odd, as promised.

Also notice how much more slowly | f̂ | decays to zero than | f |. Why is this?

Suppose we wanted to make an even function from (3.1), that is take its even

part. From the property shown in Exercise 3 in section 1 for have a general result:

F [ f (t) + f (−t)] = f̂ (ν ) + f̂ (ν )∗ = 2 Re f̂ (ν ) .  (3.6)

It follows (almost immediately) from (3.6) and (3.1) that if:

f2(t) = e−a|t| (3.7)

Figure 3a: The FT of the exponential transient in (3.1).



FOURIER TRANSFORMS 10

f̂ 2(ν ) =
2a

a2 + 4π 2ν 2
. (3.8)

Can you see the slight hitch in this argument that needs to be fixed?

The property that F
2[ f ] = f (−t) gets us a free FT for every one we calculate.

Suppose I want the FT of the function in (3.8); this function is already an FT itself,

so taking its FT lands up with the original, with reversed argument. So, after apply-

ing a little scaling we find

f3(t) =
1

b2 + t2
(3.9)

f̂ 3(ν ) =
π
b

e−2π b|ν | . (3.10)

Notice this FT would be hard to compute directly, unless one is familiar with contour

integration.

Next we consider a function that is zero outside an interval; the following func-

tion is often called a box car function because its graph resembles the profile of a

piece of railway rolling stock:

f4(t) = box (t) = 



1,

0,

|t| ≤ ½

|t| > ½ .

(3.11)

The integral is easy because contributions vanish outside the interval (−½, ½):

f̂ 4(ν ) =
½

−½

∫ e−2π iν t dt =




e−2π iν t

−2π iν





t=½

t=−½

(3.12)

=
e−π iν − eπ iν

−2π iν
=

sin πν
πν

. (3.13)

The function sin (π t)/π t is often called the sinc function. From the same argument

Figure 3b: The FT of the box car is a sinc.
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as given before, we see that

F [sinc (t)] = box (ν ) .  (3.14)

Thus the sinc function has no frequency cntent outside the interval ) − ½, ½). Func-

tions like this are called band limited functions.

The various functions encountered in this section are quite unlike their FTs.

Now we come to the most famous function that is its own FT, the Gaussian hump.

Our proof of this is different from most of the ones you will see in the books, because

I want to show you the use of two of the important properties of the FT. To avoid

confusing subscripts we write

g(t) = e−π t2

. (3.15)

Then, differentiating we find a simple differential equation for g:

dg

dt
= − 2π t g (3.16)

with the initial condition g(0) = 1. Take the FT on both sizes of (3.16) and use the

differential property and the product property:

2π iν ĝ(ν ) = − 2π
−1

2π i

d ĝ

dν
(3.17)

which upon rearrangement is:

d ĝ

dν
= − 2πν ĝ (3.18)

which is identical with (3.16). This tells us that ĝ(ν ) = β g(ν ), where β = ĝ(0), an

unknown constant. To find β we apply the FT twice:

g(t) = g(−t) = F
2[g(t)] = β 2 g(t) (3.19)

and so β = ± 1. From the definition of the FT, ĝ(0) is the area under the (bell) curve

g(t) and that is clearly positive, so β = 1. Thus g is exactly its own FT:

ĝ = g or F 

e−π t2


= e−πν 2

. (3.20)

Perhaps surprisingly, there are infinitely many other functions that are their own

FTs. Perhaps you can think of some others.

Exercises

1. We can use our examples to perform some interesting integrals. Observe from

(1.1) and (1.2) that

f̂ (0) =
∞

−∞
∫ f (t) dt, and f (0) =

∞

−∞
∫ f̂ (ν ) dν .

(a) Use (3.13) and other properties of the FT to show that
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∞

−∞
∫

sin t

t
dt =

∞

−∞
∫

sin2 t

t2
dt = π .

(b) Similarly establish the following famous result from (3. 19 ):

∞

−∞
∫ e−t2

dt = √ π .

(c) Next, show by the change of variables 2πν = tanθ that for the function f̂ 1

defined in (3.8):

∞

−∞
∫ f̂ 1(ν ) dν =

∞

−∞
∫

dν
1 + 4π 2ν 2

= ½ .

But according to (3.1) f1(0) = 1. What has happened, and can we trust the

other integrals evaluated in this exercise?

2. Use the stretching scaling relationships to obtain the result given in (1.5). Find

the FT of f (t) = sinc (a[t − t0]) and, using MATLAB or otherwise, plot f and f̂ for

a = 1 and t0 = 20.

3. Find the FT of f (t) = |t|
−½

and of g(t) = |t|
½

/t (they are different functions!).

Hence evaluate the integrals

I1 =
∞

0

∫
cos t

√ t
dt and I2 =

∞

0

∫
sin t

√ t
dt .

Hint: Find f̂ (γ ν ) for a constant γ by (1.1) and (2.1) and compare; then choose γ
judiciously.

A Very Short Table of Fourier Transforms

f (t) f̂ (ν )

e−at H(t)
1

a + 2π iν

e−a|t| 2a

a2 + 4π 2ν 2

1

b2 + t2

π
b

e−2π b|ν |

box (t) sinc (ν )

sinc (t) box (ν )

e−π t2

e−πν 2

The constants a and b are always real and positive. Also the Heaviside step func-

tion is defined by

H(t) =




0, t < 0

1, t ≥ 0



FOURIER TRANSFORMS 13

4. Convolution

For this segment let us appeal to a physical model of our function as a signal from an

instrument. Imagine a seismometer, for example, whose impulse response is u(t),

which means that an input pulse of unit height and short duration dt generates out-

put of the form u(t) dt. The function given by f1 in (3.1) could be a suitable candi-

date. Now consider what happens when a continuous signal s(t) in the ground

excites the seismometer. The output at a particular time t0 is the sum (really the

integral) of all the contributions from the impulse responses at all previous times.

We can write the result

r(t0) =
t0

−∞
∫ dt s(t) u(t0 − t) (4.1)

which you will see is the sum of all impulses, weighted by their amplitudes, up to the

time t0. If, as is the case with f1 the system has no response before t = 0 (it is a

causal system) then we can replace the upper limit on the integral to obtain:

r(t0) =
∞

−∞
∫ dt s(t) u(t0 − t) .  (4.3)

This integral is called a convolution and is often written

r = s ∗ u (4.4)

because the operation of convolution has many of the properties of a multiplication.

It will be obvious that, like ordinary multiplication, it is distributive with addition:

s ∗ (u + v) = s ∗ u + s ∗ v. Less obvious are the properties of commutation: s ∗ u = u ∗ s

and associative property: s ∗ (u ∗ v) = (s ∗ u) ∗ v = s ∗ u ∗ v.

Figure 4a: Building the output from the impulse response.
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We should note at this point that, while causal response functions are the only

kind that make sense when u is the impulse response of a physical system in time,

when the independent variable represents space, that will not usually be the case.

For example, if we were calculating the magnetic field from a thin layer of magne-

tized material, in a two-dimensional approximation, then u(t) would be the field of a

single line of dipoles perpendicular to the observation plane, and the function u then

extends indefinitely in the positive and negative t directions. We shall see that con-

volution is easily generalized into more than one spatial dimension, where it usually

represents the result of integration over a set of point sources, like point masses, or

point dipoles.

Next we state the Convolution Theorem: it states that

F [ f ∗ g] = f̂ ĝ (4.5)

In words: the FT of convolution is just the product of the FTs of the two functions.

The convolution theorem is fairly straightforward to prove: it will be a homework

problem. One reason the convolution theorem is important in modern times arises

from the fact that we can compute approximate FTs very quickly with an algorithm

called the Fast Fourier Transform, or FFT. Convolutions done numerically by

approximating the integral in (4.1) will require a number of arithmetic operations

involving the product of three terms: Nu N s N r, where Nu is the number of terms in

the series for the signal s, and similarly for the other factors. When all three num-

bers are large, this can be a lot of computing, and this will happen regularly in the 2-

and 3-dimensional versions of convolution. Then it will be the case that it is numeri-

cally more efficient to perform the arithmetic using the following identity:

u ∗ s = F
−1[û ⋅ ŝ] (4.6)

because the numerical work to perform an FT grows like N log N ; three numerical

FTs will be much faster than one convolution for large N . In fact MATLAB automati-

cally uses FFTs to do long convolutions without telling you. We will look at numeri-

cal approximation of FTs in the next section.

Let us return to our seismometer. The impulse response u(t) of a seismome-

ter is defined as the output when the input is a spike of infinitesimal duration. Then

the output r(t) caused by an extended input s(t) is given by the convolution:

r(t) = s ∗ u =
∞

−∞
∫ s( p) u(t − p) dp (4.7)

The frequency response of the seismometer is the complex number that gives the

amplitude and phase of the sine-wave output, when a sinusoidal impulse is the

input. The idea behind the frequency response is that linear systems can usually be

viewed as filters: a particular band of frequencies may be attenuated, while

another band is accentuated. There is a vast literature on designing filters in engi-

neering to remove parts of the signal, but let pass unaffected signals in the so-called

pass band. Natural systems have their own frequency responses. We can calculate

the frequency response of the seismometer easily from the impulse response, but set-

ting the input in (4.7) to be the complex exponential with frequency ν :
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s(t) = e2π iν t = cos 2πν t + i sin 2πν t (4.8)

which is an elegant way of presenting both a cosine and sine signal of unit amplitude

to the instrument. Recall s ∗ u = u ∗ s, and so

r(t) =
∞

−∞
∫ e2π i (t − p)ν u( p) dp = e2π iν t

∞

−∞
∫ e−2π iν pu( p) dp (4.9)

= e2π iν t û(ν ) .  (4.10)

This equation tells us immediately that the frequency response is just the Fourier

transform of the impulse response.

To illustrate what this means in physical terms let us break things down into

real and imaginary parts as in (4.8). We write the transform û as

û(ν ) = |û| eiφ (ν ) (4.11)

Then from (4.10) we see

r(t) = |û(ν )| eiφ (ν ) e2π iν t = |û(ν )| eiφ (ν ) + 2π iν t (4.12)

= |û(ν )| [cos (φ (ν ) + 2πν t) + i sin (φ (ν ) + 2πν t)] . (4.13)

Comparing the real parts of (4.8) and (4.13) we see that (a) the input is a cosine, and

so is the output of the same frequency; (b) the output does not have unit amplitude:

its amplitude is |û(ν )|, the magnitude of the frequency response; (c) a phase shift

has been introduced by the instrument, which is given by φ (ν ). For real instruments

the phase is negative because the system delays the input by a certain amount, since

it cannot predict the future. Thus the magnitude and phase of the frequency

response tells us the amplitude and phase shift imparted to the signal by the seis-

mometer. Now look at the imaginary parts of (4.10) and (4.13). Exactly the same

thing happens: the same amplitude and phase shift occurs for a sine wave as a

cosine.

Next we will calculate the frequency response of a model seismometer. If the

vertical displacement of the seismometer beam relative to a point fixed in the ground

is given by z(t), and the ground acceleration is a(t), the differential equation of

motion, from Newton’s second law is

d2 z

dt2
+

ω0

Q

dz

dt
+ ω0

2 z(t) = a(t) (4.14)

where ω0 is the radian frequency of the seismometer resonance, and Q is the so-

called quality factor, an inverse measure of the damping in the system: the ampli-

tude of oscillation dies awa y by a factor e−1 in Q cycles, so high Q means low damp-

ing. To find the frequency response we can take the FT of both sides of (4.14), and

use the properties. In particular, recall that differentiating brings out a multiplica-

tive factor of 2π iν , so doing that twice squares the factor:

−4π 2ν 2 ẑ(ν ) +
2π iνω0

Q
ẑ(ν ) + ω0

2 ẑ(ν ) = â(ν ) (4.15)
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Solving for ẑ we find

ẑ(ν ) =
â(ν )

ω0
2 − 4π 2ν 2 + 2π iνω0/Q

= â(ν ) ĝ(ν ) .  (4.16)

According to the Convolution Theorem, if we took the inverse FT of (4.16), we would

get the output signal as the convolution of the ground acceleration and the function

ĝ. But from (4.7), this means that g(t) is the impulse response, and ĝ(ν ) is the fre-

quency response. So we have found the frequency response directly from the differ-

ential equation, without having to solve it! This shows an example of how the FT is

so useful. As I mentioned earlier solutions to many differential equations look like

convolutions.

The graph below shows the magnitude and phase responses of the model seis-

mometer with a Q value of 5. Notice that below a frequency of about 0.3 dimension-

less units the seismometer has a flat frequency response, meaning that the ground

acceleration is faithfully reflected in the beam position, but higher frequency signals

are increasing cut out. Observe too how the phase response is zero in the lower

band, but then turns to 180° in the upper band, so that the bean is moving in the

opposite direction to the ground acceleration there.

An important question arises: Given the output of an instrument like a seis-

mometer with known impulse response, can we recover the original input signal s(t)

from the measured output r(t) in (4.7)? This is the question of deconvolution. At

first glance the answer seems easy using the Convolution Theorem: since r̂ = û ŝ,

and û is known, we just divide by û and then take the inverse FT: s = F
−1[r̂ /û].

Unfortunately in most practical systems (like the seismometer response below) high-

frequencies are strongly attenuation so that ĥ gets very small, which means the

recovered signal is obtained by amplifying small values. These small values are

often submerged by noise in the system, and so this deconvolution succeeds only in

amplifying noise, not true signal. Deconvolution is therefore an unstable procedure

and straight division of the FTs hardly ever works; the process must be regular-

ized, a topic we will meet in inverse theory.

Figure 4b: Seismometer frequency response with Q = 5.



FOURIER TRANSFORMS 17

Exercises

1(a) Use equation (2.7) and other properties in Section 2 to prove the Convolution

Theorem.

(b) Use the Convolution Theorem to find the FT of sinc 2(x). Plot the FT.


