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5. The DFT and Approximation with the FFT

We come full circle back to the original idea of an inner product as the natural gener-

alization of the vector dot product. Consider the finite-dimensional vector space C| N ,

the set of all complex N -vectors [z0, z1, . . . zN−1]. Notice the peculiar indexing

scheme, which is used only for the particular case we are going to investigate. Now

we equip this space with the inner product

(u, v) =
N−1

n=0
Σ un v∗

n . (5.1)

Then of course there is a norm here given by

||u|| = (u, u)½ (5.2)

and the idea of orthogonality between two vectors is obvious. Suppose we wish to

expand an arbitrary complex vector z in an orthogonal basis, e0, e1, . . . eN −1:

z =
N−1

n=0
Σ cnen (5.3)

then we know that the expansion coefficients are given by the familiar

cn = (z, en)/||en||
2
, n = 0, 1, . . . N −1 (5.4)

I will study a particular basis, one that looks suspiciously familiar from section

3. Suppose

en = [1, e2πin/N , e4πin/N , . . . e2kπin/N , . . . e2(N −1)πin/N ] .  (5.5)

Each basis vector is in the form

en = [1, ωn, ω2
n, ω3

n, . . . ω N−1
n ] (5.6)

where we write ωn = e2πin/N . This basis is orthogonal. To prove that fact consider

(em, en) = 1 + ωmω−n + ω2
mω2

−n + . . . + ω N−1
m ω N−1

−n (5.7)

= 1 + ωm−n + ω2
m−n + . . . + ω N−1

m−n . (5.8)

This is an example of a geometric series, which you ought to be able to sum on

sight: when m ≠ n the sum is

(em, en) =
ω N

m−n − 1

ωm−n − 1
(5.9)

=
e2πi(m − n) − 1

e2πi(m − n)/N − 1
. (5.10)

But e2πiK = 1 if and only if K is an integer; thus the numerator vanishes, and the

denominator does not because we have excluded the case m = n. This proves the

complex vectors en are mutually orthogonal under the inner product (5.1). The case

m = n is trivial, since then ωm−n = ω0 = 1 and then (5.8) gives at once that

(en, en) = ||en||
2 = N . (5.11)
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We write out what we have in full; (5.3) and (5.4) are as follows

zm =
N−1

n=0
Σ cne2πimn/N (5.12)

cm =
1

N

N−1

n=0
Σ zne−2πimn/N . (5.13)

Again the minus sign in (5.13) comes from the complex conjugate in (5.1). The first

equation can be interpreted as the construction of a finite length, discretely sampled

signal from periodic components with complex amplitudes: it is a finite Fourier syn-

thesis. The second almost symmetrical equation says how to find the expansion coef-

ficients from the original sequence. We can regard the pair as means of approximat-

ing the pair of equations (3.10) and (3.11), and they are often used that way; but

(5.13) and (5.13) stand on their own as a particular form of Fourier analysis called

the Discrete Fourier Transform, or DFT for short. An important reason why

these equations are so useful for approximation is that when N is a power of two (or

can be written as the product of a few primes) the numerical evaluation of the DFT

can be calculated extremely rapidly. The algorithm is called the Fast Fourier

Transform, or FFT. We have already met this algorithm in our discussion of convo-

lution.

One of the chief applications of these ideas is to find numerical approximations for

an analytic FT, because all too often the necessary integral is hard. Often an asymp-

totic approximation via the method of stationary phase, or the saddle-point

integral will do the trick (see Bender and Orszag, 1978), and it is a good idea to per-

form those kinds of calculations anyhow, even if one plans to compute the integral

numerically.

Let us define (5.13) as the Discrete Fourier Transform (DFT):

f̂ m =
1

N

N−1

n=0
Σ f n e−2πimn/N , m = 0, 1, 2, . . . N −1 (5.14)

so that a vector of f ∈ C| N (a complex N -dimensional vector) is mapped into another

such vector. The FFT is just a fast way of doing a certain matrix multiply. On the

other hand, the Fourier transform is:

f̂ (ν ) =
∞

−∞
∫ f (t) e−2πiν t dt (5.16)

Suppose we are willing to approximate the integral by the trapezoidal rule, which

is the sum:

T[g] = ½h[g(a) + g(b)] + h
N−1

n=1
Σ g(a + nh) ˜

b

a
∫ g(t) dt (5.17)

where the spacing h = (b − a)/N . Since a and b are at infinity in the original integral

(5.16) it should not matter if we keep the factor of one half at the end points in

(5.17), since our function should be vanishing small there: we can take a straight

sum. In the approximation we can include only finitely many terms, say 2M +1.
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Then we will sample the function f (t) symmetrically about t = 0, at the points

t = 0, ± ∆t, ± 2∆t, . . . ± M∆t; now we have an approximation

f̃ (ν ) =
M

n=−M
Σ f (n∆t) e−2πiν n∆t ∆t (5.18)

Suppose we wish to evaluate the answers at frequencies spaced by ∆ν , so that evalu-

ation is at ν = 0, ∆ν , 2∆ν , . . . 2M∆ν : then

f̃ (m∆ν ) = f̃ m =
M

n=−M
Σ f (n∆t) e−2πimn∆t ∆ν ∆t (5.19)

=
2M

k=0
Σ f ((k − M)∆t) e−2πim(k − M)∆t ∆ν ∆t (5.20)

= ∆te−2πimM∆t ∆ν
2M

k=0
Σ f ((k − M)∆t) e−2πimk∆t ∆ν (5.21)

Comparing this expression with (5.14) we see that the sum is an FFT calculation if

we make N = 2M +1 and ∆t ∆ν = 1/(2M +1). Notice that the input vector is

f n = f ((n − M) ∆t) and the output vector is f̃ m approximates f̂ (m ∆ν ).

To get reasonable accuracy out of the trapezoidal rule, we need two things intu-

itively: (a) A fine enough sampling ∆t to capture short wavelength behavior of the

original function; (b) Integration over a large enough interval, so that f (t) is effec-

tively zero near the end points, which is equivalent to taking M large enough that

f (M ∆t) is very small. These two demands determine an upper bound on ∆t and

lower bound on M, and therefore choices about ∆ν , the spacing in frequency at which

the results are computed, and the highest frequency, M ∆ν are constrained. Usually

one finds one has to make M much larger than one would like and there are too

many points in frequency for convenience.

Figure 5a: Numerical integration with (5.17)
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Furthermore, it is easy to show for real vectors f n in (5.14) that

f̃ M−m = f̃
∗
m (5.22)

which means that in the DFT approximation (5.21) values for m > M are repeats of

those earlier in the vector (with imaginary parts reversed in sign), a property not

shared with the true integral f̂ ((N − n)∆ν ). When m ≥ M the DFT approximation to

f̂ (ν ) is worthless.

At a little more sophisticated level, it is well known that for a piece-wise con-

tinuous function, the error in the trapezoidal rule falls off like ∆t2. That does not

include the error from ignoring the contribution from the integral beyond the ends of

the finite interval of integration. For analytic functions (those functions with conver-

gent Taylor series at every point) the error between an infinite sum:

T∞[g] = h
∞

n=−∞
Σ g(nh) (5.23)

and the integral of g(t) vanishes much faster than h2, and usually is of the form

e−c/h. So the DFT approximation of an analytic function can be very good, provided a

large enough interval is chosen to make the function very small at the end points.

The key to a proper treatment of the error in (5.23) is another important result

for Fourier Theory, the Poisson Sum Formula: for any sufficiently smooth function,

say f ∈ S

∞

n=−∞
Σ f (n) =

∞

m=−∞
Σ f̂ (m) (5.24)

where f̂ is the FT of f . To me this is an amazing result, because the sum only sam-

ples the function at integer points, while the FT integrates over the whole thing. To

use it on (5.23) write f (n) = g(nh) and expand the sum on the right in (5.24)

∞

n=−∞
Σ g(nh) =

1

h
ĝ(0) +

1

h

∞

n=1
Σ ĝ(m/h) +

1

h

1

n=−∞
Σ ĝ(m/h) (5.25)

=
1

h

∞

−∞
∫ g(t) dt +

1

h

∞

m=1
Σ [ ĝ(m/h) + ĝ(−m/h)] (5.26)

After multiplying across by h the sum on the left is the trapezium approximation, on

the left is the true integral, and the sum is the error in the approximation. This sum

can usually be evaluated by an asymptotic method, and when h is small only the

first term is important. Remember the Poisson Sum Formula, because it has other

applications in time series.

Exercises

1. The FFT is fastest when the number of terms N is a power of two, that is, an

even number, while the analysis above yields an odd number for N . How can

we ensure an even number instead?
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Illustrate your answer by finding a numerical approximation for the FT of the

function:

f (t) =
1

cosh (πt)

If you can find the exact answer (either by mathematical skill or the use of

works of reference) plot it on your graph of the approximation. Calculate and

plot the error of the DFT approximation.

2. Using the code you developed for Question 1, find numerically the FT of the func-

tion:

g(t) = exp − |t|
½

Plot the result in an informative way: this means not having everything inter-

esting compressed into one millimeter on the left of the graph. Compute the

integral of ĝ(ν ) and compare this with f (0); how well do they agree? Is ĝ(ν )

positive everywhere?

3. Apply the Poisson Sum Formula to the infinite sum

S1 =
∞

n=−∞
Σ 1

a2 + n2
.

Use your result to evaluate the sum

S2 =
∞

n=0
Σ 1

a2 + n2

numerically for a = 1000. Give an answer accurate to 6 significant figures.

Roughly how many terms of the original series for S2 would you need to sum to

obtain the same accuracy?
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6. Multivariate Fourier Transforms

So far we have discussed the Fourier operation on functions of a single variable,

which is certainly natural when, as in the last section, the independent variable has

been time. When the function in question varies in space, however, we can general-

ize the notion of the FT. Physically, the model is no longer a sine wave signal like a

musical tone, or a electrical current in a wire; now the picture we need is of a plane

wa ve moving over the surface of the ocean, or even a pressure wave moving through

the air in 3-dimensional space. For ease of illustration we will mainly work with

vectors in 2-dimensional space x, k ∈ IR2, but all the results will remain valid in

higher dimensions, unless indicated otherwise.

We define the FT by the integral

f̂ (k) = F [ f ] =
IR2

∫ d2x f (x) e−2πik ⋅ x (6.1)

where f (x) = f (x1, x2) is a complex valued function; this can be stated compactly as

f : IR2 → C| . The integral is performed over the whole x1, x2 plane. As before we will

not inquire into what kinds of functions are suitable for this operation, but continu-

ously differentiable functions that decay to zero at infinity will certainly be safe.

The inverse follows the same pattern as in one dimension:

f (x) = F
−1[ f̂ ] =

IR2

∫ d2k f̂ (k) e+2πik ⋅ x . (6.2)

Notice the vector dot product in the exponent. This is the key to understanding the

2-D FFT in physical terms. Equation (6.2) like (1.2) is building up a function from a

collection of elementary periodic components, but with the additional complication

that each element has a direction as well as a wavelength. The complex exponential

is

e+2πik ⋅ x = cos 2π(k1 x1 + k2 x2) + i sin 2π(k1 x1 + k2 x2) .  (6.3)

The Fourier parameter k = (k1, k2) is the wavevector or wavenumber; it points in

the direction of increasing phase, normal to the wavefront. Imagine plotting the real

part of (6.3); you will see a sinusoidal undulation with peaks and troughs running at

right angles to the direction k̂ and with a wavelength λ = 1/√  k2
1 + k2

2 = |k|
−1

. The

Figure 6a: A plane sinusoidal wave in 2-D.
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argument of the cosine is 2πk ⋅ x = 2πk̂ ⋅ x/λ . The integral (6.2) thus represents the

summation over a spectrum of waves as a function of their wavenumber, that is, a

sum over all wavelengths and all directions: the function f̂ (k) gives the (complex)

amplitude of the contribution in direction k̂ and wavelength λ = |k|
−1

.

The FT is the means by which a function in the plane can be decomposed into

components with differing wavenumber. It is usually easier in a physical problem to

understand how a single plane wave interacts with a medium, say by refraction or

reflection. Then the behavior of a more complex wave packet can be understood by

summing together the responses from the individual planes waves of which it is com-

prised.

The properties we have encountered for single variable FTs have analogs for

the multivariate case. In fact it is usually just possible to substitute the vector argu-

ment for the scalar and the result remains valid. You can easily verify that

F [F [ f (x)]] = f (−x) (6.4)

F [ f (−x)] = f̂ (k)∗ , f real . (6.5)

And The FT still preserves the norm:

IR2

∫ d2x | f (x)|
2 =

IR2

∫ d2k | f̂ (k)|
2

. (6.6)

Differentiation introduces the obvious modification to allow for the fact that the gra-

dient is a vector operator:

F [∇ f ] = 2πik f̂ (k) .  (6.7)

And its converse is:

F [x f (x)] = −
1

2πi
∇ k f̂ = −

1

2πi





∂ f̂

∂k1

,
∂ f̂

∂k2

,
∂ f̂

∂k3





. (6.8)

Convolution is defined in IR2 in the obvious manner:

(s ∗ u)(y) =
IR2

∫ d2x s(x) u(y −x) =
IR2

∫ d2x u(x) s(y −x) (6.9)

and then the Convolution Theorem is the same as (4.6):

F [s ∗ u](k) = ŝ(k) û(k) .  (6.10)

Some 2-dimensional FTs can be performed by simply factoring the function

into the product of two single variable functions. The most obvious is the Gaussian

hump.

F [e−πx ⋅ x] =
IR2

∫ d2x e−πx ⋅ x e−2πik ⋅ x (6.11)
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=
∞

−∞
∫ dx1

∞

−∞
∫ dx2 e−π(x2

1 + x2
2) e−2πi(k1 x1 + k2 x2) (6.12)

=
∞

−∞
∫ dx1 e−πx2

1 e−2πik1 x1 ×
∞

−∞
∫ dx2 e−πx2

2 e−2πik2 x2 (6.13)

= e−πk2
1 e−πk2

2 = e−πk ⋅ k . (6.14)

We see the same self-transform property in two dimensions as in one, and you will

easily see that this must be true in all dimensions.

A Gaussian hump has circular symmetry. Many functions of interest in

Fourier theory have circular (or, in 3-D, spherical) symmetry. Now we come to a

property that has no obvious analog in the 1-dimensional transform. Suppose the

function g is circularly symmetric about the origin:

g(x) = G(|x|) . (6.15)

Is there anything simple we can say about ĝ? Yes; we discover that ĝ(k) is real, and

is also circularly symmetric about the wavenumber origin, and can be found from a

special kind of transform of the single-argument function G, as follows. We make

the change to polar coordinates x1 = r cosθ , x2 = r sinθ in the FT integral:

F [g] =
∞

0

∫ r dr

2π

0

∫ dθ G(r) e−2πi(k1r cosθ + k2r sinθ ) . (6.16)

We indulge in some elementary trigonometry; in the exponent write

k1r cosθ + k2r sinθ = kr cos (θ − Φ(k̂)) (6.17)

where k1 = k cos Φ, k2 = k sin Φ and k = |k|. Now we can reorder (6.16):

F [g] =
∞

0

∫





2π

0

∫ dθ e−2πikr cos (θ − Φ)






G(r) r dr . (6.18)

The value of the integral in brackets is independent of the value of Φ because the θ

Figure 6b: A Bessel function of order zero.
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integral is over a complete period of a periodic function, and shifting the argument of

the cosine by any constant amount has no effect. (Prove this.) The inner integral

becomes

2π

0

∫ dθ e−2πikr cosθ =
2π

0

∫ dθ cos (2πkr cosθ ) = 2π J0(2πkr) (6.19)

where J0 is called a Bessel function (of the first kind and order zero). It is a func-

tion that looks a lot like a slowly decaying cosine, (see Figure 6b) and is the simplest

member of a big family of special functions obeying a particular kind of ordinary dif-

ferential equation. Our final result can be written

ĝ(k) = H [G](|k|) (6.20)

where

H [G](k) = H(k) =
∞

0

∫ 2πr dr J0(2πkr) G(r) .  (6.21)

The integral in (6.21) is an integral transform called (confusingly) a Hankel

transform. Notice how the scalar argument function G(r) is mapped into another

scalar argument function H(k); even though the Hankel transform arises from

Figure 6c: FT of a circular disk.
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2-dimensional problems, it is itself a 1-dimensional transform acting on the radial

variable alone. While it is generally true in three and higher dimensions that the

centrally symmetric function (a function of |x| alone, with x ∈ IRn) yields an FT

that is itself centrally symmetric (a function of |k|), the kind of Hankel transform

depends on the value of n, the dimension of the space.

On the previous page we illustrate the 2-D version of the result that the FT of

the box is a sinc function. Now we have a circular can-shaped function, and its 2-D

FT is a sombrero function, which is of course axisymmetric. Here

H(k) = a J1(2πka)/k, where J1(x) = − dJ0 /dx, another Bessel function, this time of

order 1.

Exercises

1. Write the Hankel transform of order zero as

H [g](k) = 2π
∞

0

∫ f (r) J0(2πkr) r dr

Show that the inverse Hankel transform is identical to the forward transform,

that is, H [g] = H
−1[g].
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7. Change of Dimension

A scalar function is defined in 3-dimensional space IR3, but observed only on a plane.

This situation arises often in potential fields in geophysics, for example, we may

know gravity only on the sea surface, even though it is defined above and below that

surface. Or in lower dimensions, we may know the magnetic anomaly only on a sin-

gle track, though it is observable on the sea surface, and in principle defined in all of

space. How is the Fourier transform of the function f in IR3, as defined by

f̂ (k) = F 3[ f ] =
IR3

∫ d3x f (x) e−2πik ⋅ x (7.1)

related to the 2-D FT on the plane z = 0? The answer is surprisingly easy to prove.

Use coordinates (x1, x2, x3) rather than x, y, z. We need a notation that distin-

guishes 2- and 3-D transform operations and their results; the following is not stan-

dard, but is quite serviceable. The 2-D FT we need is defined as

f̂
0
(k1, k2) = F 2[ f (x1, x2, 0)] (7.2)

=
∞

−∞
∫

∞

−∞
∫ dx1 dx2 f (x1 , x2, 0) e−2πi(k1 x1 + k2 x2) . (7.3)

Now consider the inverse of the full 3-D FT (7.1):

f (x1, x2, x3) = F
−1
3 [ f̂ ] =

IR3

∫ d3k f̂ (k) e2πik ⋅ x (7.4)

=
∞

−∞
∫

∞

−∞
∫

∞

−∞
∫ dk1 dk2 dk3 f̂ (k) e2πi(k1 x1 + k2 x2 + k3 x3) . (7.5)

If we set x3 = 0 in (7.4) we have

f (x1, x2, 0) =
∞

−∞
∫

∞

−∞
∫

∞

−∞
∫ dk1 dk2 dk3 f̂ (k) e2πi(k1 x1 + k2 x2) (7.6)

=
∞

−∞
∫

∞

−∞
∫ dk1 dk2 e2πi(k1 x1 + k2 x2)





∞

−∞
∫ dk3 f̂ (k)





(7.7)

= F
−1
2 [

∞

−∞
∫ dk3 f̂ (k)] . (7.8)

Now all we need do is take the 2-D FT of both sides of (7.8)

f̂
0
(k1, k2) =

∞

−∞
∫ dk3 f̂ (k1, k2, k3) .  (7.9)

This result shows that the to obtain the 2-D FT on a plane through the origin, you

must integrate the full 3-D FT on the line in the wavenumber space that is
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perpendicular to the plane. As you will easily see, the same argument works in

going from the FT over a plane to the FT on a line in the plane. Bracewell calls this

the Slice Theorem. You don’t want to make the mistake of thinking that the 2-D

FT on a slice is just a slice through the 3-D FT, but this is an error that is often

made.

You might imagine that this is fairly useless, since 3-D FTs are harder to find

than 2-D or 1-D transforms. But that is not always true. Here is a simple example.

Consider the gravitational potential of a point mass at the origin of coordinates. It is

well known that

U (x) = −
Gm

|x|
. (7.10)

On the plane z = x3 = h the potential is clearly

u(x1, x2) = U (x1, x2, h) = −
Gm

√  x2
1 + x2

2 + h2
. (7.11)

There several reasons why we would like the 2-D FT of u; for example, to perform a

convolution over an extended body to calculate its gravity anomaly, when we could

use the Convolution Theorem. Equation (7.11) clearly is a function that is circularly

symmetric about (0, 0). So according to (6.20), after setting r2 = x2
1 + x2

2, we have

F 2[u] = 2π
∞

0

∫ r dr
J0(2πr√  k2

1 + k2
2)

√  r2 + h2
(7.12)

which is not an easy integral. We can discover the answer quite simply in another

wa y.

In place of (9) we write the fundamental differential equation for the gravita-

tional potential, Poisson’s equation:

∇ 2U = −4πGρ(x) (7.13)

where ρ is the density distribution. For a point mass at the origin, this becomes

∂2U

∂x2
1

+
∂2U

∂x2
2

+
∂2U

∂x2
3

= − 4πGmδ (x) .  (7.14)

Here you can imagine that δ (x) is a very tall, narrow Gaussian function centered on

the origin, with unit volume; in the ideal case the function becomes arbitrarily nar-

row and high, and then represents the idealization of the density distribution of a

point mass. We will look at this theory later. For now we need only think about

what the 3-D FT is of this function. Without going into details, which you can sup-

ply yourself, the FT of the Gaussian is a 3-D Gaussian in k but scaled so that if w is

its width is space, its width in wavenumber must be 1/w. As w tends towards zero

the FT tends to a constant, and because the integral of δ (x) over all space is unity,

that constant must be unity too. Now we take the 3-D FT of (7.13) and we see

−4π2|k|
2
Û (k) = − 4πGm (7.15)

since each derivative on the left causes multiplication by 2πik j , and F 3[δ ] = 1.
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Therefore, the 3-D FT of the potential due to a point mass at the origin is very sim-

ple; it is

Û (k) =
Gm

π|k|
2

. (7.16)

Once again the Fourier transform has made a differential equation into an algebraic

equation. This process only works when the boundary conditions are applied at

infinity. We want the 2-D FT on the plane z = h, not the plane z = 0. One wa y to get

this is to shift the point mass to the position x3 = − h; the shift property in three

dimensions is

F 3[ f (x +x0) = f̂ (k) e2πik ⋅ x0 (7.17)

and so setting x0 = ẑh = (0, 0, h) we find

F 3[U (x + ẑh)] = Û (k) e2πik3h (7.18)

=
Gm

π
e2πik3h

k2
1 + k2

2 + k2
3

. (7.19)

This is the 3-D FT of a point mass at z = − h. According to (7.9), all we need do now

to find the 2-D FT of u is integrate this equation over k3:

F 2[u] =
Gm

π

∞

−∞
∫ dk3

e2πik3h

(k2
1 + k2

2) + k2
3

. (7.20)

Since k1 and k2 are constants as far as the integral is concerned, and the integrand

is an even function of k3, the integral is nothing more than the FT of f3 defined by

(3.10), and given by (3.11):

û(k1, k2) =
Gm

√  k2
1 + k2

2

e−2πh√  k2
1 + k2

2 .

As advertised, û is circularly symmetric in wavenumber.
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A Short Table of Multivariate FT Properties

Name Property Comments

1 Scale and shift F [ f (a(x +x0))] =
1

|a|
f̂ (k/a) e2πik⋅x0

2 Exponential factor F [ f (x) e2πik0⋅x] = f̂ (k −k0)

3 Double transform F
2[ f ] = f (−x)

4 Reflect in origin F [ f (−x)] = f̂ (k)∗ Real f

5 Norm preservation || f || = || f̂ || Complex L2(IRN )

6 Inner prod preservation ( f , g) = ( f̂ , ĝ) Complex L2(IRN )

7 FT of grad F [∇ f ] = 2πik f̂

8 FT of ∇ 2
F [∇ 2 f ] = − 4π2|k|

2
f

9 Convolution F [ f ∗ g] = f̂ ĝ

10 Radial symmetry F [g(|x|)] = G(|k|)

11 Circular symmetry F [g(|x|)] =
∞

0

∫ g(r)J0(2π|k|r) 2πr dr x, k ∈ IR2

12 Slice Theorem F 2[ f (x1, x2, 0)] =
∞

−∞
∫ f̂ (k1, k2, k3) dk3 x ∈ IR3


